Documentation Verification Report

Defs

📁 Source: Mathlib/MeasureTheory/MeasurableSpace/Defs.lean

Statistics

MetricCount
DefinitionsDiscreteMeasurableSpace, MeasurableSet, MeasurableSingletonClass, GenerateMeasurable, MeasurableSet', copy, generateFrom, giGenerateFrom, instCompleteLattice, instInhabited, instLE, instPartialOrder, mkOfClosure, «termMeasurableSet[_]», «termMeasurable[_,_]», «termMeasurable[_]», instMeasurableSpaceOrderDual
17
Theoremsforall_measurableSet, toMeasurableSingletonClass, measurableSet, measurableSet_biInter, measurableSet_biUnion, comp, comp', fun_comp, le, of_discrete, biInter, biUnion, bihimp, compl, compl_iff, cond, const, diff, empty, himp, iInter, iUnion, iff, imp, insert, inter, ite, ite', of_compl, of_discrete, sInter, sUnion, singleton, symmDiff, union, univ, measurableSet_singleton, toDiscreteMeasurableSpace, copy_eq, ext, ext_iff, forall_generateFrom_mem_iff_mem_iff, generateFrom_empty, generateFrom_iUnion_measurableSet, generateFrom_induction, generateFrom_insert_empty, generateFrom_insert_univ, generateFrom_le, generateFrom_le_iff, generateFrom_measurableSet, generateFrom_mono, generateFrom_singleton_empty, generateFrom_singleton_univ, generateFrom_sup_generateFrom, iSup_generateFrom, le_def, measurableSet_bot_iff, measurableSet_compl, measurableSet_copy, measurableSet_empty, measurableSet_generateFrom, measurableSet_iInf, measurableSet_iSup, measurableSet_iUnion, measurableSet_inf, measurableSet_injective, measurableSet_sInf, measurableSet_sSup, measurableSet_sup, measurableSet_top, measurableSpace_iSup_eq, mkOfClosure_sets, measurableSet, measurableSet, measurableSet_biInter, measurableSet_biUnion, measurableSet_sInter, measurableSet_sUnion, measurableSet, measurableSet, instDiscreteMeasurableSpace, measurableSet_eq, measurableSet_insert, measurable_const, measurable_id, measurable_id', nonempty_measurable_superset
87
Total104

DiscreteMeasurableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
forall_measurableSet 📖mathematicalMeasurableSet
toMeasurableSingletonClass 📖mathematicalMeasurableSingletonClassMeasurableSet.of_discrete

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet 📖mathematicalMeasurableSet
SetLike.coe
Finset
instSetLike
Set.Finite.measurableSet
finite_toSet
measurableSet_biInter 📖mathematicalMeasurableSetSet.iInter
Finset
instMembership
Set.Finite.measurableSet_biInter
finite_toSet
measurableSet_biUnion 📖mathematicalMeasurableSetSet.iUnion
Finset
instMembership
Set.Finite.measurableSet_biUnion
finite_toSet

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖Measurable
comp' 📖Measurablefun_comp
fun_comp 📖Measurablecomp
le 📖MeasurableSpace
MeasurableSpace.instLE
Measurable
of_discrete 📖mathematicalMeasurableMeasurableSet.of_discrete

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
biInter 📖mathematicalMeasurableSetSet.iInter
Set
Set.instMembership
of_compl
Set.compl_iInter₂
biUnion
compl
biUnion 📖mathematicalMeasurableSetSet.iUnion
Set
Set.instMembership
Set.biUnion_eq_iUnion
Set.Countable.to_subtype
iUnion
bihimp 📖mathematicalMeasurableSetbihimp
Set
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
BooleanAlgebra.toHImp
Set.instBooleanAlgebra
inter
himp
compl 📖mathematicalMeasurableSetCompl.compl
Set
Set.instCompl
MeasurableSpace.measurableSet_compl
compl_iff 📖mathematicalMeasurableSet
Compl.compl
Set
Set.instCompl
of_compl
compl
cond 📖mathematicalMeasurableSetSet
const 📖mathematicalMeasurableSet
setOf
diff 📖mathematicalMeasurableSetSet
Set.instSDiff
inter
compl
empty 📖mathematicalMeasurableSet
Set
Set.instEmptyCollection
MeasurableSpace.measurableSet_empty
himp 📖mathematicalMeasurableSetHImp.himp
Set
BooleanAlgebra.toHImp
Set.instBooleanAlgebra
himp_eq
union
compl
iInter 📖mathematicalMeasurableSetSet.iInterof_compl
Set.compl_iInter
iUnion
compl
iUnion 📖mathematicalMeasurableSetSet.iUnionisEmpty_or_nonempty
Set.iUnion_of_empty
exists_surjective_nat
Set.iUnion_congr_of_surjective
MeasurableSpace.measurableSet_iUnion
iff 📖MeasurableSet
setOf
Set.ext
inter
imp
imp 📖MeasurableSet
setOf
union
compl
insert 📖mathematicalMeasurableSetSet
Set.instInsert
union
singleton
inter 📖mathematicalMeasurableSetSet
Set.instInter
Set.inter_eq_compl_compl_union_compl
compl
union
ite 📖mathematicalMeasurableSetSet.iteunion
inter
diff
ite' 📖mathematicalMeasurableSetSet
of_compl 📖MeasurableSet
Compl.compl
Set
Set.instCompl
compl
compl_compl
of_discrete 📖mathematicalMeasurableSetDiscreteMeasurableSpace.forall_measurableSet
sInter 📖mathematicalMeasurableSetSet.sInterSet.sInter_eq_biInter
biInter
sUnion 📖mathematicalMeasurableSetSet.sUnionSet.sUnion_eq_biUnion
biUnion
singleton 📖mathematicalMeasurableSet
Set
Set.instSingletonSet
MeasurableSingletonClass.measurableSet_singleton
symmDiff 📖mathematicalMeasurableSetsymmDiff
Set
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instSDiff
union
diff
union 📖mathematicalMeasurableSetSet
Set.instUnion
Set.union_eq_iUnion
iUnion
Bool.countable
univ 📖mathematicalMeasurableSet
Set.univ
of_compl
Set.compl_univ

