Documentation Verification Report

TrapezoidalRule

πŸ“ Source: Mathlib/MeasureTheory/Integral/IntervalIntegral/TrapezoidalRule.lean

Statistics

MetricCount
Definitionstrapezoidal_error, trapezoidal_integral
2
Theoremssum_trapezoidal_error_adjacent_intervals, sum_trapezoidal_integral_adjacent_intervals, trapezoidal_error_eq, trapezoidal_error_le, trapezoidal_error_le_of_c2, trapezoidal_error_symm, trapezoidal_integral_eq, trapezoidal_integral_ext, trapezoidal_integral_one, trapezoidal_integral_symm
10
Total12

(root)

Definitions

NameCategoryTheorems
trapezoidal_error πŸ“–CompOp
5 mathmath: trapezoidal_error_eq, trapezoidal_error_le_of_c2, sum_trapezoidal_error_adjacent_intervals, trapezoidal_error_symm, trapezoidal_error_le
trapezoidal_integral πŸ“–CompOp
5 mathmath: trapezoidal_integral_ext, trapezoidal_integral_one, trapezoidal_integral_symm, trapezoidal_integral_eq, sum_trapezoidal_integral_adjacent_intervals

Theorems

NameKindAssumesProvesValidatesDepends On
sum_trapezoidal_error_adjacent_intervals πŸ“–mathematicalIntervalIntegrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instAdd
Real.instMul
Real.instNatCast
Finset.sum
Real.instAddCommMonoid
Finset.range
trapezoidal_error
Real.instOne
β€”Finset.sum_sub_distrib
sum_trapezoidal_integral_adjacent_intervals
Finset.sum_congr
Nat.cast_one
intervalIntegral.sum_integral_adjacent_intervals
le_total
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
mul_le_mul_of_nonpos_right
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
Nat.cast_le
Real.instZeroLEOneClass
RCLike.charZero_rclike
mul_nonpos_of_nonneg_of_nonpos
IsOrderedRing.toPosMulMono
Nat.cast_nonneg
Set.mem_uIcc_of_le
le_add_of_nonneg_right
mul_nonneg
Nat.cast_nonneg'
le_imp_le_of_le_of_le
add_le_add_right
mul_le_mul_of_nonneg_right
le_refl
IntervalIntegrable.mono
PseudoEMetricSpace.pseudoMetrizableSpace
Set.uIcc_subset_uIcc
LT.lt.le
le_rfl
CharP.cast_eq_zero
CharP.ofCharZero
MulZeroClass.zero_mul
add_zero
sum_trapezoidal_integral_adjacent_intervals πŸ“–mathematicalβ€”Finset.sum
Real
Real.instAddCommMonoid
Finset.range
trapezoidal_integral
Real.instAdd
Real.instMul
Real.instNatCast
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Finset.sum_congr
trapezoidal_integral_one
add_sub_add_left_eq_sub
add_sub_cancel_left
one_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Finset.sum_add_distrib
Finset.sum_range_succ'
Finset.sum_range_succ
add_add_add_comm
add_comm
Nat.cast_sub
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.RingNF.mul_assoc_rev
trapezoidal_error_eq πŸ“–mathematicalβ€”trapezoidal_error
Real
Real.instZero
β€”trapezoidal_integral_eq
intervalIntegral.integral_same
sub_self
trapezoidal_error_le πŸ“–mathematicalDifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.uIcc
Real.lattice
derivWithin
IntervalIntegrable
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
iteratedDerivWithin
NormedAddCommGroup.toSeminormedAddCommGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instLE
abs
Real.instAddGroup
trapezoidal_error
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instSub
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
lt_trichotomy
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Set.uIcc_of_lt
trapezoidal_error_eq
abs_zero
sub_self
zero_pow
Nat.instCharZero
MulZeroClass.zero_mul
zero_div
abs_of_neg
sub_neg
neg_sub
trapezoidal_error_symm
abs_neg
Set.uIcc_of_gt
IntervalIntegrable.symm
trapezoidal_error_le_of_c2 πŸ“–mathematicalContDiffOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
Set.uIcc
Real.lattice
Real.instLE
abs
Real.instAddGroup
iteratedDerivWithin
trapezoidal_error
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instSub
Real.instNatCast
β€”Nat.instAtLeastTwoHAddOfNat
eq_or_ne
trapezoidal_error_eq
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_self
zero_pow
Nat.instCharZero
MulZeroClass.zero_mul
zero_div
uniqueDiffOn_Icc
inf_lt_sup
ContDiffOn.differentiableOn
two_ne_zero
CharZero.NeZero.two
WithTop.charZero
iteratedDerivWithin_one
ContDiffOn.differentiableOn_iteratedDerivWithin
WithTop.addLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
WithTop.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
ContinuousOn.intervalIntegrable
Real.locallyFinite_volume
ContDiffOn.continuousOn_iteratedDerivWithin
le_refl
trapezoidal_error_le
trapezoidal_error_symm πŸ“–mathematicalβ€”trapezoidal_error
Real
Real.instNeg
β€”trapezoidal_integral_symm
intervalIntegral.integral_symm
neg_sub_neg
neg_sub
trapezoidal_integral_eq πŸ“–mathematicalβ€”trapezoidal_integral
Real
Real.instZero
β€”sub_self
zero_div
add_self_div_two
CharZero.NeZero.two
RCLike.charZero_rclike
Finset.sum_congr
MulZeroClass.mul_zero
add_zero
Finset.sum_const
Finset.card_range
nsmul_eq_mul
MulZeroClass.zero_mul
trapezoidal_integral_ext πŸ“–mathematicalβ€”Real
Real.instAdd
trapezoidal_integral
Real.instMul
Real.instNatCast
Real.instOne
β€”Nat.cast_add_one
sum_trapezoidal_integral_adjacent_intervals
Finset.sum_range_succ
trapezoidal_integral_one πŸ“–mathematicalβ€”trapezoidal_integral
Real
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
div_one
Finset.sum_congr
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
add_zero
mul_comm_div
trapezoidal_integral_symm πŸ“–mathematicalβ€”trapezoidal_integral
Real
Real.instNeg
β€”neg_mul_eq_neg_mul
neg_div'
neg_sub
add_comm
Finset.sum_range_reflect
Finset.sum_congr
Nat.cast_one
tsub_tsub
Nat.instOrderedSub
Nat.cast_add
Nat.cast_sub
Finset.mem_range
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_natSucc
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_overlap_pf_zero

---

← Back to Index