Documentation Verification Report

TorusIntegral

πŸ“ Source: Mathlib/MeasureTheory/Integral/TorusIntegral.lean

Statistics

MetricCount
DefinitionsTorusIntegrable, torusIntegral, torusMap, «term∯_InT(_,_),_»,_»)
4
Theoremsadd, function_integrable, neg, sub, torusIntegrable_const, torusIntegrable_zero_radius, norm_torusIntegral_le_of_norm_le_const, torusIntegral_add, torusIntegral_const_mul, torusIntegral_dim0, torusIntegral_dim1, torusIntegral_neg, torusIntegral_radius_zero, torusIntegral_smul, torusIntegral_sub, torusIntegral_succ, torusIntegral_succAbove, torusMap_eq_center_iff, torusMap_sub_center, torusMap_zero_radius
20
Total24

TorusIntegrable

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalTorusIntegrablePi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”MeasureTheory.Integrable.add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
function_integrable πŸ“–mathematicalTorusIntegrableMeasureTheory.IntegrableOn
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Fin.fintype
Real
Real.measureSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
Complex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Complex.instNormedField
Finset.prod
CommRing.toCommMonoid
Complex.commRing
Finset.univ
Complex.instMul
Complex.ofReal
Complex.exp
Complex.I
torusMap
Set.Icc
Pi.preorder
Real.instPreorder
Pi.instZero
Real.instZero
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
MeasureTheory.MeasureSpace.volume
β€”MeasureTheory.Integrable.mono'
MeasureTheory.Integrable.const_mul
MeasureTheory.Integrable.norm
MeasureTheory.AEStronglyMeasurable.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Continuous.aestronglyMeasurable
Pi.opensMeasurableSpace
instCountableFin
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
PseudoEMetricSpace.pseudoMetrizableSpace
secondCountableTopologyEither_of_right
secondCountable_of_proper
Complex.instProperSpace
continuous_finset_prod
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.comp'
Continuous.fun_mul
continuous_id'
continuous_const
Continuous.cexp
Complex.continuous_ofReal
continuous_apply
MeasureTheory.Measure.instOuterMeasureClass
norm_smul
NormedSpace.toNormSMulClass
norm_prod
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Finset.prod_congr
Complex.norm_mul
Complex.norm_real
Complex.norm_exp_ofReal_mul_I
mul_one
Complex.norm_I
MeasureTheory.ae_restrict_eq
Pi.orderClosedTopology'
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
neg πŸ“–mathematicalTorusIntegrablePi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”MeasureTheory.Integrable.neg
sub πŸ“–mathematicalTorusIntegrablePi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”MeasureTheory.Integrable.sub
torusIntegrable_const πŸ“–mathematicalβ€”TorusIntegrableβ€”Pi.compact_Icc_space'
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
MeasureTheory.Measure.instIsLocallyFiniteMeasureForallVolumeOfSigmaFinite
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Real.locallyFinite_volume
torusIntegrable_zero_radius πŸ“–mathematicalβ€”TorusIntegrable
Pi.instZero
Real
Real.instZero
β€”eq_1
torusMap_zero_radius
torusIntegrable_const

(root)