MeasurableSingletonClass

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet_singleton 📖mathematicalMeasurableSet
Set
Set.instSingletonSet
toDiscreteMeasurableSpace 📖mathematicalDiscreteMeasurableSpaceSet.Countable.measurableSet
Set.to_countable
SetCoe.countable

MeasurableSpace

Definitions

NameCategoryTheorems
GenerateMeasurable 📖CompData
7 mathmath: measurableSet_sSup, cardinal_generateMeasurable_le_continuum, cardinal_generateMeasurable_le, generateMeasurableRec_subset, measurableSet_sup, measurableSet_iSup, generateMeasurable_eq_rec
MeasurableSet' 📖MathDef
2 mathmath: measurableSet_empty, le_def
copy 📖CompOp
2 mathmath: copy_eq, measurableSet_copy
generateFrom 📖CompOp
102 mathmath: comap_eq_generateFrom, ProbabilityTheory.iCondIndepSet.condIndep_generateFrom_of_disjoint, ProbabilityTheory.Kernel.iIndepSet.indep_generateFrom_of_disjoint, generateFrom_piiUnionInter_singleton_left, ProbabilityTheory.Kernel.iIndepSet.indep_generateFrom_le_nat, ProbabilityTheory.IndepSets.indep', borel_eq_generateFrom_isClosed, ProbabilityTheory.condIndepSet_iff_condIndep, generateFrom_empty, MeasureTheory.measurableSet_generateFrom_singleton_iff, borel_eq_generateFrom_Ici, Real.borel_eq_generateFrom_Iio_rat, ProbabilityTheory.iCondIndepSet_iff_iCondIndep, Real.borel_eq_generateFrom_Ioo_rat, borel_eq_generateFrom_of_subbasis, ProbabilityTheory.Kernel.iIndepSet.indep_generateFrom_le, generateFrom_iUnion_measurableSet, generateFrom_Icc_mem_le_borel, generateFrom_sup_generateFrom, generateFrom_memPartition_le, ProbabilityTheory.IndepSet_iff_Indep, generateFrom_pi_eq, borel_eq_generateFrom_Icc, ProbabilityTheory.iCondIndepSet.condIndep_generateFrom_lt, ProbabilityTheory.Kernel.iIndepSet.indep_generateFrom_lt, generateFrom_Ico_mem_le_borel, ProbabilityTheory.iCondIndepSet.condIndep_generateFrom_le_nat, measurableSet_generateFrom, Real.borel_eq_generateFrom_Ioi_rat, measurableSet_succ_countablePartition, generateFrom_measurableSet, generateFrom_prod, ProbabilityTheory.iIndepSet.indep_generateFrom_le, borel_eq_generateFrom_Ioc, MeasureTheory.generateFrom_generateSetAlgebra_eq, le_generateFrom_piiUnionInter, measurableSpace_iSup_eq, ProbabilityTheory.condExp_set_generateFrom_singleton, ProbabilityTheory.condExp_generateFrom_singleton, Real.borel_eq_generateFrom_Ici_rat, generateFrom_singleton_univ, generateFrom_piiUnionInter_measurableSet, ProbabilityTheory.condExpKernel_singleton_ae_eq_cond, ProbabilityTheory.iIndepSet.indep_generateFrom_lt, generateFrom_mono, measurable_generateFrom, Dense.borel_eq_generateFrom_Ico_mem, ProbabilityTheory.iSup_partitionFiltration_eq_generateFrom_range, ProbabilityTheory.iCondIndepSet.condIndep_generateFrom_le, generateFrom_natGeneratingSequence, measurableSet_generateFrom_memPartition_iff, cardinal_measurableSet_le_continuum, measurableSet_generateFrom_memPartition, measurableSet_generateFrom_countablePartition_iff, generateFrom_iUnion_countablePartition, Dense.borel_eq_generateFrom_Ico_mem_aux, generateFrom_insert_univ, generateFrom_memPartition_le_range, CountablyGenerated.isCountablyGenerated, generateFrom_countablePartition_le, generateFrom_prod_eq, Dense.borel_eq_generateFrom_Ioc_mem_aux, borel_eq_generateFrom_Ico, cardinal_measurableSet_le, generateFrom_countableGeneratingSet, generateFrom_singleton, generateFrom_pi, ProbabilityTheory.iIndepSet_iff_iIndep, MeasureTheory.generateFrom_squareCylinders, ProbabilityTheory.iIndepSet.indep_generateFrom_le_nat, generateFrom_iUnion_memPartition, MeasureTheory.comap_eval_le_generateFrom_squareCylinders_singleton, generateFrom_measurableSet_of_generatePiSystem, borel_eq_generateFrom_Ioc_le, generateFrom_memPartition_le_succ, borel_eq_generateFrom_Ioi, generateFrom_countablePartition_le_succ, generateFrom_singleton_le, iSup_generateFrom, borel_eq_generateFrom_Iio, generateFrom_generatePiSystem_eq, DynkinSystem.generateFrom_eq, generateFrom_iUnion_memPartition_le, MeasureTheory.generateFrom_measurableCylinders, ProbabilityTheory.Kernel.IndepSets.indep', generateFrom_insert_empty, ProbabilityTheory.CondIndepSets.condIndep', borel_eq_generateFrom_Iic, Real.borel_eq_generateFrom_Iic_rat, comap_generateFrom, pi_eq_generateFrom_projections, measurableSet_succ_memPartition, Dense.borel_eq_generateFrom_Ioc_mem, generateFrom_le_iff, ProbabilityTheory.iIndepSet.indep_generateFrom_of_disjoint, Dense.borel_eq_generateFrom_Icc_mem, DynkinSystem.generate_has_subset_generate_measurable, TopologicalSpace.IsTopologicalBasis.borel_eq_generateFrom, measurableSet_generateFrom_of_mem_supClosure, Dense.borel_eq_generateFrom_Icc_mem_aux, generateFrom_le, generateFrom_singleton_empty
giGenerateFrom 📖CompOp
instCompleteLattice 📖CompOp
122 mathmath: measurable_from_top, comap_const, comap_bot, ProbabilityTheory.condIndep_iSup_of_antitone, ProbabilityTheory.Kernel.indep_iSup_directed_limsup, ProbabilityTheory.indep_iSup_of_monotone, ProbabilityTheory.indep_limsup_atTop_self, generateFrom_empty, MeasureTheory.condLExp_bot', Measurable.sup_of_right, ProbabilityTheory.condIndep_bot_left, ProbabilityTheory.condIndep_iSup_of_monotone, measurableSet_iInf, measurableSet_sSup, ProbabilityTheory.Kernel.indep_limsup_atBot_self, map_const, ProbabilityTheory.indep_biSup_limsup, MeasureTheory.OuterMeasure.le_sum_caratheodory, generateFrom_iUnion_measurableSet, ProbabilityTheory.Kernel.indep_iSup_limsup, PMF.toOuterMeasure_caratheodory, ProbabilityTheory.indep_iSup_of_directed_le, MeasureTheory.condLExp_bot, generateFrom_sup_generateFrom, ProbabilityTheory.condIndep_limsup_atTop_self, ProbabilityTheory.Kernel.indep_limsup_self, map_inf, ProbabilityTheory.condExpKernel_ae_eq_condExp', borel_eq_top_of_discrete, ProbabilityTheory.iIndep_comap_mem_iff, MeasureTheory.OuterMeasure.le_add_caratheodory, ProbabilityTheory.indep_iSup_limsup, measurableSet_bot_iff, MeasureTheory.Filtration.rightCont_apply, MeasureTheory.OuterMeasure.zero_caratheodory, comap_prodMk, MeasureTheory.OuterMeasure.top_caratheodory, measurableSpace_iSup_eq, ProbabilityTheory.iIndepSet.iIndep_comap_mem, MeasureTheory.condExp_bot, generateFrom_singleton_univ, MeasureTheory.Filtration.rightCont_def, generateFrom_piiUnionInter_measurableSet, ProbabilityTheory.condIndep_iSup_limsup, ProbabilityTheory.Kernel.iIndep_comap_mem_iff, MeasureTheory.StronglyMeasurable.integral_condExpKernel', ProbabilityTheory.Kernel.indep_iSup_of_directed_le, ProbabilityTheory.condExp_ae_eq_integral_condExpKernel', CountablyGenerated.sup, ProbabilityTheory.Kernel.indep_iSup_of_monotone, MeasureTheory.IsStoppingTime.measurableSpace_min, MeasureTheory.Filtration.rightCont_eq_of_not_isMax, MeasureTheory.tendsto_ae_condExp, ProbabilityTheory.indep_iSup_directed_limsup, ProbabilityTheory.iSup_partitionFiltration_eq_generateFrom_range, ProbabilityTheory.condIndep_biSup_limsup, ProbabilityTheory.condIndep_limsup_self, ProbabilityTheory.condExpKernel_def, MeasureTheory.SimpleFunc.simpleFunc_bot', comap_iSup, MeasureTheory.IsStoppingTime.measurableSpace_min_const, ProbabilityTheory.Kernel.indep_biSup_limsup, MeasureTheory.sigmaFinite_bot_iff, inf_le_invariants_comp, ProbabilityTheory.indep_limsup_atBot_self, Measurable.iSup', MeasureTheory.tendsto_eLpNorm_condExp, MeasureTheory.condLExp_bot_ae_eq, ProbabilityTheory.iSup_countableFiltration, ProbabilityTheory.indep_iSup_of_antitone, MeasureTheory.Filtration.rightCont_eq, ProbabilityTheory.condIndep_biSup_compl, map_iInf, ProbabilityTheory.condIndep_iSup_directed_limsup, MeasureTheory.Filtration.coeFn_sup, ProbabilityTheory.condVar_bot', ProbabilityTheory.Kernel.indep_limsup_atTop_self, comap_sup, ProbabilityTheory.Kernel.indep_iSup_of_antitone, Measurable.sup_of_left, measurableSet_sInf, ProbabilityTheory.condIndep_bot_right, generateFrom_singleton, ProbabilityTheory.indep_bot_right, ProbabilityTheory.condVar_bot_ae_eq, ProbabilityTheory.indep_bot_left, MeasureTheory.Filtration.sSup_def, instDiscreteMeasurableSpace, MeasureTheory.SimpleFunc.simpleFunc_bot, ProbabilityTheory.condVar_bot, ProbabilityTheory.indep_biSup_compl, ProbabilityTheory.condExpKernel_eq, stronglyMeasurable_bot_iff, map_top, iSup_generateFrom, ProbabilityTheory.condIndep_iSup_of_disjoint, borel_eq_top_of_countable, ProbabilityTheory.iSup_partitionFiltration, measurableSet_top, ProbabilityTheory.Kernel.indep_bot_left, MeasureTheory.sigmaFinite_trim_bot_iff, ProbabilityTheory.condIndep_limsup_atBot_self, MeasureTheory.condExp_bot', ProbabilityTheory.Kernel.indep_bot_right, MeasureTheory.OuterMeasure.dirac_caratheodory, MeasureTheory.Submartingale.exists_ae_trim_tendsto_of_bdd, MeasureTheory.Filtration.rightCont_eq_of_neBot_nhdsGT, ProbabilityTheory.condIndep_iSup_of_directed_le, MeasureTheory.Filtration.coeFn_inf, ProbabilityTheory.Kernel.indep_biSup_compl, measurableSet_inf, measurableSet_sup, ProbabilityTheory.indep_iSup_of_disjoint, ProbabilityTheory.Kernel.indep_iSup_of_disjoint, measurableSet_iSup_of_mem_piiUnionInter, generateFrom_singleton_empty, MeasureTheory.condExp_bot_ae_eq, ProbabilityTheory.indep_limsup_self, MeasureTheory.Filtration.stronglyMeasurable_limitProcess, measurableSet_iSup, MeasureTheory.Filtration.sInf_def, ProbabilityTheory.condExpKernel_apply_eq_condDistrib
instInhabited 📖CompOp
instLE 📖CompOp
57 mathmath: MeasureTheory.OuterMeasure.IsMetric.borel_le_caratheodory, MeasureTheory.OuterMeasure.IsMetric.le_caratheodory, exists_countablyGenerated_le_of_countablySeparated, OpensMeasurableSpace.borel_le, le_eventuallyMeasurableSpace, MeasureTheory.OuterMeasure.le_sum_caratheodory, MeasureTheory.IsStoppingTime.measurableSpace_le_of_countable_range, MeasureTheory.IsStoppingTime.measurableSpace_le_of_le_const, generateFrom_Icc_mem_le_borel, invariants_le, Measurable.comap_le, generateFrom_memPartition_le, generateFrom_Ico_mem_le_borel, Measurable.le_map, MeasureTheory.IsStoppingTime.measurableSpace_mono, MeasureTheory.cylinderEvents_mono, StieltjesFunction.borel_le_measurable, MeasureTheory.OuterMeasure.le_add_caratheodory, le_generateFrom_piiUnionInter, MeasureTheory.IsStoppingTime.measurableSpace_le, MeasureTheory.Measure.pi_caratheodory, MeasureTheory.condExp_def, measurable_iff_comap_le, MeasureTheory.Filtration.le', generateFrom_mono, MeasureTheory.OuterMeasure.le_smul_caratheodory, generateFrom_memPartition_le_range, inf_le_invariants_comp, generateFrom_countablePartition_le, pi_le_borel_pi, le_def, MeasureTheory.IsStoppingTime.measurableSpace_le_of_countable, MeasureTheory.cylinderEvents_le_pi, MeasureTheory.Content.borel_le_caratheodory, MeasureTheory.measurableSpace_le_predictable_of_measurableSet, MeasureTheory.Filtration.mono, MeasureTheory.Filtration.le, comap_le_iff_le_map, le_invariants_iterate, measurable_iff_le_map, MeasureTheory.comap_eval_le_generateFrom_squareCylinders_singleton, comap_map_le, generateFrom_memPartition_le_succ, generateFrom_countablePartition_le_succ, generateFrom_singleton_le, MeasureTheory.condLExp_def, prod_le_borel_prod, MeasureTheory.sigmaFinite_trim_bot_iff, MeasureTheory.le_toOuterMeasure_caratheodory, generateFrom_iUnion_memPartition_le, le_map_comap, comap_le_comap_pi, generateFrom_le_iff, MeasureTheory.IsStoppingTime.le_measurableSpace_of_const_le, DynkinSystem.ofMeasurableSpace_le_ofMeasurableSpace_iff, generateFrom_le, MeasureTheory.IsStoppingTime.measurableSpace_le_of_le
instPartialOrder 📖CompOp
9 mathmath: MeasureTheory.AddContent.measure_eq, MeasureTheory.VectorMeasure.trim_eq_self, MeasureTheory.trim_eq_self, gc_comap_map, MeasureTheory.trim_trim, borel_anti, MeasureTheory.Filtration.mono', monotone_map, monotone_comap
mkOfClosure 📖CompOp
1 mathmath: mkOfClosure_sets

