Documentation Verification Report

Basic

πŸ“ Source: Mathlib/MeasureTheory/MeasurableSpace/Basic.lean

Statistics

MetricCount
DefinitionsIsCountablySpanning, comap, map
3
Theoremsprod, comap_le, iSup', indicator, ite, iterate, le_map, measurable_of_countable_ne, mono, of_comap_le, of_le_map, piecewise, sup_of_left, sup_of_right, preimage, comap_bot, comap_comp, comap_const, comap_eq_generateFrom, comap_generateFrom, comap_iSup, comap_id, comap_le_iff_le_map, comap_map_le, comap_mono, comap_sup, gc_comap_map, le_map_comap, map_comp, map_const, map_def, map_iInf, map_id, map_inf, map_mono, map_top, measurableSet_comap, monotone_comap, monotone_map, measurable, comap_measurable, isCountablySpanning_measurableSet, measurableSet_generateFrom_of_mem_supClosure, measurableSet_mulSupport, measurableSet_preimage, measurableSet_support, measurable_comap_iff, measurable_const', measurable_from_top, measurable_generateFrom, measurable_id'', measurable_iff_comap_le, measurable_iff_le_map, measurable_indicator_const_iff, measurable_intCast, measurable_natCast, measurable_of_countable, measurable_of_empty, measurable_of_empty_codomain, measurable_of_finite, measurable_of_subsingleton_codomain, measurable_one, measurable_zero
63
Total66

IsCountablySpanning

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalIsCountablySpanningSet.image2
Set
SProd.sprod
Set.instSProd
β€”Set.mem_image2_of_mem
Set.iUnion_unpair_prod
Set.univ_prod_univ

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
comap_le πŸ“–mathematicalMeasurableMeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.comap
β€”measurable_iff_comap_le
iSup' πŸ“–mathematicalMeasurableiSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”mono
le_iSup
le_rfl
indicator πŸ“–mathematicalMeasurable
MeasurableSet
Set.indicatorβ€”piecewise
measurable_const
ite πŸ“–β€”MeasurableSet
setOf
Measurable
β€”β€”piecewise
iterate πŸ“–mathematicalMeasurableNat.iterateβ€”measurable_id
comp
le_map πŸ“–mathematicalMeasurableMeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.map
β€”measurable_iff_le_map
measurable_of_countable_ne πŸ“–β€”Measurableβ€”β€”Set.compl_union_self
Set.inter_univ
MeasurableSet.union
Set.Countable.measurableSet
Set.Countable.mono
Set.inter_subset_right
Set.ext
MeasurableSet.inter
MeasurableSet.of_compl
mono πŸ“–β€”Measurable
MeasurableSpace
MeasurableSpace.instLE
β€”β€”β€”
of_comap_le πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.comap
Measurableβ€”measurable_iff_comap_le
of_le_map πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.map
Measurableβ€”measurable_iff_le_map
piecewise πŸ“–mathematicalMeasurableSet
Measurable
Set.piecewiseβ€”Set.piecewise_preimage
MeasurableSet.ite
sup_of_left πŸ“–mathematicalMeasurableMeasurableSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”mono
le_sup_left
le_rfl
sup_of_right πŸ“–mathematicalMeasurableMeasurableSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”mono
le_sup_right
le_rfl

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
preimage πŸ“–mathematicalMeasurableSet
Measurable
Set.preimageβ€”β€”

