Documentation Verification Report

MeanInequalities

šŸ“ Source: Mathlib/MeasureTheory/Integral/MeanInequalities.lean

Statistics

MetricCount
DefinitionsfunMulInvSnorm
1
Theoremsae_eq_zero_of_lintegral_rpow_eq_zero, funMulInvSnorm_rpow, fun_eq_funMulInvSnorm_mul_eLpNorm, lintegral_Lp_add_le, lintegral_Lp_add_le_of_le_one, lintegral_Lp_mul_le_Lq_mul_Lr, lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero, lintegral_mul_le_Lp_mul_Lq, lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top, lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top, lintegral_mul_le_one_of_lintegral_rpow_eq_one, lintegral_mul_norm_pow_le, lintegral_mul_prod_norm_pow_le, lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow, lintegral_prod_norm_pow_le, lintegral_rpow_add_le_add_eLpNorm_mul_lintegral_rpow_add, lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top, lintegral_rpow_funMulInvSnorm_eq_one, lintegral_mul_le_Lp_mul_Lq
19
Total20

ENNReal

Definitions

NameCategoryTheorems
funMulInvSnorm šŸ“–CompOp
3 mathmath: lintegral_rpow_funMulInvSnorm_eq_one, funMulInvSnorm_rpow, fun_eq_funMulInvSnorm_mul_eLpNorm