Theorems

NameKindAssumesProvesValidatesDepends On
copy_eq 📖mathematicalMeasurableSetcopyext
ext 📖MeasurableSetmeasurableSet_injective
ext_iff 📖mathematicalMeasurableSetext
forall_generateFrom_mem_iff_mem_iff 📖mathematicalSet
Set.instMembership
generateFrom_induction
Iff.not
generateFrom_empty 📖mathematicalgenerateFrom
Set
Set.instEmptyCollection
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
le_bot_iff
generateFrom_le
instIsEmptyFalse
generateFrom_iUnion_measurableSet 📖mathematicalgenerateFrom
Set.iUnion
Set
setOf
MeasurableSet
iSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
GaloisInsertion.l_iSup_u
generateFrom_induction 📖Set
Set.instEmptyCollection
measurableSet_empty
generateFrom
Compl.compl
Set.instCompl
MeasurableSet.compl
Set.iUnion
MeasurableSet.iUnion
instCountableNat
MeasurableSet
measurableSet_empty
MeasurableSet.compl
MeasurableSet.iUnion
instCountableNat
generateFrom_insert_empty 📖mathematicalgenerateFrom
Set
Set.instInsert
Set.instEmptyCollection
Set.insert_eq
generateFrom_sup_generateFrom
generateFrom_singleton_empty
bot_sup_eq
generateFrom_insert_univ 📖mathematicalgenerateFrom
Set
Set.instInsert
Set.univ
Set.insert_eq
generateFrom_sup_generateFrom
generateFrom_singleton_univ
bot_sup_eq
generateFrom_le 📖mathematicalMeasurableSetMeasurableSpace
instLE
generateFrom
MeasurableSet.empty
MeasurableSet.compl
MeasurableSet.iUnion
instCountableNat
generateFrom_le_iff 📖mathematicalMeasurableSpace
instLE
generateFrom
Set
Set.instHasSubset
setOf
MeasurableSet
measurableSet_generateFrom
generateFrom_le
generateFrom_measurableSet 📖mathematicalgenerateFrom
setOf
Set
MeasurableSet
le_antisymm
generateFrom_le
measurableSet_generateFrom
generateFrom_mono 📖mathematicalSet
Set.instHasSubset
MeasurableSpace
instLE
generateFrom
GaloisConnection.monotone_l
GaloisInsertion.gc
generateFrom_singleton_empty 📖mathematicalgenerateFrom
Set
Set.instSingletonSet
Set.instEmptyCollection
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
bot_unique
generateFrom_le
MeasurableSet.empty
generateFrom_singleton_univ 📖mathematicalgenerateFrom
Set
Set.instSingletonSet
Set.univ
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
bot_unique
generateFrom_le
generateFrom_sup_generateFrom 📖mathematicalMeasurableSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
generateFrom
Set
Set.instUnion
GaloisConnection.l_sup
GaloisInsertion.gc
iSup_generateFrom 📖mathematicaliSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
generateFrom
Set.iUnion
Set
GaloisConnection.l_iSup
GaloisInsertion.gc
le_def 📖mathematicalMeasurableSpace
instLE
Pi.hasLe
Set
Prop.le
MeasurableSet'
measurableSet_bot_iff 📖mathematicalMeasurableSet
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instEmptyCollection
Set.univ
Set.sUnion_mem_empty_univ
Set.forall_mem_range
bot_unique
measurableSet_empty
MeasurableSet.univ
measurableSet_compl 📖mathematicalMeasurableSet'Compl.compl
Set
Set.instCompl
measurableSet_copy 📖mathematicalMeasurableSetcopy
measurableSet_empty 📖mathematicalMeasurableSet'
Set
Set.instEmptyCollection
measurableSet_generateFrom 📖mathematicalSet
Set.instMembership
MeasurableSet
generateFrom
measurableSet_iInf 📖mathematicalMeasurableSet
iInf
MeasurableSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
iInf.eq_1
measurableSet_sInf
Set.forall_mem_range
measurableSet_iSup 📖mathematicalMeasurableSet
iSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
GenerateMeasurable
setOf
Set
measurableSet_iUnion 📖mathematicalMeasurableSet'Set.iUnion
measurableSet_inf 📖mathematicalMeasurableSet
MeasurableSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
measurableSet_injective 📖mathematicalMeasurableSpace
MeasurableSet
measurableSet_sInf 📖mathematicalMeasurableSet
InfSet.sInf
MeasurableSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.sInter_image
measurableSet_sSup 📖mathematicalMeasurableSet
SupSet.sSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
GenerateMeasurable
setOf
Set
Set.instMembership
Set.sUnion_image
measurableSet_sup 📖mathematicalMeasurableSet
MeasurableSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
GenerateMeasurable
Set
Set.instUnion
measurableSet_top 📖mathematicalMeasurableSet
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
measurableSpace_iSup_eq 📖mathematicaliSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
generateFrom
setOf
Set
MeasurableSet
ext
measurableSet_iSup
mkOfClosure_sets 📖mathematicalsetOf
Set
MeasurableSet
generateFrom
mkOfClosurecopy_eq

