Documentation Verification Report

Embedding

πŸ“ Source: Mathlib/MeasureTheory/MeasurableSpace/Embedding.lean

Statistics

MetricCount
DefinitionsMeasurableEmbedding, equivImage, equivRange, invFun, schroederBernstein, prod, rangeInl, rangeInr, singleton, univ, apply, symm_apply, arrowCongr', arrowProdEquivProdArrow, cast, curry, finTwoArrow, funUnique, instEquivLike, instInhabited, ofInvolutive, ofUniqueOfUnique, piCongrLeft, piCongrRight, piCurry, piEquivPiSubtypeProd, piFinSuccAbove, piFinTwo, piFinsetUnion, piMeasurableEquivTProd, piOptionEquivProd, piUnique, prodAssoc, prodComm, prodCongr, prodPUnit, prodSumDistrib, punitProd, refl, setOf, sumCompl, sumCongr, sumPiEquivProdPi, sumProdDistrib, sumProdSum, toEquiv, trans, ulift, Β«term_≃ᡐ_Β»
49
Theoremsof_union_range_cover, of_union₃_range_cover, comap_eq, comp, equivRange_apply, equivRange_symm_apply_mk, exists_measurable_extend, id, iff_comap_eq, injective, leftInverse_invFun, measurable, measurableSet_image, measurableSet_image', measurableSet_preimage, measurableSet_range, measurable_comp_iff, measurable_extend, measurable_invFun, measurable_rangeSplitting, of_measurable_inverse, of_measurable_inverse_on_range, subtype_coe, apply_symm_apply, bijective, coe_curry, coe_curry_symm, coe_mk, coe_piCongrLeft, coe_piCurry, coe_piCurry_symm, coe_setOf, coe_sumPiEquivProdPi, coe_sumPiEquivProdPi_symm, coe_toEquiv, coe_toEquiv_symm, coe_trans, curry_apply, curry_symm_apply, eq_image_iff_symm_image_eq, ext, ext_iff, finTwoArrow_apply, finTwoArrow_symm_apply, funUnique_apply, funUnique_symm_apply, image_eq_preimage_symm, image_preimage, image_symm, injective, map_eq, measurable, measurableEmbedding, measurableSet_image, measurableSet_preimage, measurable_comp_iff, measurable_invFun, measurable_toFun, ofInvolutive_apply, ofInvolutive_symm, ofInvolutive_toEquiv, piCongrLeft_apply_apply, piCurry_apply, piCurry_symm_apply, piEquivPiSubtypeProd_apply, piEquivPiSubtypeProd_symm_apply, piFinSuccAbove_apply, piFinSuccAbove_symm_apply, piFinTwo_apply, piFinTwo_symm_apply, piMeasurableEquivTProd_apply, piMeasurableEquivTProd_symm_apply, piUnique_apply, piUnique_symm_apply, preimage_image, preimage_symm, refl_apply, refl_toEquiv, self_comp_symm, self_trans_symm, setOf_apply, setOf_symm_apply, surjective, symm_apply_apply, symm_bijective, symm_comp_self, symm_mk, symm_preimage_preimage, symm_refl, symm_symm, symm_trans_self, toEquiv_injective, trans_apply, trans_toEquiv, exists_measurable_proj, of_union_range_cover, of_union₃_range_cover, comap_compl, comap_not
99
Total148

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
of_union_range_cover πŸ“–β€”MeasurableEmbedding
Set
Set.instHasSubset
Set.univ
Set.instUnion
Set.range
Measurable
β€”β€”MeasurableSet.of_union_range_cover
of_union₃_range_cover πŸ“–β€”MeasurableEmbedding
Set
Set.instHasSubset
Set.univ
Set.instUnion
Set.range
Measurable
β€”β€”MeasurableSet.of_union₃_range_cover

