Documentation Verification Report

AbsolutelyContinuous

πŸ“ Source: Mathlib/MeasureTheory/Measure/AbsolutelyContinuous.lean

Statistics

MetricCount
DefinitionsAbsolutelyContinuous, AbsolutelyContinuous, Β«term_β‰ͺ_Β»
3
TheoremsabsolutelyContinuous, absolutelyContinuous, absolutelyContinuous_of_ae, absolutelyContinuous_map, of_absolutelyContinuous, of_le, add, add_left, add_left_iff, add_right, ae_eq, ae_le, instRefl, map, mk, null_mono, pos_mono, refl, rfl, smul, smul_left, trans, zero, absolutelyContinuous_of_eq, absolutelyContinuous_of_le, absolutelyContinuous_of_le_smul, absolutelyContinuous_refl, absolutelyContinuous_rfl, absolutelyContinuous_smul, absolutelyContinuous_sum_left, absolutelyContinuous_sum_right, absolutelyContinuous_zero_iff, ae_le_iff_absolutelyContinuous, ae_mono', smul_absolutelyContinuous, ae_mono
36
Total39

Eq

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous πŸ“–mathematicalβ€”MeasureTheory.Measure.AbsolutelyContinuousβ€”MeasureTheory.Measure.absolutelyContinuous_of_eq

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.Measure.instPartialOrder
MeasureTheory.Measure.AbsolutelyContinuousβ€”MeasureTheory.Measure.absolutelyContinuous_of_le
absolutelyContinuous_of_ae πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.AbsolutelyContinuousβ€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.ae_le_iff_absolutelyContinuous

MeasurableEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous_map πŸ“–mathematicalMeasurableEmbedding
MeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Measure.mapβ€”map_apply

MeasureTheory

Definitions

NameCategoryTheorems
Β«term_β‰ͺ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ae_mono πŸ“–mathematicalMeasure
Preorder.toLE
PartialOrder.toPreorder
Measure.instPartialOrder
Filter
Filter.instPartialOrder
ae
Measure.instFunLike
Measure.instOuterMeasureClass
β€”Measure.AbsolutelyContinuous.ae_le
LE.le.absolutelyContinuous

MeasureTheory.AEDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
of_absolutelyContinuous πŸ“–β€”MeasureTheory.AEDisjoint
MeasureTheory.Measure.AbsolutelyContinuous
β€”β€”β€”
of_le πŸ“–β€”MeasureTheory.AEDisjoint
MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.Measure.instPartialOrder
β€”β€”of_absolutelyContinuous
MeasureTheory.Measure.absolutelyContinuous_of_le