MeasureTheory

Definitions

NameCategoryTheorems
«termMeasurableSet[_]» 📖CompOp
«termMeasurable[_,_]» 📖CompOp
«termMeasurable[_]» 📖CompOp

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet 📖mathematicalMeasurableSetSet.biUnion_of_singleton
MeasurableSet.biUnion
MeasurableSet.singleton

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet 📖mathematicalMeasurableSetinduction_on
MeasurableSet.empty
MeasurableSet.insert
measurableSet_biInter 📖mathematicalMeasurableSetSet.iInter
Set
Set.instMembership
MeasurableSet.biInter
countable
measurableSet_biUnion 📖mathematicalMeasurableSetSet.iUnion
Set
Set.instMembership
MeasurableSet.biUnion
countable
measurableSet_sInter 📖mathematicalMeasurableSetSet.sInterMeasurableSet.sInter
countable
measurableSet_sUnion 📖mathematicalMeasurableSetSet.sUnionMeasurableSet.sUnion
countable

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet 📖mathematicalSet.SubsingletonMeasurableSetinduction_on
MeasurableSet.empty
MeasurableSet.singleton

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet 📖mathematicalMeasurableSetset_cases
MeasurableSet.empty
MeasurableSet.univ

(root)

Definitions

NameCategoryTheorems
DiscreteMeasurableSpace 📖CompData
10 mathmath: Submodule.Quotient.instDiscreteMeasurableSpaceQuotient, QuotientGroup.instDiscreteMeasurableSpace, IterateAddAct.instDiscreteMeasurableSpace, MeasurableSingletonClass.toDiscreteMeasurableSpace, AddChar.instDiscreteMeasurableSpace, QuotientAddGroup.instDiscreteMeasurableSpace, ENat.instDiscreteMeasurableSpace, instDiscreteMeasurableSpace, Quotient.instDiscreteMeasurableSpace, IterateMulAct.instDiscreteMeasurableSpace
MeasurableSet 📖MathDef
365 mathmath: Filter.Eventually.exists_measurable_mem_of_smallSets, MeasurableSpace.comap_eq_generateFrom, MeasureTheory.IsStoppingTime.measurableSet_inter_le_iff, Subsingleton.measurableSet, MeasureTheory.measurableSet_sigmaFiniteSetGE, MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable_range, MeasureTheory.measurableSet_range_of_continuous_injective, measurableSet_inr_image, IsFoelner.eventually_measurableSet, isPiSystem_prod, MeasureTheory.extend_iUnion_le_tsum_nat, ZSpan.fundamentalDomain_measurableSet, measurableSet_pi_of_nonempty, RightDerivMeasurableAux.measurableSet_B, MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable', Set.OrdConnected.measurableSet, MeasureTheory.FinStronglyMeasurable.exists_set_sigmaFinite, MeasureTheory.OuterMeasure.boundedBy_caratheodory, MeasureTheory.IsStoppingTime.measurableSet, MeasureTheory.IsStoppingTime.measurableSet_gt, ae_eq_const_or_exists_average_ne_compl, MeasureTheory.measurableSet_exists_tendsto, nonempty_measurable_superset, BoxIntegral.Box.measurableSet_Icc, MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable_range', MeasureTheory.finStronglyMeasurable_iff_stronglyMeasurable_and_exists_set_sigmaFinite, MeasurableSpace.isPiSystem_measurableSet, measurableSet_mulSupport, MeasurableSet.singleton, MeasureTheory.SeparableSpace.exists_measurable_partition_diam_le, MeasurableSpace.map_def, MeasurableEmbedding.measurableSet_image, MeasureTheory.SignedMeasure.exists_compl_positive_negative, MeasureTheory.measurableSet_tendsto_fun, ProbabilityTheory.iIndep_iff_iIndepSets, MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time_of_countable, MeasureTheory.measurableSet_generateFrom_singleton_iff, MeasurableSet.of_discrete, ProbabilityTheory.Kernel.iIndep.iIndepSets', measurableSet_setOf, MeasureTheory.exists_measurable_superset₂, exists_partition_approximatesLinearOn_of_hasFDerivWithinAt, BoxIntegral.Box.measurableSet_coe, measurableSet_support, MeasureTheory.inducedOuterMeasure_caratheodory, MeasureTheory.exists_null_pairwise_disjoint_diff, measurableSet_graph, measurableSet_le, measurableSet_eq_fun, measurableSet_eq_fun', MeasurableSpace.measurableSet_iInf, MeasurableSet.empty, MeasureTheory.IsStoppingTime.measurableSet_ge', isCountablySpanning_measurableSet, MeasurableSpace.measurableSet_sSup, MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable, DiscreteMeasurableSpace.forall_measurableSet, MeasureTheory.Measure.toENNRealVectorMeasure_apply, MeasurableSingletonClass.measurableSet_singleton, MeasurableSpace.countablySeparated_def, MeasureTheory.IsStoppingTime.measurableSet_lt_of_isLUB, measurableSet_Ico, MeasurableEmbedding.measurableSet_preimage, MeasureTheory.IsStoppingTime.measurableSet_le_stopping_time, measurable_mem, measurableSet_Iio, MeasureTheory.exists_isSigmaFiniteSet_measure_ge, MeasureTheory.SignedMeasure.exists_isCompl_positive_negative, MeasurableSet.of_mem_measurableCylinders, MeasureTheory.measure_sigmaFiniteSetGE_le, MeasureTheory.OuterMeasure.isCaratheodory_iff, MeasurableSet.subtype_bot_eq, MeasurableSpace.generateFrom_iUnion_measurableSet, MeasurableSet.compl_iff, MeasurableSpace.measurableSet_countableGeneratingSet, ENat.measurable_iff, MeasureTheory.StronglyMeasurable.measurableSet_exists_tendsto, MeasurableSet.coe_union, measurableSet_closure, Filter.principal_isMeasurablyGenerated_iff, MeasurableSet.coe_singleton, MeasureTheory.IsStoppingTime.measurableSet_inter_le_const_iff, Set.Countable.measurableSet, MeasurableSpace.measurableSet_invariants, MeasureTheory.VectorMeasure.measurable_of_not_zero_le_restrict, MeasureTheory.exists_subset_real_measurableEquiv, measurableSet_preimage_down, MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time_min, MeasurableSpace.measurableSet_enumerateCountable_countableGeneratingSet, MeasurableSet.setOf_finite, MeasurableSpace.measurableSet_generateFrom, MeasureTheory.OuterMeasure.trim_eq_iInf', measurableSet_of_differentiableAt_of_isComplete, MeasureTheory.hahn_decomposition, MeasureTheory.Measure.innerRegularWRT_preimage_one_hasCompactSupport_measure_ne_top_of_group, Measurable.setOf, MeasureTheory.IsStoppingTime.measurableSet_lt, IsAddFoelner.eventually_measurableSet, MeasureTheory.StronglyMeasurable.measurableSet_lt, Measurable.measurableSet_preimage_iff_of_surjective, exists_spanning_measurableSet_le, NumberField.mixedEmbedding.fundamentalCone.measurableSet_interior_paramSet, MeasurableEquiv.measurableSet_image, MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion, MeasureTheory.IsStoppingTime.measurableSet_lt_of_pred, MeasureTheory.Measure.InnerRegularWRT.of_sigmaFinite, MeasurableSet.coe_bot, MeasurableSet.of_mem_nhdsGT_aux, MeasureTheory.IsStoppingTime.measurableSet_eq_le, indepSets_comap_of_bcf, MeasurableSpace.measurableSet_succ_countablePartition, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable', MeasureTheory.AECover.measurableSet, MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable, measurableSet_pi_polarCoord_target, measurableSet_range_inl, MeasureTheory.AEFinStronglyMeasurable.measurableSet, measurableSet_swap_iff, MeasureTheory.IsStoppingTime.measurableSet_le, measurableSet_prod_of_nonempty, MeasureTheory.NullMeasurableSet.measurable_of_complete, MeasureTheory.StronglyMeasurable.measurableSet_le, MeasurableSpace.measurableSet_countablePartitionSet, MeasureTheory.measurableSet_spanningSets, measurableSet_integrable, MeasureTheory.OuterMeasure.exists_measurable_superset_forall_eq_trim, MeasureTheory.Measure.MeasureDense.indicatorConstLp_subset_closure, MeasurableSet.coe_sdiff, MeasurableSpace.measurableSet_comap, MeasurableSpace.generateFrom_measurableSet, IsClosed.measurableSet, IsOpen.measurableSet, generateFrom_prod, Finset.measurableSet, MeasureTheory.JordanDecomposition.exists_compl_positive_negative, IsGδ.measurableSet, StieltjesFunction.measurableSet_Ioi, MeasureTheory.measurableSet_sigmaFiniteSet, measurableSet_insert, measurableSet_Iic, MeasurableSpace.measurableSet_bot_iff, MeasurableSet.Subtype.instLawfulSingleton, MeasureTheory.measurableCylinders_nat, MeasurableSet.inf_eq_inter, MeasureTheory.SimpleFunc.measurableSet_fiber', MeasureTheory.IsStoppingTime.measurableSet_eq_stopping_time, MeasureTheory.IsStoppingTime.measurableSet_ge, MeasureTheory.Measure.MeasureDense.measurable, MeasurableSpace.measurableSpace_iSup_eq, measurableSet_sum_iff, MeasurableSet.measurableAtom_of_countable, MeasureTheory.Measure.WeaklyRegular.innerRegular_measurable, measurable_indicator_const_iff, measurableSet_of_differentiableWithinAt_Ici_of_isComplete, MeasureTheory.Measure.MutuallySingular.measurableSet_nullSet, MeasurableSpace.CountablySeparated.subtype_iff, MeasureTheory.measure_sigmaFiniteSetWRT', MeasureTheory.StronglyMeasurable.exists_spanning_measurableSet_norm_le, measurableSet_uIoc, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable, measurableSet_Ioi, generateFrom_piiUnionInter_measurableSet, MeasureTheory.OuterMeasure.isCaratheodory_iff_le, MeasureTheory.toOuterMeasure_eq_inducedOuterMeasure, MeasureTheory.Measure.toSignedMeasure_apply, MeasurableSpace.CountablySeparated.countably_separated, measurableSet_frontier, ProbabilityTheory.Kernel.measurableSet_mutuallySingular, MeasurableSet.setOf_infinite, isFoelner_iff, MeasureTheory.IsStoppingTime.measurableSet_eq, MeasureTheory.tendstoUniformlyOn_of_ae_tendsto', MeasureTheory.VectorMeasure.measurable_of_not_restrict_le_zero, MeasurableSet.coe_himp, aeSeq.aeSeqSet_measurableSet, MeasureTheory.IsStoppingTime.measurableSet_min_iff, ProbabilityTheory.Kernel.measurableSet_absolutelyContinuous, NumberField.mixedEmbedding.measurableSet_fundamentalCone, MeasurableSet.const, ProbabilityTheory.Kernel.measurableSet_mutuallySingularSet, MeasureTheory.IsStoppingTime.measurableSet_le', MeasurableSpace.measurableSet_generateFrom_memPartition_iff, ProbabilityTheory.measurableSet_countableFiltration_countablePartitionSet, measurableSet_of_differentiableAt, MeasureTheory.IsStoppingTime.measurableSet_lt_le, MeasureTheory.SimpleFunc.measurableSet_support, MeasurableSpace.cardinal