MeasurableEmbedding

Definitions

NameCategoryTheorems
equivImage πŸ“–CompOpβ€”
equivRange πŸ“–CompOp
2 mathmath: equivRange_apply, equivRange_symm_apply_mk
invFun πŸ“–CompOp
2 mathmath: leftInverse_invFun, measurable_invFun
schroederBernstein πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eq πŸ“–mathematicalMeasurableEmbeddingMeasurableSpace.comapβ€”LE.le.antisymm
Measurable.comap_le
measurable
measurableSet_image'
Function.Injective.preimage_image
injective
comp πŸ“–β€”MeasurableEmbeddingβ€”β€”injective
Measurable.comp
measurable
Set.image_comp
measurableSet_image
equivRange_apply πŸ“–mathematicalMeasurableEmbeddingDFunLike.coe
MeasurableEquiv
Set.Elem
Set.range
Subtype.instMeasurableSpace
Set
Set.instMembership
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
equivRange
Set.mem_range_self
β€”Set.mem_range_self
Set.image_univ
set_coe_cast
equivRange_symm_apply_mk πŸ“–mathematicalMeasurableEmbeddingDFunLike.coe
MeasurableEquiv
Set.Elem
Set.range
Subtype.instMeasurableSpace
Set
Set.instMembership
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.symm
equivRange
Set.mem_range_self
β€”Set.mem_range_self
MeasurableEquiv.symm_apply_apply
equivRange_apply
exists_measurable_extend πŸ“–β€”MeasurableEmbedding
Measurable
β€”β€”measurable_extend
measurable_const'
Function.Injective.extend_apply
injective
id πŸ“–mathematicalβ€”MeasurableEmbeddingβ€”measurable_id
Set.image_id
iff_comap_eq πŸ“–mathematicalβ€”MeasurableEmbedding
MeasurableSpace.comap
MeasurableSet
Set.range
β€”injective
comap_eq
measurableSet_range
comap_measurable
Set.image_preimage_eq_inter_range
MeasurableSet.inter
injective πŸ“–β€”MeasurableEmbeddingβ€”β€”β€”
leftInverse_invFun πŸ“–mathematicalMeasurableEmbeddinginvFunβ€”β€”
measurable πŸ“–mathematicalMeasurableEmbeddingMeasurableβ€”β€”
measurableSet_image πŸ“–mathematicalMeasurableEmbeddingMeasurableSet
Set.image
β€”Function.Injective.preimage_image
injective
measurable
measurableSet_image'
measurableSet_image' πŸ“–mathematicalMeasurableEmbedding
MeasurableSet
Set.imageβ€”β€”
measurableSet_preimage πŸ“–mathematicalMeasurableEmbeddingMeasurableSet
Set.preimage
Set
Set.instInter
Set.range
β€”Set.image_preimage_eq_inter_range
measurableSet_image
measurableSet_range πŸ“–mathematicalMeasurableEmbeddingMeasurableSet
Set.range
β€”Set.image_univ
measurableSet_image'
MeasurableSet.univ
measurable_comp_iff πŸ“–mathematicalMeasurableEmbeddingMeasurableβ€”Measurable.comp
measurable_rangeSplitting
Set.mem_range_self
Function.RightInverse.comp_eq_id
Set.rightInverse_rangeSplitting
injective
measurable
measurable_extend πŸ“–mathematicalMeasurableEmbedding
Measurable
Function.extendβ€”measurable_of_restrict_of_restrict_compl
measurableSet_range
Subtype.coe_prop
Set.restrict_extend_range
Measurable.comp
measurable_rangeSplitting
Set.restrict_extend_compl_range
measurable_subtype_coe
measurable_invFun πŸ“–mathematicalMeasurableEmbeddingMeasurable
invFun
β€”Measurable.dite
MeasurableEquiv.measurable
measurable_const
measurableSet_range
measurable_rangeSplitting πŸ“–mathematicalMeasurableEmbeddingMeasurable
Set.Elem
Set.range
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.rangeSplitting
β€”Set.preimage_rangeSplitting
injective
measurableSet_image
subtype_coe
measurableSet_range
Set.image_comp
Set.coe_comp_rangeFactorization
of_measurable_inverse πŸ“–mathematicalMeasurable
MeasurableSet
Set.range
MeasurableEmbeddingβ€”of_measurable_inverse_on_range
Measurable.comp
measurable_subtype_coe
of_measurable_inverse_on_range πŸ“–mathematicalMeasurable
MeasurableSet
Set.range
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.rangeFactorization
MeasurableEmbeddingβ€”Function.LeftInverse.rightInverse_of_surjective
Set.rangeFactorization_surjective
Set.mem_range_self
comp
subtype_coe
MeasurableEquiv.measurableEmbedding
subtype_coe πŸ“–mathematicalMeasurableSetMeasurableEmbedding
Set
Set.instMembership
Subtype.instMeasurableSpace
β€”Subtype.coe_injective
measurable_subtype_coe
MeasurableSet.subtype_image