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eq_zero_of_lintegral_rpow_eq_zero šŸ“–mathematicalReal
Real.instLE
Real.instZero
AEMeasurable
ENNReal
measurableSpace
MeasureTheory.lintegral
instPowReal
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Pi.instZero
—Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.lintegral_eq_zero_iff'
AEMeasurable.pow_const
hasMeasurablePow
Filter.univ_mem'
Pi.zero_apply
not_imp_not
LT.lt.ne'
rpow_pos_of_nonneg
pos_iff_ne_zero
instCanonicallyOrderedAdd
funMulInvSnorm_rpow šŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal
instPowReal
funMulInvSnorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
instInv
MeasureTheory.lintegral
—funMulInvSnorm.eq_1
mul_rpow_of_nonneg
le_of_lt
inv_rpow
rpow_mul
one_div_mul_cancel
LT.lt.ne'
rpow_one
fun_eq_funMulInvSnorm_mul_eLpNorm šŸ“–mathematical—ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
funMulInvSnorm
Real
instPowReal
MeasureTheory.lintegral
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
—one_div
mul_assoc
inv_mul_cancel
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
mul_one
lintegral_Lp_add_le šŸ“–mathematicalAEMeasurable
ENNReal
measurableSpace
Real
Real.instLE
Real.instOne
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instPowReal
MeasureTheory.lintegral
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
—lt_of_lt_of_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
eq_top_or_lt_top
one_div
top_rpow_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
top_add
add_top
le_of_eq
one_div_one
rpow_one
MeasureTheory.lintegral_add_left'
lt_of_le_of_ne
Real.HolderConjugate.conjExponent
zero_rpow_of_pos
zero_le
instCanonicallyOrderedAdd
LT.lt.ne
lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top
lintegral_Lp_add_le_of_le_one šŸ“–mathematicalAEMeasurable
ENNReal
measurableSpace
Real
Real.instLE
Real.instZero
Real.instOne
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instPowReal
MeasureTheory.lintegral
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
Real.instSub
—Nat.instAtLeastTwoHAddOfNat
eq_or_lt_of_le
rpow_zero
MeasureTheory.lintegral_one
div_zero
zero_sub
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
rpow_neg
rpow_one
inv_mul_cancel
two_ne_zero
CharZero.NeZero.two
instCharZero
ofNat_ne_top
le_refl
MeasureTheory.lintegral_add_left'
AEMeasurable.pow_const
hasMeasurablePow
rpow_le_rpow
MeasureTheory.lintegral_mono_fn'
rpow_add_le_add_rpow
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
rpow_add_le_mul_rpow_add_rpow
one_le_div
lintegral_Lp_mul_le_Lq_mul_Lr šŸ“–mathematicalReal
Real.instLT
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instAdd
AEMeasurable
ENNReal
measurableSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instPowReal
MeasureTheory.lintegral
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
—ne_of_lt
le_of_lt
lt_of_le_of_lt
one_div
add_sub_cancel_left
Real.HolderConjugate.conjExponent
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
one_mul
mul_rpow_of_nonneg
rpow_le_rpow
rpow_mul
lintegral_mul_le_Lp_mul_Lq
AEMeasurable.pow_const
hasMeasurablePow
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
mul_comm
div_eq_iff
inv_inv
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚ƒ
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚ƒ
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚‚
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚‚
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
div_mul_div_comm
lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero šŸ“–mathematicalReal
Real.instLE
Real.instZero
AEMeasurable
ENNReal
measurableSpace
MeasureTheory.lintegral
instPowReal
instZeroENNReal
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
—MeasureTheory.lintegral_zero_fun
MeasureTheory.lintegral_congr_ae
MeasureTheory.Measure.instOuterMeasureClass
ae_eq_zero_of_lintegral_rpow_eq_zero
Filter.EventuallyEq.mul
MeasureTheory.ae_eq_refl
MulZeroClass.zero_mul
lintegral_mul_le_Lp_mul_Lq šŸ“–mathematicalReal.HolderConjugate
AEMeasurable
ENNReal
measurableSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
MeasureTheory.lintegral
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Real
instPowReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
—Eq.trans_le
lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
Real.HolderTriple.nonneg
zero_le
instCanonicallyOrderedAdd
mul_comm
Real.HolderConjugate.symm
lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top
Real.HolderTriple.pos
lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top šŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
MeasureTheory.lintegral
ENNReal
instPowReal
Top.top
instTopENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
—one_div
top_rpow_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
top_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top šŸ“–mathematicalReal.HolderConjugate
AEMeasurable
ENNReal
measurableSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
MeasureTheory.lintegral
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Real
instPowReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
—MeasureTheory.lintegral_congr
Pi.mul_apply
fun_eq_funMulInvSnorm_mul_eLpNorm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
MeasureTheory.lintegral_mul_const'
one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
mul_le_of_le_one_left'
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
instIsOrderedMonoid
lintegral_rpow_funMulInvSnorm_eq_one
Real.HolderTriple.pos
Real.HolderConjugate.symm
lintegral_mul_le_one_of_lintegral_rpow_eq_one
AEMeasurable.mul_const
MeasurableMulā‚‚.toMeasurableMul
instMeasurableMulā‚‚
lintegral_mul_le_one_of_lintegral_rpow_eq_one šŸ“–mathematicalReal.HolderConjugate
AEMeasurable
ENNReal
measurableSpace
MeasureTheory.lintegral
Real
instPowReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
—MeasureTheory.lintegral_mono
young_inequality
div_eq_mul_inv
MeasureTheory.lintegral_add_left'
AEMeasurable.mul_const
MeasurableMulā‚‚.toMeasurableMul
instMeasurableMulā‚‚
AEMeasurable.pow_const
hasMeasurablePow
MeasureTheory.lintegral_mul_const''
MeasureTheory.lintegral_mul_const'
Real.HolderTriple.pos
Real.HolderConjugate.symm
one_mul
Real.HolderConjugate.inv_add_inv_ennreal
lintegral_mul_norm_pow_le šŸ“–mathematicalAEMeasurable
ENNReal
measurableSpace
Real
Real.instLE
Real.instZero
Real.instAdd
Real.instOne
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
MeasureTheory.lintegral
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
instPowReal
—LE.le.eq_or_lt
rpow_zero
zero_add
rpow_one
one_mul
add_zero
mul_one
one_div
one_lt_invā‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
inv_inv
lintegral_mul_le_Lp_mul_Lq
Real.holderConjugate_iff
AEMeasurable.pow_const
hasMeasurablePow
mul_inv_cancelā‚€
LT.lt.ne'
div_inv_eq_mul
lintegral_mul_prod_norm_pow_le šŸ“–mathematicalAEMeasurable
ENNReal
measurableSpace
Real
Real.instAdd
Finset.sum
Real.instAddCommMonoid
Real.instOne
Real.instLE
Real.instZero
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
MeasureTheory.lintegral
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
instPowReal
Finset.prod
CommSemiring.toCommMonoid
—lintegral_prod_norm_pow_le
Finset.sum_insertNone
Finset.sum_congr
Finset.prod_insertNone
Finset.prod_congr
lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow šŸ“–mathematicalReal.HolderConjugate
AEMeasurable
ENNReal
measurableSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
MeasureTheory.lintegral
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Real
instPowReal
Real.instSub
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
—LE.le.trans_eq
lintegral_mul_le_Lp_mul_Lq
AEMeasurable.pow_const
hasMeasurablePow
one_div
Real.HolderConjugate.sub_one_mul_conj
lintegral_prod_norm_pow_le šŸ“–mathematicalAEMeasurable
ENNReal
measurableSpace
Finset.sum
Real
Real.instAddCommMonoid
Real.instOne
Real.instLE
Real.instZero
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
MeasureTheory.lintegral
Finset.prod
CommSemiring.toCommMonoid
instCommSemiring
instPowReal
—Finset.induction
NeZero.charZero_one
RCLike.charZero_rclike
eq_or_ne
Finset.prod_insert
Finset.sum_insert
AddLeftCancelSemigroup.toIsLeftCancelAdd
Finset.sum_eq_zero_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Finset.mem_insert_of_mem
Finset.prod_congr
rpow_zero
rpow_one
Finset.prod_const_one
mul_one
covariant_swap_add_of_covariant_add
Finset.single_le_sum
Finset.mem_insert_self
sub_ne_zero
Finset.sum_div
Finset.sum_insert_sub
div_self
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
prod_rpow_of_nonneg
div_mul_cancelā‚€
lintegral_mul_norm_pow_le
Finset.aemeasurable_fun_prod
instMeasurableMulā‚‚
AEMeasurable.pow_const
hasMeasurablePow
add_sub_cancel
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
instIsOrderedMonoid
rpow_le_rpow
le_of_lt
lt_of_le_of_ne'
lintegral_rpow_add_le_add_eLpNorm_mul_lintegral_rpow_add šŸ“–mathematicalReal.HolderConjugate
AEMeasurable
ENNReal
measurableSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
MeasureTheory.lintegral
Real
instPowReal
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Distrib.toMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
—MeasureTheory.lintegral_mono_fn'
le_refl
zero_rpow_of_pos
Real.HolderTriple.pos
zero_le
instCanonicallyOrderedAdd
top_rpow_of_pos
Real.HolderConjugate.sub_one_pos
top_mul_top
le_top
le_of_eq
rpow_one
rpow_add
add_sub_cancel
AEMeasurable.pow_const
hasMeasurablePow
AEMeasurable.add
ContinuousAdd.measurableMulā‚‚
borelSpace
instSecondCountableTopology
instContinuousAdd
add_mul
Distrib.rightDistribClass
MeasureTheory.lintegral_add_left'
AEMeasurable.mul
instMeasurableMulā‚‚
add_le_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top šŸ“–mathematicalAEMeasurable
ENNReal
measurableSpace
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
MeasureTheory.lintegral
Real
instPowReal
Top.top
instTopENNReal
Real.instLE
Real.instOne
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
—lt_of_lt_of_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
le_of_lt
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.lintegral_mono
zero_rpow_of_pos
rpow_lt_rpow
one_div
sub_eq_add_neg
rpow_add
two_ne_zero
CharZero.NeZero.two
instCharZero
coe_ne_top
mul_assoc
mul_rpow_of_nonneg
inv_mul_cancel
one_rpow
one_mul
rpow_neg_one
mul_le_mul_iff_right
LT.lt.ne'
rpow_ne_top_of_nonneg
div_ne_top
one_ne_top
ne_of_gt
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
mul_add
Distrib.leftDistribClass
rpow_arith_mean_le_arith_mean2_rpow
div_add_div_same
one_add_one_eq_two
div_self
MeasureTheory.lintegral_add_left'
AEMeasurable.const_mul
MeasurableMulā‚‚.toMeasurableMul
instMeasurableMulā‚‚
AEMeasurable.pow_const
hasMeasurablePow
MeasureTheory.lintegral_const_mul''
MeasureTheory.lintegral_const_mul'
rpow_ne_top_of_nonneg'
ofNat_ne_top
add_lt_top
Ne.lt_top
mul_ne_top
rpow_ne_top_of_ne_zero
ne_top_of_lt
lintegral_rpow_funMulInvSnorm_eq_one šŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.lintegral
ENNReal
instPowReal
funMulInvSnorm
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
—funMulInvSnorm_rpow
MeasureTheory.lintegral_mul_const'
inv_ne_top
mul_inv_cancel

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
lintegral_mul_le_Lp_mul_Lq šŸ“–mathematicalReal.HolderConjugate
AEMeasurable
NNReal
measurableSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.lintegral
ENNReal.ofNNReal
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
Real
ENNReal.instPowReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
—ENNReal.lintegral_mul_le_Lp_mul_Lq
AEMeasurable.coe_nnreal_ennreal

---

← Back to Index