MeasureTheory.Measure

Definitions

NameCategoryTheorems
AbsolutelyContinuous πŸ“–MathDef
74 mathmath: absolutelyContinuous_isAddHaarMeasure, ProbabilityTheory.absolutelyContinuous_posterior_iff, MeasureTheory.IsFundamentalDomain.absolutelyContinuous_map, MeasureTheory.absolutelyContinuous_toFinite, MeasureTheory.absolutelyContinuous_of_isMulLeftInvariant, MeasureTheory.withDensity_absolutelyContinuous', singularPart_eq_zero, MeasureTheory.inv_absolutelyContinuous, MeasureTheory.absolutelyContinuous_map_add_right, MeasureTheory.absolutelyContinuous_of_isAddLeftInvariant, AbsolutelyContinuous.zero, MeasureTheory.hasPDF_iff, AbsolutelyContinuous.add_left_iff, LE.le.absolutelyContinuous_of_ae, MeasureTheory.absolutelyContinuous_map_div_left, AbsolutelyContinuous.mk, MeasureTheory.SignedMeasure.absolutelyContinuous_ennreal_iff, ProbabilityTheory.Kernel.withDensity_absolutelyContinuous, absolutelyContinuous_comp_of_countable, absolutelyContinuous_isHaarMeasure, absolutelyContinuous_restrict, InformationTheory.klDiv_def, InformationTheory.klDiv_eq_lintegral_klFun, absolutelyContinuous_of_eq, MeasureTheory.absolutelyContinuous_inv, InformationTheory.klDiv_ne_top_iff, MeasureTheory.absolutelyContinuous_neg, smul_absolutelyContinuous, InformationTheory.klDiv_eq_integral_klFun, MeasureTheory.toFinite_absolutelyContinuous, ProbabilityTheory.Kernel.measurableSet_absolutelyContinuous, absolutelyContinuous_compProd_left_iff, absolutelyContinuous_smul, LE.le.absolutelyContinuous, Real.hasPDF_iff, absolutelyContinuous_withDensity_rnDeriv_swap, absolutelyContinuous_of_le_smul, absolutelyContinuous_rfl, Real.hasPDF_iff_of_aemeasurable, ae_le_iff_absolutelyContinuous, ProbabilityTheory.cond_absolutelyContinuous, Eq.absolutelyContinuous, absolutelyContinuous_refl, ProbabilityTheory.Kernel.singularPart_eq_zero_iff_absolutelyContinuous, MeasureTheory.neg_absolutelyContinuous, absolutelyContinuous_of_le, QuasiMeasurePreserving.absolutelyContinuous, MeasureTheory.withDensity_absolutelyContinuous, MeasureTheory.absolutelyContinuous_tilted, AbsolutelyContinuous.rfl, absolutelyContinuous_compProd_iff', ProbabilityTheory.absolutelyContinuous_cond_univ, absolutelyContinuous_zero_iff, ProbabilityTheory.absolutelyContinuous_boolKernel_comp_right, ProbabilityTheory.gaussianReal_absolutelyContinuous', AbsolutelyContinuous.refl, MeasureTheory.tilted_absolutelyContinuous, MeasureTheory.absolutelyContinuous_map_mul_right, IicSnd_ac_fst, absolutelyContinuous_compProd_right_iff, ProbabilityTheory.absolutelyContinuous_boolKernel_comp_left, absolutelyContinuous_iff_withDensity_rnDeriv_eq, MeasureTheory.hasPDF_iff_of_aemeasurable, MeasureTheory.IsAddFundamentalDomain.absolutelyContinuous_map, MeasureTheory.SignedMeasure.totalVariation_absolutelyContinuous_iff, MeasureTheory.pdf.IsUniform.absolutelyContinuous, MeasureTheory.HasPDF.absolutelyContinuous', MeasureTheory.sfiniteSeq_absolutelyContinuous_toFinite, absolutelyContinuous_compProd_iff, AbsolutelyContinuous.instRefl, MeasureTheory.absolutelyContinuous_map_sub_left, MeasureTheory.HasPDF.absolutelyContinuous, MeasureTheory.exists_isFiniteMeasure_absolutelyContinuous, ProbabilityTheory.gaussianReal_absolutelyContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous_of_eq πŸ“–mathematicalβ€”AbsolutelyContinuousβ€”LE.le.absolutelyContinuous
Eq.le
absolutelyContinuous_of_le πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AbsolutelyContinuousβ€”nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
le_iff'
absolutelyContinuous_of_le_smul πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ENNReal
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
AbsolutelyContinuousβ€”IsScalarTower.right
AbsolutelyContinuous.trans
absolutelyContinuous_of_le
smul_absolutelyContinuous
absolutelyContinuous_refl πŸ“–mathematicalβ€”AbsolutelyContinuousβ€”AbsolutelyContinuous.refl
absolutelyContinuous_rfl πŸ“–mathematicalβ€”AbsolutelyContinuousβ€”AbsolutelyContinuous.rfl
absolutelyContinuous_smul πŸ“–mathematicalβ€”AbsolutelyContinuous
ENNReal
MeasureTheory.Measure
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”ENNReal.instNoZeroDivisors
absolutelyContinuous_sum_left πŸ“–mathematicalAbsolutelyContinuoussumβ€”sum_apply
tsum_zero
absolutelyContinuous_sum_right πŸ“–mathematicalAbsolutelyContinuoussumβ€”sum_apply
absolutelyContinuous_zero_iff πŸ“–mathematicalβ€”AbsolutelyContinuous
MeasureTheory.Measure
instZero
β€”measure_univ_eq_zero
AbsolutelyContinuous.zero
ae_le_iff_absolutelyContinuous πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
AbsolutelyContinuous
β€”instOuterMeasureClass
MeasureTheory.measure_eq_zero_iff_ae_notMem
ae_mono' πŸ“–mathematicalAbsolutelyContinuousFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
β€”AbsolutelyContinuous.ae_le
smul_absolutelyContinuous πŸ“–mathematicalβ€”AbsolutelyContinuous
ENNReal
MeasureTheory.Measure
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”AbsolutelyContinuous.smul_left
IsScalarTower.right
AbsolutelyContinuous.rfl