MeasurableEquiv

Definitions

NameCategoryTheorems
arrowCongr' πŸ“–CompOp
2 mathmath: MeasureTheory.volume_preserving_arrowCongr', MeasureTheory.measurePreserving_arrowCongr'
arrowProdEquivProdArrow πŸ“–CompOp
2 mathmath: MeasureTheory.measurePreserving_arrowProdEquivProdArrow, MeasureTheory.volume_measurePreserving_arrowProdEquivProdArrow
cast πŸ“–CompOpβ€”
curry πŸ“–CompOp
6 mathmath: curry_symm_apply, curry_apply, MeasureTheory.Measure.infinitePi_map_curry_symm, coe_curry_symm, coe_curry, MeasureTheory.Measure.infinitePi_map_curry
finTwoArrow πŸ“–CompOp
5 mathmath: finTwoArrow_apply, MeasureTheory.measurePreserving_finTwoArrow_vec, finTwoArrow_symm_apply, MeasureTheory.volume_preserving_finTwoArrow, MeasureTheory.measurePreserving_finTwoArrow
funUnique πŸ“–CompOp
5 mathmath: MeasureTheory.measurePreserving_funUnique, funUnique_symm_apply, funUnique_apply, MeasureTheory.hausdorffMeasure_measurePreserving_funUnique, MeasureTheory.volume_preserving_funUnique
instEquivLike πŸ“–CompOp
170 mathmath: injective, piCurry_apply, surjective, preimage_symm, smul_apply, coe_smulβ‚€, measurableEmbedding, bijective, MeasureTheory.measurePreserving_funUnique, ProbabilityTheory.Kernel.partialTraj_succ_of_le, map_apply, MeasureTheory.volume_measurePreserving_piCongrLeft, image_preimage, unitInterval.coe_symmMeasurableEquiv, MeasureTheory.Measure.pi_map_piCongrLeft, preimage_image, finTwoArrow_apply, trans_apply, piFinTwo_symm_apply, MeasureTheory.volume_preserving_piFinsetUnion, Complex.measurableEquivPi_apply, unitInterval.symmMeasurableEquiv_apply, self_comp_symm, MeasureTheory.measurePreserving_finTwoArrow_vec, comap_apply, toLp_symm_apply, funUnique_symm_apply, coe_toEquiv, coe_sumPiEquivProdPi, piEquivPiSubtypeProd_apply, MeasureTheory.Measure.infinitePi_map_piCongrLeft, MeasureTheory.hausdorffMeasure_measurePreserving_piFinTwo, Complex.measurableEquivRealProd_apply, MeasureTheory.Measure.infinitePi_map_piCurry, map_symm_map, MeasureTheory.volume_preserving_prodAssoc, quasiMeasurePreserving_symm, ofInvolutive_apply, MeasureTheory.IsProbabilityMeasure_comap_equiv, coe_IicProdIoc_symm, ProbabilityTheory.variance_map_equiv, symm_preimage_preimage, MeasureTheory.Measure.map_piSingleton, MeasureTheory.integrable_map_equiv, MeasureTheory.volume_preserving_piFinSuccAbove, restrict_map, LinearIsometryEquiv.coe_toMeasurableEquiv, measurableSet_image, MeasureTheory.Measure.compProd_assoc', MeasurableEmbedding.equivRange_apply, MeasureTheory.measurePreserving_piCongrLeft, MeasureTheory.setIntegral_map_equiv, neg_apply, MeasureTheory.measurePreserving_arrowProdEquivProdArrow, coe_mk, map_apply_eq_iff_map_symm_apply_eq, coe_toLp, ProbabilityTheory.Kernel.partialTraj_le_def, MeasureTheory.volume_preserving_pi_empty, ext_iff, MeasureTheory.integral_map_equiv, ProbabilityTheory.Kernel.prodAssoc_symm_prod, comap_symm, MeasureTheory.Measure.infinitePiNat_map_piCongrLeft, MeasureTheory.measurePreserving_piFinTwo, curry_symm_apply, ProbabilityTheory.Kernel.prodAssoc_prod, MeasureTheory.measurePreserving_prodAssoc, memLp_map_measure_iff, unitInterval.symmMeasurableEquiv_symm_apply, curry_apply, ProbabilityTheory.Kernel.partialTraj_succ_self, apply_symm_apply, sigmaFinite_map, MeasureTheory.measurePreserving_piFinSuccAbove, piUnique_symm_apply, piUnique_apply, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, piCongrLeft_apply_apply, coe_IicProdIoc, Complex.measurableEquivRealProd_symm_polarCoord_symm_apply, Complex.volume_preserving_equiv_real_prod, coe_piCongrLeft, funUnique_apply, refl_apply, MeasureTheory.measurePreserving_piUnique, MeasureTheory.Measure