MeasurableSpace

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
74 mathmath: comap_eq_generateFrom, ProbabilityTheory.condDistrib_ae_eq_condExp, comap_mono, comap_const, CountablyGenerated.comap, comap_bot, ProbabilityTheory.condExp_ae_eq_integral_condDistrib_id, comap_comp, ProbabilityTheory.IndepFun_iff_Indep, ProbabilityTheory.condExp_ae_eq_integral_condDistrib, ProbabilityTheory.Kernel.iIndepFun.iIndep, ProbabilityTheory.stronglyMeasurable_integral_condDistrib, ProbabilityTheory.measurable_condDistrib, Measurable.comap_le, indep_comap_of_bcf, comap_compl, ProbabilityTheory.iIndepFun.indep_comap_natural_of_lt, ProbabilityTheory.aestronglyMeasurable_integral_condDistrib, indepSets_comap_of_bcf, ProbabilityTheory.condDistrib_apply_ae_eq_condExpKernel_map, ProbabilityTheory.iIndep_comap_mem_iff, ProbabilityTheory.iIndepFun_iff_iIndep, measurableSet_comap, indep_comap_pi_of_bcf, ProbabilityTheory.iIndepFun.iIndep, comap_prodMk, comap_id, ProbabilityTheory.iIndepSet.iIndep_comap_mem, ProbabilityTheory.condIndepFun_self_left, measurable_iff_comap_le, ProbabilityTheory.Kernel.iIndep_comap_mem_iff, ProbabilityTheory.condExp_prod_ae_eq_integral_condDistrib, indep_comap_process_of_bcf, comap_prodMap, ProbabilityTheory.condIndepFun_self_right, measurable_comap_iff, comap_iSup, MeasureTheory.map_trim_comap, indep_comap_process_of_prod_bcf, ProbabilityTheory.condExp_prod_ae_eq_integral_condDistribβ‚€, MeasureTheory.Filtration.piFinset_eq_comap_restrict, gc_comap_map, comap_measurable, indepSets_comap_pi_of_bcf, indepSets_comap_pi_of_prod_bcf, MeasureTheory.integral_condExp_indicator, ProbabilityTheory.condExp_ae_eq_integral_condDistrib', comap_sup, MeasureTheory.AEStronglyMeasurable.comp_ae_measurable', indepSets_comap_process_of_bcf, generateFrom_singleton, comap_le_iff_le_map, MeasureTheory.comap_eval_le_generateFrom_squareCylinders_singleton, MeasureTheory.Filtration.piLE_eq_comap_frestrictLe, indep_comap_pi_of_prod_bcf, comap_map_le, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkRight, MeasurableEmbedding.iff_comap_eq, MeasurableEmbedding.comap_eq, indepSets_comap_process_of_prod_bcf, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkLeft, le_map_comap, comap_le_comap_pi, borel_comap, comap_generateFrom, ProbabilityTheory.condExp_prod_ae_eq_integral_condDistrib', ProbabilityTheory.iCondIndepFun_iff_iCondIndep, ProbabilityTheory.condIndepFun_iff_condIndep, MeasureTheory.ae_map_iff_ae_trim, MeasureTheory.trim_comap_apply, IndepFun.singleton_indepSets_of_indicator, comap_not, monotone_comap, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_condDistrib_prod_condDistrib
map πŸ“–CompOp
20 mathmath: Measurable.map_measurableSpace_eq, map_def, map_mono, map_id, map_const, map_inf, Measurable.le_map, Continuous.map_eq_borel, Continuous.map_borel_eq, gc_comap_map, map_iInf, comap_le_iff_le_map, measurable_iff_le_map, comap_map_le, map_top, le_map_comap, MeasurableEquiv.map_eq, monotone_map, Measurable.map_measurableSpace_eq_borel, map_comp

Theorems

NameKindAssumesProvesValidatesDepends On
comap_bot πŸ“–mathematicalβ€”comap
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”GaloisConnection.l_bot
gc_comap_map
comap_comp πŸ“–mathematicalβ€”comapβ€”ext
comap_const πŸ“–mathematicalβ€”comap
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”eq_bot_iff
Set.preimage_const_of_mem
Set.preimage_const_of_notMem
comap_eq_generateFrom πŸ“–mathematicalβ€”comap
generateFrom
setOf
Set
MeasurableSet
Set.preimage
β€”generateFrom_measurableSet
comap_generateFrom πŸ“–mathematicalβ€”comap
generateFrom
Set.image
Set
Set.preimage
β€”le_antisymm
comap_le_iff_le_map
generateFrom_le
Set.mem_image_of_mem
comap_iSup πŸ“–mathematicalβ€”comap
iSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_iSup
gc_comap_map
comap_id πŸ“–mathematicalβ€”comapβ€”ext
comap_le_iff_le_map πŸ“–mathematicalβ€”MeasurableSpace
instLE
comap
map
β€”β€”
comap_map_le πŸ“–mathematicalβ€”MeasurableSpace
instLE
comap
map
β€”GaloisConnection.l_u_le
gc_comap_map
comap_mono πŸ“–mathematicalMeasurableSpace
instLE
comapβ€”GaloisConnection.monotone_l
gc_comap_map
comap_sup πŸ“–mathematicalβ€”comap
MeasurableSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_sup
gc_comap_map
gc_comap_map πŸ“–mathematicalβ€”GaloisConnection
MeasurableSpace
PartialOrder.toPreorder
instPartialOrder
comap
map
β€”comap_le_iff_le_map
le_map_comap πŸ“–mathematicalβ€”MeasurableSpace
instLE
map
comap
β€”GaloisConnection.le_u_l
gc_comap_map
map_comp πŸ“–mathematicalβ€”mapβ€”ext
map_const πŸ“–mathematicalβ€”map
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_top_iff
map_def
Set.preimage_const_of_mem
Set.preimage_const_of_notMem
map_def πŸ“–mathematicalβ€”MeasurableSet
map
Set.preimage
β€”β€”
map_iInf πŸ“–mathematicalβ€”map
iInf
MeasurableSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.u_iInf
gc_comap_map
map_id πŸ“–mathematicalβ€”mapβ€”ext
map_inf πŸ“–mathematicalβ€”map
MeasurableSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.u_inf
gc_comap_map
map_mono πŸ“–mathematicalMeasurableSpace
instLE
mapβ€”GaloisConnection.monotone_u
gc_comap_map
map_top πŸ“–mathematicalβ€”map
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”GaloisConnection.u_top
gc_comap_map
measurableSet_comap πŸ“–mathematicalβ€”MeasurableSet
comap
Set.preimage
β€”β€”
monotone_comap πŸ“–mathematicalβ€”Monotone
MeasurableSpace
PartialOrder.toPreorder
instPartialOrder
comap
β€”comap_mono
monotone_map πŸ“–mathematicalβ€”Monotone
MeasurableSpace
PartialOrder.toPreorder
instPartialOrder
map
β€”map_mono

