Documentation Verification Report

Card

πŸ“ Source: Mathlib/MeasureTheory/MeasurableSpace/Card.lean

Statistics

MetricCount
DefinitionsgenerateMeasurableRec
1
Theoremscardinal_generateMeasurableRec_le, cardinal_generateMeasurable_le, cardinal_generateMeasurable_le_continuum, cardinal_measurableSet_le, cardinal_measurableSet_le_continuum, compl_mem_generateMeasurableRec, empty_mem_generateMeasurableRec, generateMeasurableRec_induction, generateMeasurableRec_mono, generateMeasurableRec_of_omega1_le, generateMeasurableRec_of_omega_one_le, generateMeasurableRec_omega1, generateMeasurableRec_omega_one, generateMeasurableRec_subset, generateMeasurable_eq_rec, iUnion_mem_generateMeasurableRec, self_subset_generateMeasurableRec
17
Total18

MeasurableSpace

Definitions

NameCategoryTheorems
generateMeasurableRec πŸ“–CompOp
10 mathmath: self_subset_generateMeasurableRec, generateMeasurableRec_of_omega_one_le, cardinal_generateMeasurableRec_le, empty_mem_generateMeasurableRec, generateMeasurableRec_mono, generateMeasurableRec_omega_one, generateMeasurableRec_of_omega1_le, generateMeasurableRec_omega1, generateMeasurableRec_subset, generateMeasurable_eq_rec