.infinitePi_map_curry_symm, MeasureTheory.hausdorffMeasure_measurePreserving_funUnique, MeasureTheory.integrableOn_map_equiv, piEquivPiSubtypeProd_symm_apply, ProbabilityTheory.Kernel.prodComm_prod, map_map_symm, symm_apply_apply, MeasureTheory.volume_preserving_piFinTwo, Complex.measurableEquivPi_symm_apply, ProbabilityTheory.covariance_map_equiv, image_symm, piMeasurableEquivTProd_apply, EuclideanSpace.volume_preserving_symm_measurableEquiv_toLp, vadd_apply, Complex.volume_preserving_equiv_pi, MeasureTheory.Measure.compProd_assoc, piCurry_symm_apply, coe_curry_symm, coe_sumPiEquivProdPi_symm, measurable_comp_iff, image_eq_preimage_symm, inv_apply, coe_addLeft, finTwoArrow_symm_apply, MeasurableEmbedding.equivRange_symm_apply_mk, Homeomorph.toMeasurableEquiv_symm_coe, MeasureTheory.measurePreserving_piFinsetUnion, aemeasurable_map_equiv_iff, MeasureTheory.volume_measurePreserving_arrowProdEquivProdArrow, coe_setOf, measurableSet_preimage, symm_comp_self, ProbabilityTheory.Kernel.compProd_assoc, ProbabilityTheory.Kernel.compProd_def, coe_toEquiv_symm, MeasureTheory.volume_preserving_piUnique, coe_addRight, coe_mulRight, piFinTwo_apply, map_measurableEquiv_injective, setOf_symm_apply, coe_piCurry, measurable, coe_mulLeftβ‚€, MeasureTheory.Measure.prodAssoc_prod, EuclideanSpace.coe_measurableEquiv, MeasureTheory.measurePreserving_sumPiEquivProdPi_symm, coe_piCurry_symm, coe_trans, MeasureTheory.measurePreserving_piEquivPiSubtypeProd, map_eq, MeasureTheory.volume_preserving_finTwoArrow, MeasureTheory.Measure.pi_map_piOptionEquivProd, MeasureTheory.measurePreserving_pi_empty, Ergodic.symm_iff, eq_image_iff_symm_image_eq, coe_mulLeft, MeasureTheory.lintegral_map_equiv, Complex.measurableEquivRealProd_symm_apply, MeasureTheory.measurePreserving_finTwoArrow, OrthonormalBasis.measurePreserving_measurableEquiv, setOf_apply, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi, map_ae, MeasureTheory.volume_preserving_piEquivPiSubtypeProd, toLp_apply, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.Measure.infinitePi_map_piCurry_symm, MeasureTheory.volume_preserving_funUnique, EuclideanSpace.coe_measurableEquiv_symm, map_symm, MeasureTheory.measurePreserving_sumPiEquivProdPi, ProbabilityTheory.Kernel.map_apply_eq_iff_map_symm_apply_eq, coe_curry, MeasureTheory.Measure.infinitePi_map_curry, coe_mulRightβ‚€, MeasureTheory.MeasurableEquiv.measurePreserving_symm, coe_toLp_symm, piMeasurableEquivTProd_symm_apply, piFinSuccAbove_symm_apply, Homeomorph.toMeasurableEquiv_coe, ProbabilityTheory.Kernel.traj_eq_prod, piFinSuccAbove_apply, LinearIsometryEquiv.coe_symm_toMeasurableEquiv
instInhabited πŸ“–CompOpβ€”
ofInvolutive πŸ“–CompOp
3 mathmath: ofInvolutive_toEquiv, ofInvolutive_apply, ofInvolutive_symm
ofUniqueOfUnique πŸ“–CompOp
2 mathmath: MeasureTheory.volume_preserving_pi_empty, MeasureTheory.measurePreserving_pi_empty
piCongrLeft πŸ“–CompOp
7 mathmath: MeasureTheory.volume_measurePreserving_piCongrLeft, MeasureTheory.Measure.pi_map_piCongrLeft, MeasureTheory.Measure.infinitePi_map_piCongrLeft, MeasureTheory.measurePreserving_piCongrLeft, MeasureTheory.Measure.infinitePiNat_map_piCongrLeft, piCongrLeft_apply_apply, coe_piCongrLeft
piCongrRight πŸ“–CompOpβ€”
piCurry πŸ“–CompOp
6 mathmath: piCurry_apply, MeasureTheory.Measure.infinitePi_map_piCurry, piCurry_symm_apply, coe_piCurry, coe_piCurry_symm, MeasureTheory.Measure.infinitePi_map_piCurry_symm
piEquivPiSubtypeProd πŸ“–CompOp
4 mathmath: piEquivPiSubtypeProd_apply, piEquivPiSubtypeProd_symm_apply, MeasureTheory.measurePreserving_piEquivPiSubtypeProd, MeasureTheory.volume_preserving_piEquivPiSubtypeProd