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
measurable πŸ“–mathematicalβ€”Measurableβ€”measurableSet

(root)

Definitions

NameCategoryTheorems
IsCountablySpanning πŸ“–MathDef
3 mathmath: isCountablySpanning_measurableSet, MeasureTheory.isCountablySpanning_spanningSets, MeasureTheory.Measure.FiniteSpanningSetsIn.isCountablySpanning

Theorems

NameKindAssumesProvesValidatesDepends On
comap_measurable πŸ“–mathematicalβ€”Measurable
MeasurableSpace.comap
β€”β€”
isCountablySpanning_measurableSet πŸ“–mathematicalβ€”IsCountablySpanning
setOf
Set
MeasurableSet
β€”MeasurableSet.univ
Set.iUnion_const
measurableSet_generateFrom_of_mem_supClosure πŸ“–mathematicalSet
Set.instMembership
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
supClosure
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
MeasurableSet
MeasurableSpace.generateFrom
β€”Finset.sup'_eq_sup
Finset.sup_id_set_eq_sUnion
MeasurableSet.sUnion
Finset.countable_toSet
MeasurableSpace.measurableSet_generateFrom
measurableSet_mulSupport πŸ“–mathematicalMeasurableMeasurableSet
Function.mulSupport
β€”MeasurableSet.compl
MeasurableSingletonClass.measurableSet_singleton
measurableSet_preimage πŸ“–mathematicalMeasurable
MeasurableSet
Set.preimageβ€”β€”
measurableSet_support πŸ“–mathematicalMeasurableMeasurableSet
Function.support
β€”MeasurableSet.compl
MeasurableSingletonClass.measurableSet_singleton
measurable_comap_iff πŸ“–mathematicalβ€”Measurable
MeasurableSpace.comap
β€”MeasurableSpace.comap_comp
measurable_const' πŸ“–mathematicalβ€”Measurableβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Nontrivial.to_nonempty
measurable_const
measurable_from_top πŸ“–mathematicalβ€”Measurable
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
measurable_generateFrom πŸ“–mathematicalMeasurableSet
Set.preimage
Measurable
MeasurableSpace.generateFrom
β€”Measurable.of_le_map
MeasurableSpace.generateFrom_le
measurable_id'' πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Measurableβ€”Measurable.mono
measurable_id
le_rfl
measurable_iff_comap_le πŸ“–mathematicalβ€”Measurable
MeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.comap
β€”MeasurableSpace.comap_le_iff_le_map
measurable_iff_le_map πŸ“–mathematicalβ€”Measurable
MeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.map
β€”β€”
measurable_indicator_const_iff πŸ“–mathematicalβ€”Measurable
Set.indicator
MeasurableSet
β€”Set.ext
MeasurableSet.compl
MeasurableSet.singleton
Measurable.indicator
measurable_const
measurable_intCast πŸ“–mathematicalβ€”Measurable
Pi.instIntCast
β€”measurable_const
measurable_natCast πŸ“–mathematicalβ€”Measurable
Pi.instNatCast
β€”measurable_const
measurable_of_countable πŸ“–mathematicalβ€”Measurableβ€”Set.Countable.measurableSet
Set.to_countable
SetCoe.countable
measurable_of_empty πŸ“–mathematicalβ€”Measurableβ€”Subsingleton.measurable
IsEmpty.instSubsingleton
measurable_of_empty_codomain πŸ“–mathematicalβ€”Measurableβ€”measurable_of_subsingleton_codomain
IsEmpty.instSubsingleton
measurable_of_finite πŸ“–mathematicalβ€”Measurableβ€”measurable_of_countable
Finite.to_countable
measurable_of_subsingleton_codomain πŸ“–mathematicalβ€”Measurableβ€”Subsingleton.set_cases
MeasurableSet.empty
MeasurableSet.univ
measurable_one πŸ“–mathematicalβ€”Measurable
Pi.instOne
β€”measurable_const
measurable_zero πŸ“–mathematicalβ€”Measurable
Pi.instZero
β€”measurable_const

---

← Back to Index