Theorems

NameKindAssumesProvesValidatesDepends On
cardinal_generateMeasurableRec_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Set.Elem
Set
generateMeasurableRec
Cardinal.instPowCardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Cardinal.aleph0
β€”Nat.instAtLeastTwoHAddOfNat
WellFoundedLT.induction
Ordinal.wellFoundedLT
Cardinal.power_le_power_right
le_max_right
LE.le.trans
Cardinal.aleph0_le_continuum
Cardinal.mk_biUnion_le_of_le_lift
Cardinal.lift_power
Cardinal.lift_aleph0
Cardinal.card_le_of_le_ord
Cardinal.ord_aleph
Ordinal.lift_one
Ordinal.lift_omega
Ordinal.lift_le
Ordinal.lift_card
Cardinal.aleph_one_le_continuum
Cardinal.lift_max
Cardinal.lift_ofNat
LT.lt.le
LT.lt.trans_le
generateMeasurableRec.eq_1
Cardinal.mk_union_le
Cardinal.add_le_of_le
Cardinal.self_le_power
Cardinal.one_le_aleph0
le_max_left
Cardinal.mk_singleton
Cardinal.one_lt_aleph0
Cardinal.mk_image_le
Cardinal.mk_range_le
Cardinal.mk_pi
Cardinal.prod_const
Cardinal.lift_uzero
Cardinal.mk_denumerable
Cardinal.aleph0_mul_aleph0
Cardinal.power_mul
le_or_gt
generateMeasurableRec_of_omega_one_le
le_rfl
cardinal_generateMeasurable_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Set.Elem
Set
setOf
GenerateMeasurable
Cardinal.instPowCardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Cardinal.aleph0
β€”Nat.instAtLeastTwoHAddOfNat
cardinal_generateMeasurableRec_le
cardinal_generateMeasurable_le_continuum πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Set.Elem
Set
setOf
GenerateMeasurable
Cardinal.continuum
β€”LE.le.trans
Nat.instAtLeastTwoHAddOfNat
cardinal_generateMeasurable_le
Cardinal.continuum_power_aleph0
Cardinal.power_le_power_right
max_le
LT.lt.le
Cardinal.nat_lt_continuum
cardinal_measurableSet_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Set.Elem
Set
setOf
MeasurableSet
generateFrom
Cardinal.instPowCardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Cardinal.aleph0
β€”cardinal_generateMeasurable_le
cardinal_measurableSet_le_continuum πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Set.Elem
Set
setOf
MeasurableSet
generateFrom
Cardinal.continuum
β€”cardinal_generateMeasurable_le_continuum
compl_mem_generateMeasurableRec πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Set
Set.instMembership
generateMeasurableRec
Compl.compl
Set.instCompl
β€”generateMeasurableRec.eq_def
Set.mem_union_left
Set.mem_union_right
Set.mem_iUnionβ‚‚
empty_mem_generateMeasurableRec πŸ“–mathematicalβ€”Set
Set.instMembership
generateMeasurableRec
Set.instEmptyCollection
β€”generateMeasurableRec.eq_def
Set.mem_union_left
Set.mem_union_right
Set.mem_singleton
generateMeasurableRec_induction πŸ“–β€”Set
Set.instEmptyCollection
Compl.compl
Set.instCompl
Set.iUnion
Set.instMembership
generateMeasurableRec
β€”β€”WellFoundedLT.induction
Ordinal.wellFoundedLT
LE.le.trans
LT.lt.le
generateMeasurableRec.eq_def
LT.lt.trans_le
Set.mem_iUnionβ‚‚
le_rfl
generateMeasurableRec_mono πŸ“–mathematicalβ€”Monotone
Ordinal
Set
PartialOrder.toPreorder
Ordinal.partialOrder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
generateMeasurableRec
β€”LE.le.eq_or_lt
Set.iUnion_const
iUnion_mem_generateMeasurableRec
generateMeasurableRec_of_omega1_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Ordinal.omega
Ordinal.one
generateMeasurableRecβ€”generateMeasurableRec_of_omega_one_le
generateMeasurableRec_of_omega_one_le πŸ“–mathematicalOrdinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
Ordinal.omega
Ordinal.one
generateMeasurableRecβ€”LE.le.antisymm'
generateMeasurableRec_mono
generateMeasurableRec_subset
generateMeasurableRec_omega1 πŸ“–mathematicalβ€”generateMeasurableRec
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
Ordinal.omega
Ordinal.one
Set.iUnion
Set
Preorder.toLT
β€”generateMeasurableRec_omega_one
generateMeasurableRec_omega_one πŸ“–mathematicalβ€”generateMeasurableRec
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
Ordinal.omega
Ordinal.one
Set.iUnion
Set
Preorder.toLT
β€”HasSubset.Subset.antisymm'
Set.instAntisymmSubset
Set.iUnionβ‚‚_subset
generateMeasurableRec_mono
LT.lt.le
Set.mem_iUnionβ‚‚
generateMeasurableRec_induction
Ordinal.omega_pos
self_subset_generateMeasurableRec
empty_mem_generateMeasurableRec
Order.IsSuccLimit.succ_lt
Cardinal.isSuccLimit_omega
compl_mem_generateMeasurableRec
Order.lt_succ
Ordinal.instNoMaxOrder
Ordinal.lsub_lt_ord_lift
Cardinal.mk_nat
Cardinal.lift_aleph0
Cardinal.IsRegular.cof_omega_eq
Cardinal.isRegular_aleph_one
Cardinal.aleph0_lt_aleph_one
iUnion_mem_generateMeasurableRec
Ordinal.lt_lsub
generateMeasurableRec_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
generateMeasurableRec
setOf
GenerateMeasurable
β€”WellFoundedLT.induction
Ordinal.wellFoundedLT
generateMeasurableRec_induction
generateMeasurable_eq_rec πŸ“–mathematicalβ€”setOf
Set
GenerateMeasurable
generateMeasurableRec
DFunLike.coe
OrderEmbedding
Ordinal
Preorder.toLE
PartialOrder.toPreorder
Ordinal.partialOrder
instFunLikeOrderEmbedding
Ordinal.omega
Ordinal.one
β€”HasSubset.Subset.antisymm'
Set.instAntisymmSubset
generateMeasurableRec_subset
self_subset_generateMeasurableRec
empty_mem_generateMeasurableRec
Set.mem_iUnionβ‚‚
generateMeasurableRec_omega_one
generateMeasurableRec_mono
LT.lt.le
Order.IsSuccLimit.succ_lt
Cardinal.isSuccLimit_omega
compl_mem_generateMeasurableRec
Order.lt_succ
Ordinal.instNoMaxOrder
iUnion_mem_generateMeasurableRec
iUnion_mem_generateMeasurableRec πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
Set
Set.instMembership
generateMeasurableRec
Set.iUnionβ€”generateMeasurableRec.eq_def
Set.mem_union_right
Set.mem_iUnionβ‚‚
self_subset_generateMeasurableRec πŸ“–mathematicalβ€”Set
Set.instHasSubset
generateMeasurableRec
β€”generateMeasurableRec.eq_def
Set.subset_union_of_subset_left
subset_rfl
Set.instReflSubset

---

← Back to Index