piFinSuccAbove πŸ“–CompOp
4 mathmath: MeasureTheory.volume_preserving_piFinSuccAbove, MeasureTheory.measurePreserving_piFinSuccAbove, piFinSuccAbove_symm_apply, piFinSuccAbove_apply
piFinTwo πŸ“–CompOp
5 mathmath: piFinTwo_symm_apply, MeasureTheory.hausdorffMeasure_measurePreserving_piFinTwo, MeasureTheory.measurePreserving_piFinTwo, MeasureTheory.volume_preserving_piFinTwo, piFinTwo_apply
piFinsetUnion πŸ“–CompOp
2 mathmath: MeasureTheory.volume_preserving_piFinsetUnion, MeasureTheory.measurePreserving_piFinsetUnion
piMeasurableEquivTProd πŸ“–CompOp
2 mathmath: piMeasurableEquivTProd_apply, piMeasurableEquivTProd_symm_apply
piOptionEquivProd πŸ“–CompOp
1 mathmath: MeasureTheory.Measure.pi_map_piOptionEquivProd
piUnique πŸ“–CompOp
4 mathmath: piUnique_symm_apply, piUnique_apply, MeasureTheory.measurePreserving_piUnique, MeasureTheory.volume_preserving_piUnique
prodAssoc πŸ“–CompOp
9 mathmath: MeasureTheory.volume_preserving_prodAssoc, MeasureTheory.Measure.compProd_assoc', ProbabilityTheory.Kernel.prodAssoc_symm_prod, ProbabilityTheory.Kernel.prodAssoc_prod, MeasureTheory.measurePreserving_prodAssoc, MeasureTheory.Measure.compProd_assoc, ProbabilityTheory.Kernel.compProd_assoc, ProbabilityTheory.Kernel.compProd_def, MeasureTheory.Measure.prodAssoc_prod
prodComm πŸ“–CompOp
1 mathmath: ProbabilityTheory.Kernel.prodComm_prod
prodCongr πŸ“–CompOpβ€”
prodPUnit πŸ“–CompOpβ€”
prodSumDistrib πŸ“–CompOpβ€”
punitProd πŸ“–CompOpβ€”
refl πŸ“–CompOp
5 mathmath: refl_toEquiv, refl_apply, symm_trans_self, symm_refl, self_trans_symm
setOf πŸ“–CompOp
3 mathmath: coe_setOf, setOf_symm_apply, setOf_apply
sumCompl πŸ“–CompOpβ€”
sumCongr πŸ“–CompOpβ€”
sumPiEquivProdPi πŸ“–CompOp
6 mathmath: coe_sumPiEquivProdPi, coe_sumPiEquivProdPi_symm, MeasureTheory.measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.measurePreserving_sumPiEquivProdPi
sumProdDistrib πŸ“–CompOpβ€”
sumProdSum πŸ“–CompOpβ€”
toEquiv πŸ“–CompOp
19 mathmath: toEquiv_mulLeft, toEquiv_mulRightβ‚€, smul_toEquiv, ofInvolutive_toEquiv, toEquiv_mulRight, refl_toEquiv, coe_toEquiv, toEquiv_addRight, neg_toEquiv, toEquiv_addLeft, toEquiv_injective, measurable_toFun, measurable_invFun, trans_toEquiv, coe_toEquiv_symm, inv_toEquiv, vadd_toEquiv, EuclideanSpace.measurableEquiv_toEquiv, toEquiv_mulLeftβ‚€
trans πŸ“–CompOp
6 mathmath: trans_apply, trans_toEquiv, symm_trans_self, self_trans_symm, coe_trans, MeasureTheory.MeasurePreserving.trans
ulift πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.right_inv
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.bijective
coe_curry πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
curry
β€”β€”
coe_curry_symm πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
curry
β€”β€”
coe_mk πŸ“–mathematicalMeasurable
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
MeasurableEquiv
instEquivLike
β€”β€”
coe_piCongrLeft πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
piCongrLeft
Equiv.piCongrLeft
β€”β€”
coe_piCurry πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
piCurry
Sigma.curry
β€”β€”
coe_piCurry_symm πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
piCurry
Sigma.uncurry
β€”β€”
coe_setOf πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Set
MeasurableSpace.pi
Prop.instMeasurableSpace
Set.instMeasurableSpace
EquivLike.toFunLike
instEquivLike
setOf
setOf
β€”β€”
coe_sumPiEquivProdPi πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
Prod.instMeasurableSpace
EquivLike.toFunLike
instEquivLike
sumPiEquivProdPi
Equiv
Equiv.instEquivLike
Equiv.sumPiEquivProdPi
β€”β€”
coe_sumPiEquivProdPi_symm πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Prod.instMeasurableSpace
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
sumPiEquivProdPi
Equiv
Equiv.instEquivLike
Equiv.symm
Equiv.sumPiEquivProdPi
β€”β€”
coe_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
MeasurableEquiv
instEquivLike
β€”β€”
coe_toEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toEquiv
MeasurableEquiv
instEquivLike
symm
β€”β€”
coe_trans πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
curry_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
curry
β€”β€”
curry_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
curry
β€”β€”
eq_image_iff_symm_image_eq πŸ“–mathematicalβ€”Set.image
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”coe_toEquiv
Equiv.eq_image_iff_symm_image_eq
coe_toEquiv_symm
ext πŸ“–β€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”DFunLike.ext'
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”ext
finTwoArrow_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
Prod.instMeasurableSpace
EquivLike.toFunLike
instEquivLike
finTwoArrow
β€”β€”
finTwoArrow_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Prod.instMeasurableSpace
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
finTwoArrow
Fin.cons
finZeroElim
β€”β€”
funUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
funUnique
Unique.instInhabited
β€”β€”
funUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
funUnique
uniqueElim
β€”β€”
image_eq_preimage_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
Set.preimage
symm
β€”Equiv.image_eq_preimage_symm
image_preimage πŸ“–mathematicalβ€”Set.image
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
Set.preimage
β€”coe_toEquiv
Equiv.image_preimage
image_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
symm
Set.preimage
β€”Equiv.image_symm_eq_preimage
injective πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.injective
map_eq πŸ“–mathematicalβ€”MeasurableSpace.map
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”LE.le.antisymm'
Measurable.le_map
measurable
measurableSet_preimage
measurable πŸ“–mathematicalβ€”Measurable
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”measurable_toFun
measurableEmbedding πŸ“–mathematicalβ€”MeasurableEmbedding
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”injective
measurable
measurableSet_image
measurableSet_image πŸ“–mathematicalβ€”MeasurableSet
Set.image
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”image_eq_preimage_symm
measurableSet_preimage
measurableSet_preimage πŸ“–mathematicalβ€”MeasurableSet
Set.preimage
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”symm_preimage_preimage
measurable
measurable_comp_iff πŸ“–mathematicalβ€”Measurable
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”Measurable.comp
measurable
symm_trans_self
coe_toEquiv
measurable_invFun πŸ“–mathematicalβ€”Measurable
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toEquiv
β€”β€”
measurable_toFun πŸ“–mathematicalβ€”Measurable
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
β€”β€”
ofInvolutive_apply πŸ“–mathematicalFunction.Involutive
Measurable
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
ofInvolutive
β€”β€”
ofInvolutive_symm πŸ“–mathematicalFunction.Involutive
Measurable
symm
ofInvolutive
β€”β€”
ofInvolutive_toEquiv πŸ“–mathematicalFunction.Involutive
Measurable
toEquiv
ofInvolutive
Function.Involutive.toPerm
β€”β€”
piCongrLeft_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
piCongrLeft
β€”piCongrLeft.eq_1
Equiv.piCongrLeft_apply_apply
piCurry_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
piCurry
