Documentation Verification Report

Map

πŸ“ Source: Mathlib/MeasureTheory/Integral/Lebesgue/Map.lean

Statistics

MetricCount
Definitions0
Theoremslintegral_map, lintegral_comp, lintegral_comp_emb, lintegral_map_equiv, setLIntegral_comp_emb, setLIntegral_comp_preimage, setLIntegral_comp_preimage_emb, lintegral_comp, lintegral_indicator_const_comp, lintegral_map, lintegral_map', lintegral_map_equiv, lintegral_map_le, lintegral_subtype_comap, setLIntegral_map, setLIntegral_subtype
16
Total16

MeasurableEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
lintegral_map πŸ“–mathematicalMeasurableEmbeddingMeasureTheory.lintegral
MeasureTheory.Measure.map
β€”MeasureTheory.lintegral_def
le_antisymm
iSupβ‚‚_le
measurable
MeasureTheory.SimpleFunc.lintegral_map
le_iSup_of_le
le_iSup
MeasureTheory.SimpleFunc.extend_comp_eq
MeasureTheory.SimpleFunc.lintegral_eq_lintegral
MeasureTheory.lintegral_mono_ae
MeasureTheory.Measure.instOuterMeasureClass
ae_map_iff
Filter.Eventually.of_forall
Eq.trans_le
MeasureTheory.SimpleFunc.extend_apply

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
lintegral_comp πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
lintegral
Measure.map
β€”lintegral_map
lintegral_indicator_const_comp πŸ“–mathematicalMeasurable
MeasurableSet
lintegral
Set.indicator
ENNReal
instZeroENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.preimage
β€”lintegral_comp
Measurable.indicator
measurable_const
lintegral_indicator_const
Measure.map_apply
lintegral_map πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
lintegral
Measure.map
β€”lintegral_eq_iSup_eapprox_lintegral
Measurable.comp
SimpleFunc.ext
SimpleFunc.eapprox_comp
SimpleFunc.lintegral_map
lintegral_map' πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Measure.map
lintegralβ€”lintegral_congr_ae
Measure.map_congr
lintegral_map
Filter.EventuallyEq.fun_comp
Measure.instOuterMeasureClass
Filter.EventuallyEq.symm
ae_eq_comp
lintegral_map_equiv πŸ“–mathematicalβ€”lintegral
Measure.map
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
β€”MeasurableEmbedding.lintegral_map
MeasurableEquiv.measurableEmbedding
lintegral_map_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
lintegral
Measure.map
β€”iSup_lintegral_measurable_le_eq_lintegral
iSupβ‚‚_le
iSup_le
lintegral_map'
Measurable.aemeasurable
lintegral_mono
Measure.map_of_not_aemeasurable
lintegral_zero_measure
ENNReal.instCanonicallyOrderedAdd
lintegral_subtype_comap πŸ“–mathematicalMeasurableSetlintegral
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Measure.comap
Measure.restrict
β€”MeasurableEmbedding.lintegral_map
MeasurableEmbedding.subtype_coe
map_comap_subtype_coe
setLIntegral_map πŸ“–mathematicalMeasurableSet
Measurable
ENNReal
ENNReal.measurableSpace
lintegral
Measure.restrict
Measure.map
Set.preimage
β€”Measure.restrict_map
lintegral_map
setLIntegral_subtype πŸ“–mathematicalMeasurableSetlintegral
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Measure.restrict
Measure.comap
Set.image
β€”MeasurableEmbedding.restrict_comap
MeasurableEmbedding.subtype_coe
lintegral_subtype_comap
Measure.restrict_restrict
Set.inter_eq_right
Subtype.coe_image_subset

MeasureTheory.MeasurePreserving

Theorems

NameKindAssumesProvesValidatesDepends On
lintegral_comp πŸ“–mathematicalMeasureTheory.MeasurePreserving
Measurable
ENNReal
ENNReal.measurableSpace
MeasureTheory.lintegralβ€”map_eq
MeasureTheory.lintegral_map
measurable
lintegral_comp_emb πŸ“–mathematicalMeasureTheory.MeasurePreserving
MeasurableEmbedding
MeasureTheory.lintegralβ€”map_eq
MeasurableEmbedding.lintegral_map
lintegral_map_equiv πŸ“–mathematicalMeasureTheory.MeasurePreserving
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasureTheory.lintegralβ€”MeasureTheory.lintegral_map_equiv
map_eq
setLIntegral_comp_emb πŸ“–mathematicalMeasureTheory.MeasurePreserving
MeasurableEmbedding
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
Set.image
β€”setLIntegral_comp_preimage_emb
Set.preimage_image_eq
MeasurableEmbedding.injective
setLIntegral_comp_preimage πŸ“–mathematicalMeasureTheory.MeasurePreserving
MeasurableSet
Measurable
ENNReal
ENNReal.measurableSpace
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
Set.preimage
β€”map_eq
MeasureTheory.setLIntegral_map
measurable
setLIntegral_comp_preimage_emb πŸ“–mathematicalMeasureTheory.MeasurePreserving
MeasurableEmbedding
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
Set.preimage
β€”map_eq
MeasurableEmbedding.restrict_map
MeasurableEmbedding.lintegral_map

---

← Back to Index