Definitions

NameCategoryTheorems
TorusIntegrable πŸ“–MathDef
2 mathmath: TorusIntegrable.torusIntegrable_zero_radius, TorusIntegrable.torusIntegrable_const
torusIntegral πŸ“–CompOp
11 mathmath: norm_torusIntegral_le_of_norm_le_const, torusIntegral_add, torusIntegral_succ, torusIntegral_neg, torusIntegral_const_mul, torusIntegral_dim1, torusIntegral_radius_zero, torusIntegral_smul, torusIntegral_dim0, torusIntegral_sub, torusIntegral_succAbove
torusMap πŸ“–CompOp
4 mathmath: torusMap_zero_radius, torusMap_eq_center_iff, TorusIntegrable.function_integrable, torusMap_sub_center
Β«term∯_InT(_,_),_Β» πŸ“–,_Β» "API Documentation")CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
norm_torusIntegral_le_of_norm_le_const πŸ“–mathematicalReal
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
torusMap
torusIntegral
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Finset.prod
Real.instCommMonoid
Finset.univ
Fin.fintype
abs
Real.lattice
Real.instAddGroup
β€”Nat.instAtLeastTwoHAddOfNat
MeasureTheory.norm_setIntegral_le_of_norm_le_const
measure_Icc_lt_top
Pi.compact_Icc_space'
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
MeasureTheory.Measure.instIsLocallyFiniteMeasureForallVolumeOfSigmaFinite
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Real.locallyFinite_volume
norm_smul
NormedSpace.toNormSMulClass
norm_prod
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Finset.prod_congr
Complex.norm_mul
Complex.norm_real
Complex.norm_exp_ofReal_mul_I
mul_one
Complex.norm_I
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Finset.prod_nonneg
Real.instZeroLEOneClass
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Real.volume_Icc_pi_toReal
LT.lt.le
Real.two_pi_pos
sub_zero
Fin.prod_const
mul_assoc
mul_comm
torusIntegral_add πŸ“–mathematicalTorusIntegrabletorusIntegral
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”smul_add
MeasureTheory.integral_add
Nat.instAtLeastTwoHAddOfNat
TorusIntegrable.function_integrable
torusIntegral_const_mul πŸ“–mathematicalβ€”torusIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.instMul
β€”torusIntegral_smul
Algebra.to_smulCommClass
torusIntegral_dim0 πŸ“–mathematicalβ€”torusIntegralβ€”IsScalarTower.right
Fin.isEmpty'
MeasureTheory.Measure.pi_of_empty
Unique.instSubsingleton
Nat.instAtLeastTwoHAddOfNat
Set.Icc_self
MeasureTheory.Measure.restrict_singleton
MeasureTheory.Measure.dirac_apply_of_mem
Set.mem_singleton
one_smul
MeasureTheory.integral_dirac
Pi.instMeasurableSingletonClass
instCountableFin
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
torusIntegral_dim1 πŸ“–mathematicalβ€”torusIntegral
circleIntegral
β€”Nat.instAtLeastTwoHAddOfNat
OrderIso.preimage_Icc
torusIntegral.eq_1
circleIntegral.eq_1
intervalIntegral.integral_of_le
LT.lt.le
Real.two_pi_pos
MeasureTheory.Measure.restrict_congr_set
MeasureTheory.Ioc_ae_eq_Icc
Real.noAtoms_volume
MeasureTheory.MeasurePreserving.setIntegral_preimage_emb
MeasureTheory.MeasurePreserving.symm
MeasureTheory.volume_preserving_funUnique
MeasurableEquiv.measurableEmbedding
Finset.prod_congr
Finset.univ_unique
Finset.prod_singleton
deriv_circleMap
circleMap_zero
torusIntegral_neg πŸ“–mathematicalβ€”torusIntegral
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”smul_neg
MeasureTheory.integral_neg
torusIntegral_radius_zero πŸ“–mathematicalβ€”torusIntegral
Pi.instZero
Real
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Finset.prod_congr
MulZeroClass.zero_mul
Fin.prod_const
zero_pow
zero_smul
MeasureTheory.integral_zero
torusIntegral_smul πŸ“–mathematicalβ€”torusIntegral
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
β€”SMulCommClass.smul_comm
MeasureTheory.integral_smul
NormedSpace.toNormSMulClass
IsScalarTower.to_smulCommClass
Real.isScalarTower
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
torusIntegral_sub πŸ“–mathematicalTorusIntegrabletorusIntegral
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
torusIntegral_add
TorusIntegrable.neg
torusIntegral_succ πŸ“–mathematicalTorusIntegrabletorusIntegral
circleIntegral
Fin.cons
Complex
Real
β€”Fin.insertNth_zero'
torusIntegral_succAbove
torusIntegral_succAbove πŸ“–mathematicalTorusIntegrabletorusIntegral
circleIntegral
Fin.insertNth
Complex
Fin.succAbove
Real
β€”MeasureTheory.MeasurePreserving.symm
MeasureTheory.volume_preserving_piFinSuccAbove
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Nat.instAtLeastTwoHAddOfNat
OrderIso.preimage_Icc
Set.Icc_prod_eq
torusIntegral.eq_1
MeasureTheory.MeasurePreserving.map_eq
MeasureTheory.setIntegral_map_equiv
MeasureTheory.Measure.volume_eq_prod
MeasureTheory.setIntegral_prod
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.instSigmaFiniteForallVolume
TorusIntegrable.function_integrable
MeasureTheory.MeasurePreserving.integrableOn_comp_preimage
MeasurableEquiv.measurableEmbedding
circleIntegral_def_Icc
MeasureTheory.setIntegral_congr_fun
measurableSet_Icc
BorelSpace.opensMeasurable
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Finset.prod_congr
Fin.prod_univ_succAbove
deriv_circleMap
circleMap_zero
NormedSpace.toNormSMulClass
SMulCommClass.complexToReal
smulCommClass_self
smul_smul
Pi.opensMeasurableSpace
instCountableFin
Pi.orderClosedTopology'
Fin.insertNth_apply_same
Fin.insertNth_apply_succAbove
Fin.forall_iff_succAbove
torusMap_eq_center_iff πŸ“–mathematicalβ€”torusMap
Pi.instZero
Real
Real.instZero
β€”AddLeftCancelSemigroup.toIsLeftCancelAdd
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
torusMap_sub_center πŸ“–mathematicalβ€”Pi.instSub
Complex
Complex.instSub
torusMap
Pi.instZero
Complex.instZero
β€”add_sub_cancel_left
zero_add
torusMap_zero_radius πŸ“–mathematicalβ€”torusMap
Pi.instZero
Real
Real.instZero
β€”torusMap_eq_center_iff

---

← Back to Index