Sigma.curry
β€”β€”
piCurry_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
piCurry
Sigma.uncurry
β€”β€”
piEquivPiSubtypeProd_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
Prod.instMeasurableSpace
EquivLike.toFunLike
instEquivLike
piEquivPiSubtypeProd
β€”β€”
piEquivPiSubtypeProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Prod.instMeasurableSpace
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
piEquivPiSubtypeProd
β€”β€”
piFinSuccAbove_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
Prod.instMeasurableSpace
Fin.succAbove
EquivLike.toFunLike
instEquivLike
piFinSuccAbove
Equiv
Equiv.instEquivLike
Equiv.symm
Fin.insertNthEquiv
β€”β€”
piFinSuccAbove_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Prod.instMeasurableSpace
MeasurableSpace.pi
Fin.succAbove
EquivLike.toFunLike
instEquivLike
symm
piFinSuccAbove
Equiv
Equiv.instEquivLike
Fin.insertNthEquiv
β€”β€”
piFinTwo_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
MeasurableSpace.pi
Prod.instMeasurableSpace
EquivLike.toFunLike
instEquivLike
piFinTwo
β€”β€”
piFinTwo_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Prod.instMeasurableSpace
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
piFinTwo
Fin.cons
finZeroElim
β€”β€”
piMeasurableEquivTProd_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
List.TProd
MeasurableSpace.pi
TProd.instMeasurableSpace
EquivLike.toFunLike
instEquivLike
piMeasurableEquivTProd
β€”β€”
piMeasurableEquivTProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
List.TProd
TProd.instMeasurableSpace
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
piMeasurableEquivTProd
List.TProd.elim'
β€”β€”
piUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Unique.instInhabited
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
piUnique
β€”β€”
piUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Unique.instInhabited
MeasurableSpace.pi
EquivLike.toFunLike
instEquivLike
symm
piUnique
uniqueElim
β€”β€”
preimage_image πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
Set.image
β€”coe_toEquiv
Equiv.preimage_image
preimage_symm πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
symm
Set.image
β€”image_eq_preimage_symm
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
refl_toEquiv πŸ“–mathematicalβ€”toEquiv
refl
Equiv.refl
β€”β€”
self_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.right_inv
self_trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
symm_comp_self
setOf_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Set
MeasurableSpace.pi
Prop.instMeasurableSpace
Set.instMeasurableSpace
EquivLike.toFunLike
instEquivLike
setOf
setOf
β€”β€”
setOf_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
Set
Set.instMeasurableSpace
MeasurableSpace.pi
Prop.instMeasurableSpace
EquivLike.toFunLike
instEquivLike
symm
setOf
Set.instMembership
β€”β€”
surjective πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.left_inv
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
MeasurableEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_comp_self πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.left_inv
symm_mk πŸ“–mathematicalMeasurable
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
symmβ€”β€”
symm_preimage_preimage πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_preimage_preimage
symm_refl πŸ“–mathematicalβ€”symm
refl
β€”β€”
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
self_comp_symm
toEquiv_injective πŸ“–mathematicalβ€”MeasurableEquiv
Equiv
toEquiv
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
trans_toEquiv πŸ“–mathematicalβ€”toEquiv
trans
Equiv.trans
β€”β€”

