Documentation Verification Report

DominatedConvergence

πŸ“ Source: Mathlib/MeasureTheory/Integral/Lebesgue/DominatedConvergence.lean

Statistics

MetricCount
Definitions0
Theoremslimsup_lintegral_le, tendsto_lintegral_filter_of_dominated_convergence, tendsto_lintegral_of_dominated_convergence, tendsto_lintegral_of_dominated_convergence', tendsto_of_lintegral_tendsto_of_antitone, tendsto_of_lintegral_tendsto_of_monotone, tendsto_of_lintegral_tendsto_of_monotone_aux
7
Total7

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
limsup_lintegral_le πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
Filter.EventuallyLE
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
lintegral
Filter.atTop
Nat.instPreorder
β€”Measure.instOuterMeasureClass
Filter.limsup_eq_iInf_iSup_of_nat
iInf_mono
iSupβ‚‚_lintegral_le
lintegral_iInf
Measurable.biSup
ENNReal.borelSpace
ENNReal.instOrderTopology
ENNReal.instSecondCountableTopology
Set.to_countable
SetCoe.countable
instCountableNat
iSup_le_iSup_of_subset
le_trans
ne_top_of_le_ne_top
lintegral_mono_ae
Filter.Eventually.mono
ae_all_iff
iSup_le
tendsto_lintegral_filter_of_dominated_convergence πŸ“–mathematicalFilter.Eventually
Measurable
ENNReal
ENNReal.measurableSpace
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Filter.Tendsto
nhds
ENNReal.instTopologicalSpace
lintegralβ€”Measure.instOuterMeasureClass
Filter.tendsto_iff_seq_tendsto
Filter.tendsto_atTop'
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.inter_mem
Filter.tendsto_add_atTop_iff_nat
tendsto_lintegral_of_dominated_convergence
Filter.Eventually.mono
Filter.Tendsto.comp
tendsto_lintegral_of_dominated_convergence πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
Filter.EventuallyLE
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Filter.Eventually
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
lintegralβ€”Measure.instOuterMeasureClass
tendsto_of_le_liminf_of_limsup_le
ENNReal.instOrderTopology
lintegral_congr_ae
Filter.Eventually.mono
Filter.Tendsto.liminf_eq
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
lintegral_liminf_le
limsup_lintegral_le
Filter.Tendsto.limsup_eq
Filter.isBounded_le_of_top
Filter.isBounded_ge_of_bot
tendsto_lintegral_of_dominated_convergence' πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Filter.EventuallyLE
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Filter.Eventually
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
lintegralβ€”Measure.instOuterMeasureClass
lintegral_congr_ae
tendsto_lintegral_of_dominated_convergence
Filter.mp_mem
Filter.univ_mem'
Filter.EventuallyEq.symm
ae_all_iff
instCountableNat
tendsto_of_lintegral_tendsto_of_antitone πŸ“–β€”AEMeasurable
ENNReal
ENNReal.measurableSpace
Filter.Tendsto
lintegral
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
Filter.Eventually
Antitone
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
β€”β€”Measure.instOuterMeasureClass
LT.lt.ne
LE.le.trans_lt
lintegral_mono_ae
Filter.mp_mem
Filter.univ_mem'
Ne.lt_top
tendsto_atTop_of_antitone
ENNReal.instOrderTopology
Filter.Tendsto.mono_right
Filter.OrderBot.atBot_eq
pure_le_nhds
ge_of_tendsto'
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_nhds_unique
ENNReal.instT2Space
lintegral_tendsto_of_tendsto_of_antitone
Filter.EventuallyEq.symm
ae_eq_of_ae_le_of_lintegral_le
ENNReal.aemeasurable_of_tendsto
Eq.le
tendsto_of_lintegral_tendsto_of_monotone πŸ“–β€”AEMeasurable
ENNReal
ENNReal.measurableSpace
Filter.Tendsto
lintegral
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
Filter.Eventually
Monotone
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
β€”β€”Measure.instOuterMeasureClass
exists_measurable_le_lintegral_eq
Measurable.max
BorelSpace.opensMeasurable
ENNReal.borelSpace
ENNReal.instSecondCountableTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Filter.mp_mem
Filter.univ_mem'
max_le
LE.le.trans
le_antisymm
lintegral_mono_ae
lintegral_mono
tendsto_of_lintegral_tendsto_of_monotone_aux
Measurable.aemeasurable
Filter.Eventually.of_forall
monotone_nat_of_le_succ
le_max_right
tendsto_of_tendsto_of_tendsto_of_le_of_le
tendsto_const_nhds
tendsto_of_lintegral_tendsto_of_monotone_aux πŸ“–β€”AEMeasurable
ENNReal
ENNReal.measurableSpace
Filter.Tendsto
lintegral
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
Filter.Eventually
Monotone
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
β€”β€”Measure.instOuterMeasureClass
Filter.mp_mem
ae_lt_top'
Filter.univ_mem'
LT.lt.ne
tendsto_atTop_of_monotone
ENNReal.instOrderTopology
Filter.tendsto_atTop_atTop_iff_of_monotone
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
LE.le.trans
not_le
ENNReal.lt_add_right
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
le_of_tendsto'
instClosedIicTopology
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
tendsto_nhds_unique
ENNReal.instT2Space
lintegral_tendsto_of_tendsto_of_monotone
ae_eq_of_ae_le_of_lintegral_le
Eq.le

---

← Back to Index