MeasureTheory.Measure.AbsolutelyContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”Unique.instSubsingleton
add_left πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”add_left_iff
add_left_iff πŸ“–mathematicalβ€”MeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”Unique.instSubsingleton
trans
add
IsScalarTower.right
Nat.instAtLeastTwoHAddOfNat
two_smul
smul_left
rfl
add_right πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”Unique.instSubsingleton
ae_eq πŸ“–β€”MeasureTheory.Measure.AbsolutelyContinuous
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”β€”MeasureTheory.Measure.instOuterMeasureClass
ae_le
ae_le πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
instRefl πŸ“–mathematicalβ€”MeasureTheory.Measure
MeasureTheory.Measure.AbsolutelyContinuous
β€”rfl
map πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
Measurable
MeasureTheory.Measure.mapβ€”MeasureTheory.Measure.map_apply
mk πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
MeasureTheory.Measure.AbsolutelyContinuousβ€”MeasureTheory.exists_measurable_superset_of_null
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
null_mono πŸ“–β€”MeasureTheory.Measure.AbsolutelyContinuous
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
β€”β€”β€”
pos_mono πŸ“–β€”MeasureTheory.Measure.AbsolutelyContinuous
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
null_mono
ENNReal.instCanonicallyOrderedAdd
refl πŸ“–mathematicalβ€”MeasureTheory.Measure.AbsolutelyContinuousβ€”Eq.absolutelyContinuous
rfl πŸ“–mathematicalβ€”MeasureTheory.Measure.AbsolutelyContinuousβ€”β€”
smul πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Measure
MeasureTheory.Measure.instSMul
β€”MeasureTheory.Measure.smul_apply
smul_one_smul
smul_eq_mul
mul_eq_zero
ENNReal.instNoZeroDivisors
smul_left πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Measure
MeasureTheory.Measure.instSMul
β€”smul_one_smul
smul_zero
trans πŸ“–β€”MeasureTheory.Measure.AbsolutelyContinuousβ€”β€”β€”
zero πŸ“–mathematicalβ€”MeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”β€”

MeasureTheory.VectorMeasure

Definitions

NameCategoryTheorems
AbsolutelyContinuous πŸ“–MathDef
10 mathmath: AbsolutelyContinuous.eq, MeasureTheory.SignedMeasure.absolutelyContinuous_iff_withDensityα΅₯_rnDeriv_eq, MeasureTheory.SignedMeasure.absolutelyContinuous_ennreal_iff, AbsolutelyContinuous.zero, MeasureTheory.Measure.withDensityα΅₯_absolutelyContinuous, AbsolutelyContinuous.ennrealToMeasure, MeasureTheory.Integrable.withDensityα΅₯_trim_absolutelyContinuous, AbsolutelyContinuous.mk, AbsolutelyContinuous.refl, MeasureTheory.ComplexMeasure.absolutelyContinuous_ennreal_iff

---

← Back to Index