_measurableSet_le_continuum, MeasureTheory.Measure.InnerRegularCompactLTTop.innerRegular, measurableSet_interior, MeasurableSpace.measurableSet_generateFrom_memPartition, ProbabilityTheory.measurableSet_integrable, MeasureTheory.tendsto_measure_sigmaFiniteSetGE, measurableSet_uIcc, MeasurableEq.measurableSet_diagonal, MeasurableSet.of_mem_nhdsGT, VitaliFamily.FineSubfamilyOn.measurableSet_u, MeasurableSpace.measurableSet_generateFrom_countablePartition_iff, MeasureTheory.measurableSet_sigmaFiniteSetWRT', ProbabilityTheory.iIndep.iIndepSets', MeasureTheory.toMeasurable_def, MeasurableSet.coe_compl, Set.Subsingleton.measurableSet, measurableSet_eq_fun_of_countable, MeasureTheory.measurableSet_toMeasurable, MeasurableEmbedding.measurableSet_range, indepSets_comap_pi_of_bcf, MeasureTheory.Content.outerMeasure_caratheodory, MeasurableSpace.exists_measurableSet_of_ne, indepSets_comap_pi_of_prod_bcf, VitaliFamily.eventually_filterAt_measurableSet, measurableSet_range_inr, measurableSet_lineDifferentiableAt_uncurry, MeasureTheory.tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist', MeasureTheory.measure_eq_iInf', MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range, Measurable.measurableSet_preimage_iff_preimage_val, MeasureTheory.StronglyMeasurable.measurableSet_eq_fun, MeasurableSpace.measurableSet_natGeneratingSequence, MeasurableSpace.cardinal_measurableSet_le, Filter.Eventually.exists_measurable_mem, measurableSet_Ioo, MeasureTheory.SimpleFunc.measurableSet_preimage, MeasurableSet.coe_empty, measurableSet_Icc, MeasureTheory.Egorov.notConvergentSeq_measurableSet, measurableSet_mem, measurableSet_le', MeasureTheory.StronglyMeasurable.measurableSet_mulSupport, measurableSet_of_differentiableWithinAt_Ioi, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range', measurableSet_ball, ProbabilityTheory.measurableSet_kernel_integrable, MeasureTheory.exists_subordinate_pairwise_disjoint, MeasureTheory.exists_measurable_superset_iff_measure_eq_zero, MeasurableSpace.measurableSet_sInf, MeasureTheory.measure_eq_iInf, indepSets_comap_process_of_bcf, measurableSet_of_continuousAt, MeasureTheory.SignedMeasure.exists_subset_restrict_nonpos, MeasureTheory.Measure.exists_positive_of_not_mutuallySingular, measurableSet_eq, MeasureTheory.innerRegularWRT_isCompact_isClosed_measure_ne_top_of_group, MeasureTheory.innerRegular_isCompact_isClosed_measurableSet_of_finite, MeasureTheory.dirac_ne_dirac_iff_exists_measurableSet, MeasureTheory.AnalyticSet.measurableSet_of_compl, MeasureTheory.AEDisjoint.exists_disjoint_diff, MeasureTheory.IsStoppingTime.measurableSet_stopping_time_le_min, measurableSet_lt, ProbabilityTheory.Kernel.measurableSet_mutuallySingularSetSlice, MeasureTheory.SimpleFunc.measurableSet_fiber, measurableSet_eball, measurableSet_lineDifferentiableAt, measurableSet_inl_image, MeasurableSet.coe_top, ProbabilityTheory.Indep_iff_IndepSets, MeasureTheory.IsStoppingTime.measurableSet_gt', MeasureTheory.UnifTight.exists_measurableSet_indicator, generateFrom_pi, MeasureTheory.generateFrom_squareCylinders, MeasurableEquiv.measurableSet_preimage, Filter.IsMeasurablyGenerated.exists_measurable_subset, MeasureTheory.Measure.isComplete_iff, MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsIn, MeasureTheory.comap_eval_le_generateFrom_squareCylinders_singleton, IsClosed.measurableSet_image_of_continuousOn_injOn, MeasureTheory.exists_measurable_superset_forall_eq, opensMeasurableSpace_iff_forall_measurableSet, ProbabilityTheory.measurableSet_countableFiltration_of_mem, MeasureTheory.exists_setLIntegral_compl_lt, measurableSet_of_differentiableAt_of_isComplete_with_param, measurableSet_preimage_up, MeasurableSpace.measurableSet_injective, MeasurableSet.coe_insert, MeasureTheory.IsStoppingTime.measurableSet_eq_top, MeasureTheory.OuterMeasure.exists_measurable_superset_of_trim_eq_zero, MeasurableSet.sup_eq_union, MeasureTheory.measure_eq_inducedOuterMeasure, generateFrom_measurableSet_of_generatePiSystem, BoxIntegral.Box.measurableSet_Ioo, MeasureTheory.Measure.IsComplete.out', MeasurableEmbedding.iff_comap_eq, MeasurableSet.mem_coe, MeasurableSpace.measurableSet_top, MeasurableSpace.hasCountableSeparatingOn_of_countablySeparated, MeasureTheory.measurableSet_sigmaFiniteSetWRT, ProbabilityTheory.condIndep_iff_condIndepSets, indepSets_comap_process_of_prod_bcf, MeasureTheory.measureDense_measurableSet, isPiSystem_pi, measurableSet_Ioc, measurableSet_closedBall, MeasureTheory.Measure.QuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae, MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range, MeasureTheory.OuterMeasure.ofFunction_caratheodory, MeasureTheory.IsStoppingTime.measurableSet_min_const_iff, ProbabilityTheory.measurableSet_isRatStieltjesPoint, measurableSet_lt', RealRMK.range_cut_partition, ProbabilityTheory.iCondIndep_iff_iCondIndepSets, MeasureTheory.exists_measurable_superset, MeasureTheory.isClopenable_iff_measurableSet, measurableSet_notMem, MeasureTheory.ProbabilityMeasure.measurableSet_isProbabilityMeasure, MeasurableSpace.hasCountableSeparatingOn_of_countablySeparated_subtype, MeasureTheory.FiniteMeasure.measurableSet_isFiniteMeasure, measurableSet_Ici, MeasureTheory.StronglyMeasurable.measurableSet_support, measurableSet_tendsto, MeasurableSpace.pi_eq_generateFrom_projections, MeasureTheory.OuterMeasure.exists_measurable_superset_eq_trim, measurableSet_botSet, MeasureTheory.OuterMeasure.trim_eq_iInf, MeasureTheory.exists_measurable_superset_of_null, MeasureTheory.NullMeasurableSet.exists_measurable_superset_ae_eq, measurableSet_bddBelow_range, MeasureTheory.measurableCylinders.measurableSet, measurableSet_quotient, MeasurableSpace.measurableSet_succ_memPartition, MeasureTheory.innerRegularWRT_isCompact_isClosed_measure_ne_top_of_addGroup, Set.Finite.measurableSet, MeasureTheory.mem_measurableCylinders, NumberField.mixedEmbedding.fundamentalCone.measurableSet_paramSet, MeasureTheory.Measure.IsComplete.out, MeasurableSpace.generateFrom_le_iff, MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq, MeasureTheory.Measure.innerRegularWRT_preimage_one_hasCompactSupport_measure_ne_top_of_addGroup, MeasureTheory.PolishSpace.innerRegular_isCompact_isClosed_measurableSet, MeasurableSet.coe_inter, MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq, MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable', NumberField.mixedEmbedding.fundamentalCone.measurableSet_normLeOne, MeasurableSpace.measurableSet_inf, measurableSet_prod, MeasurableSpace.measurableSet_sup, measurableSet_of_differentiableWithinAt_Ici, MeasureTheory.Measure.lt_iff, MeasureTheory.IsStoppingTime.measurableSet_stopping_time_le, MeasureTheory.VectorMeasure.trim_apply, measurableSet_bddAbove_range, isAddFoelner_iff, MeasurableSpace.DynkinSystem.generate_has_subset_generate_measurable, measurableSet_generateFrom_of_mem_supClosure, MeasureTheory.measurableSet_of_null, measurableSet_pi, MeasureTheory.IsStoppingTime.measurableSet_lt', MeasureTheory.Measure.InnerRegular.innerRegular, VitaliFamily.exists_measurable_supersets_limRatio, MeasureTheory.IsHahnDecomposition.measurableSet, MeasurableSet.univ, VitaliFamily.measurableSet, MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range', MeasureTheory.AEFinStronglyMeasurable.exists_set_sigmaFinite, IsCompact.measurableSet, MeasureTheory.measure_sigmaFiniteSetGE_ge, MeasureTheory.IsStoppingTime.measurableSet_eq', IndepFun.singleton_indepSets_of_indicator, MeasureTheory.IsStoppingTime.measurableSet_inter_eq_iff, MeasureTheory.Measure.InnerRegularWRT.measurableSet_of_isOpen, MeasurableSpace.measurableSet_countablePartition, MeasurableSpace.ext_iff, IsPreconnected.measurableSet, MeasureTheory.MemLp.exists_eLpNorm_indicator_compl_lt, MeasureTheory.VectorMeasure.exists_pos_measure_of_not_restrict_le_zero, MeasurableSpace.measurableSet_iSup, measurableSet_of_differentiableAt_with_param
MeasurableSingletonClass 📖CompData
20 mathmath: eventuallyMeasurableSingleton, Subsingleton.measurableSingletonClass, ZMod.instMeasurableSingletonClass, DiscreteMeasurableSpace.toMeasurableSingletonClass, Bool.instMeasurableSingletonClass, measurableSingleton_of_standardBorel, Fin.instMeasurableSingletonClass, Prod.instMeasurableSingletonClass, Rat.instMeasurableSingletonClass, Int.instMeasurableSingletonClass, instMeasurableSingletonClassOfMeasurableEq, MeasurableSpace.MeasurableSingletonClass.of_separatesPoints, Set.instMeasurableSingletonClass, OpensMeasurableSpace.toMeasurableSingletonClass, ENat.instMeasurableSingletonClass, Nat.instMeasurableSingletonClass, Subtype.instMeasurableSingletonClass, Prop.instMeasurableSingletonClass, MeasureTheory.NullMeasurableSet.instMeasurableSingletonClass, MeasurableSpace.measurableSingletonClass_of_countablySeparated
instMeasurableSpaceOrderDual 📖CompOp
6 mathmath: OrderDual.instMeasurableSup₂, OrderDual.instMeasurableSup, OrderDual.borelSpace, OrderDual.instMeasurableInf₂, OrderDual.instMeasurableInf, OrderDual.opensMeasurableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
instDiscreteMeasurableSpace 📖mathematicalDiscreteMeasurableSpace
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
MeasurableSpace.measurableSet_top
measurableSet_eq 📖mathematicalMeasurableSet
setOf
MeasurableSet.singleton
measurableSet_insert 📖mathematicalMeasurableSet
Set
Set.instInsert
Set.insert_eq_of_mem
MeasurableSet.diff
MeasurableSet.singleton
Set.insert_diff_self_of_notMem
MeasurableSet.insert
measurable_const 📖mathematicalMeasurableMeasurableSet.const
measurable_id 📖mathematicalMeasurable
measurable_id' 📖mathematicalMeasurablemeasurable_id
nonempty_measurable_superset 📖mathematicalSet
Set.instHasSubset
MeasurableSet
Set.subset_univ
MeasurableSet.univ

---

← Back to Index