Documentation Verification Report

Sub

πŸ“ Source: Mathlib/MeasureTheory/Integral/Lebesgue/Sub.lean

Statistics

MetricCount
Definitions0
Theoremsexists_measurable_le_setLIntegral_eq_of_integrable, exists_setLIntegral_compl_lt, lintegral_iInf, lintegral_iInf', lintegral_iInf_ae, lintegral_iInf_directed_of_measurable, lintegral_sub, lintegral_sub', lintegral_sub_le, lintegral_sub_le', lintegral_tendsto_of_tendsto_of_antitone
11
Total11

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
exists_measurable_le_setLIntegral_eq_of_integrable πŸ“–mathematicalβ€”Measurable
ENNReal
ENNReal.measurableSpace
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
lintegral
Measure.restrict
β€”exists_measurable_le_lintegral_eq
le_antisymm
compl_compl
setLIntegral_compl
MeasurableSet.compl
ne_top_of_le_ne_top
setLIntegral_le_lintegral
tsub_le_tsub
ENNReal.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
le_refl
lintegral_mono_fn'
lintegral_mono
exists_setLIntegral_compl_lt πŸ“–mathematicalβ€”MeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Top.top
instTopENNReal
lintegral
Measure.restrict
Compl.compl
Set.instCompl
β€”MeasurableSet.empty
measure_empty
Measure.instOuterMeasureClass
Set.compl_empty
Measure.restrict_univ
ENNReal.instCanonicallyOrderedAdd
ENNReal.sub_lt_self
SimpleFunc.measurable
SimpleFunc.FinMeasSupp.of_lintegral_ne_top
ne_top_of_le_ne_top
lintegral_mono
SimpleFunc.lintegral_eq_lintegral
measurableSet_support
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
ENNReal.borelSpace
ENNReal.instSecondCountableTopology
ENNReal.instT2Space
setLIntegral_congr_fun
MeasurableSet.compl
tsub_zero
ENNReal.instOrderedSub
setLIntegral_le_lintegral
lintegral_sub
ae_of_all
ENNReal.sub_lt_of_lt_add
ENNReal.lt_add_of_sub_lt_left
lintegral_iInf πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
Antitone
Nat.instPreorder
Pi.preorder
PartialOrder.toPreorder
ENNReal.instPartialOrder
lintegral
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”lintegral_iInf_ae
ae_of_all
Measure.instOuterMeasureClass
lintegral_iInf' πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Filter.Eventually
Antitone
Nat.instPreorder
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
lintegral
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Measure.instOuterMeasureClass
aeSeq.prop_of_mem_aeSeqSet
le_rfl
lintegral_congr_ae
Filter.EventuallyEq.symm
aeSeq.iInf
instCountableNat
iInf_apply
lintegral_iInf
aeSeq.measurable
aeSeq.aeSeq_n_eq_fun_n_ae
lintegral_iInf_ae πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
Filter.EventuallyLE
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
lintegral
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Measure.instOuterMeasureClass
lintegral_mono
iInf_le_of_le
le_rfl
lintegral_sub
Measurable.iInf
ENNReal.borelSpace
ENNReal.instOrderTopology
ENNReal.instSecondCountableTopology
instCountableNat
ne_top_of_le_ne_top
iInf_le
ae_of_all
ENNReal.sub_iInf
lintegral_iSup_ae
Measurable.sub
ENNReal.instMeasurableSubβ‚‚
Filter.Eventually.mono
tsub_le_tsub
ENNReal.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
ae_all_iff
le_refl
LE.le.trans
lintegral_mono_ae
lintegral_iInf_directed_of_measurable πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
Directed
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
lintegral
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”nonempty_encodable
isEmpty_or_nonempty
iInf_of_empty
lintegral_const
ENNReal.top_mul
Measure.measure_univ_ne_zero
le_antisymm
le_iInf
iInf_le
iInf_le_of_le
Directed.sequence_le
lintegral_iInf
Directed.sequence_anti
lintegral_mono
lintegral_sub πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
Filter.EventuallyLE
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
lintegral
ENNReal.instSub
β€”Measure.instOuterMeasureClass
lintegral_sub'
Measurable.aemeasurable
lintegral_sub' πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Filter.EventuallyLE
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
lintegral
ENNReal.instSub
β€”Measure.instOuterMeasureClass
ENNReal.eq_sub_of_add_eq
lintegral_add_right'
lintegral_congr_ae
Filter.Eventually.mono
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
ENNReal.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
ENNReal.instOrderedSub
lintegral_sub_le πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instSub
lintegral
β€”lintegral_sub_le'
Measurable.aemeasurable
lintegral_sub_le' πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instSub
lintegral
β€”tsub_le_iff_right
ENNReal.instOrderedSub
add_top
le_top
lintegral_add_right'
lintegral_mono_fn'
le_refl
le_tsub_add
lintegral_tendsto_of_tendsto_of_antitone πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Filter.Eventually
Antitone
Nat.instPreorder
PartialOrder.toPreorder
ENNReal.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Filter.Tendsto
Filter.atTop
nhds
ENNReal.instTopologicalSpace
lintegralβ€”Measure.instOuterMeasureClass
lintegral_mono_ae
Filter.Eventually.mono
lintegral_iInf'
lintegral_congr_ae
Filter.mp_mem
Filter.univ_mem'
tendsto_nhds_unique
ENNReal.instT2Space
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_atTop_iInf
LinearOrder.infConvergenceClass
ENNReal.instOrderTopology

---

← Back to Index