MeasurableEquiv.Set

Definitions

NameCategoryTheorems
prod πŸ“–CompOpβ€”
rangeInl πŸ“–CompOpβ€”
rangeInr πŸ“–CompOpβ€”
singleton πŸ“–CompOpβ€”
univ πŸ“–CompOpβ€”

MeasurableEquiv.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
exists_measurable_proj πŸ“–mathematicalMeasurableSet
Set.Nonempty
Measurable
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
β€”MeasurableEmbedding.exists_measurable_extend
MeasurableEmbedding.subtype_coe
measurable_id
Set.Nonempty.to_subtype
of_union_range_cover πŸ“–β€”MeasurableEmbedding
Set
Set.instHasSubset
Set.univ
Set.instUnion
Set.range
MeasurableSet
Set.preimage
β€”β€”Set.image_preimage_eq_range_inter
Set.univ_subset_iff
Set.univ_inter
union
MeasurableEmbedding.measurableSet_image'
of_union₃_range_cover πŸ“–β€”MeasurableEmbedding
Set
Set.instHasSubset
Set.univ
Set.instUnion
Set.range
MeasurableSet
Set.preimage
β€”β€”Set.image_preimage_eq_range_inter
Set.univ_subset_iff
Set.univ_inter
union
MeasurableEmbedding.measurableSet_image'

MeasurableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
comap_compl πŸ“–mathematicalMeasurable
Compl.compl
BooleanAlgebra.toCompl
comap
MeasurableSpace
β€”comap_comp
MeasurableEmbedding.comap_eq
compl_involutive
MeasurableEquiv.measurableEmbedding
comap_not πŸ“–mathematicalβ€”comap
MeasurableSpace
Prop.instMeasurableSpace
β€”comap_compl
measurableSet_top

(root)

Definitions

NameCategoryTheorems
MeasurableEmbedding πŸ“–CompData
37 mathmath: MeasurableEquiv.measurableEmbedding, Continuous.measurableEmbedding, measurableEmbedding_mulRightβ‚€, MeasureTheory.measurableEmbedding_embeddingReal, Homeomorph.measurableEmbedding, measurableEmbedding_subLeft, measurableEmbedding_const_smulβ‚€, measurableEmbedding_divLeft, measurableEmbedding_sigmoid, measurableEmbedding_divRight, measurableEmbedding_sigmoid_comp_embeddingReal, MeasureTheory.measurableEmbedding_of_fderivWithin, MeasurableEmbedding.id, measurableEmbedding_subRight, measurableEmbedding_const_smul, measurableEmbedding_const_vadd, ContinuousOn.measurableEmbedding, measurableEmbedding_addRight, measurableEmbedding_mulLeft, MeasurableEmbedding.of_measurable_inverse_on_range, MeasurableEmbedding.of_measurable_inverse, measurableEmbedding_neg, Topology.IsOpenEmbedding.measurableEmbedding, MeasureTheory.exists_measurableEmbedding_real, measurableEmbedding_inv, Measurable.measurableEmbedding, Topology.IsClosedEmbedding.measurableEmbedding, unitInterval.measurableEmbedding_coe, MeasurableEmbedding.iff_comap_eq, measurableEmbedding_prodMk_left, measurableEmbedding_prod_mk_right, EReal.measurableEmbedding_coe, measurableEmbedding_addLeft, measurableEmbedding_mulRight, Topology.IsEmbedding.measurableEmbedding, MeasurableEmbedding.subtype_coe, measurableEmbedding_mulLeftβ‚€
Β«term_≃ᡐ_Β» πŸ“–CompOpβ€”

---

← Back to Index