Documentation Verification Report

AddContent

πŸ“ Source: Mathlib/MeasureTheory/Measure/AddContent.lean

Statistics

MetricCount
DefinitionsIsSigmaSubadditive, extend, onIoc, onIocAux, supClosure, toFun, addContent_of_union, instFunLikeAddContentSet, instInhabitedAddContent
9
Theoremsempty', ext, ext_iff, extend_eq, extend_eq_extend, extend_eq_top, onIocAux_apply, onIocAux_empty, onIoc_apply, sUnion', supClosure_apply, supClosure_apply_finpartition, supClosure_apply_of_mem, addContent_accumulate, addContent_biUnion, addContent_biUnion_eq, addContent_biUnion_le, addContent_diff_of_ne_top, addContent_empty, addContent_eq_add_disjointOfDiffUnion_of_subset, addContent_iUnion, addContent_iUnion_eq_sum_of_tendsto_zero, addContent_iUnion_eq_tsum_of_disjoint_of_IsSigmaSubadditive, addContent_iUnion_eq_tsum_of_disjoint_of_addContent_iUnion_le, addContent_le_sum_of_subset_sUnion, addContent_mono, addContent_sUnion, addContent_sUnion_le_sum, addContent_union, addContent_union', addContent_union_le, eq_add_disjointOfDiff_of_subset, isSigmaSubadditive_of_addContent_iUnion_eq_tsum, le_addContent_diff, sum_addContent_eq_of_sUnion_eq, sum_addContent_le_of_subset, tendsto_atTop_addContent_iUnion_of_addContent_iUnion_eq_tsum
37
Total46

MeasureTheory

Definitions

NameCategoryTheorems
instFunLikeAddContentSet πŸ“–CompOp
49 mathmath: sum_addContent_le_of_subset, piContent_tendsto_zero, ProbabilityTheory.Kernel.trajContent_cylinder, AddContent.measure_eq, piContent_cylinder, addContent_diff_of_ne_top, AddContent.extend_eq, projectiveFamilyContent_eq, projectiveFamilyContent_diff, AddContent.isCaratheodory_inducedOuterMeasure_of_mem, ProbabilityTheory.Kernel.trajContent_tendsto_zero, AddContent.supClosure_apply_finpartition, projectiveFamilyContent_cylinder, projectiveFamilyContent_congr, piContent_eq_measure_pi, addContent_sUnion, sum_addContent_eq_of_sUnion_eq, Measure.infinitePiNat_map_piCongrLeft, addContent_mono, addContent_union', projectiveFamilyContent_diff_of_subset, addContent_union, addContent_biUnion_eq, AddContent.inducedOuterMeasure_eq, AddContent.isCaratheodory_inducedOuterMeasure, addContent_eq_add_disjointOfDiffUnion_of_subset, AddContent.ext_iff, addContent_biUnion, addContent_iUnion_eq_tsum_of_disjoint_of_IsSigmaSubadditive, projectiveFamilyContent_iUnion_le, AddContent.extend_eq_top, addContent_sUnion_le_sum, addContent_accumulate, AddContent.supClosure_apply_of_mem, AddContent.measureCaratheodory_eq_inducedOuterMeasure, addContent_iUnion, addContent_biUnion_le, ProbabilityTheory.Kernel.trajContent_eq_lmarginalPartialTraj, le_addContent_diff, AddContent.onIoc_apply, projectiveFamilyContent_mono, AddContent.supClosure_apply, eq_add_disjointOfDiff_of_subset, addContent_empty, addContent_le_sum_of_subset_sUnion, AddContent.extend_eq_extend, Measure.piContent_eq_infinitePiNat, addContent_union_le, AddContent.measureCaratheodory_eq
instInhabitedAddContent πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addContent_accumulate πŸ“–mathematicalIsSetRing
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instMembership
DFunLike.coe
AddContent
instFunLikeAddContentSet
Set.accumulate
Finset.sum
Finset.range
β€”Set.accumulate_zero_nat
Finset.sum_congr
zero_add
Finset.sum_singleton
Finset.sum_range_succ
Set.accumulate_succ
addContent_union
IsSetRing.accumulate_mem
Set.disjoint_accumulate
addContent_biUnion πŸ“–mathematicalSet
Set.instMembership
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
Finset.instSetLike
Set.iUnion
Finset.instMembership
DFunLike.coe
AddContent
instFunLikeAddContentSet
Finset.sum
β€”Finset.coe_image
Set.sUnion_image
Set.iUnion_congr_Prop
addContent_sUnion
Set.Pairwise.image
Finset.sum_image_of_pairwise_eq_zero
Set.Pairwise.imp
addContent_biUnion_eq πŸ“–mathematicalIsSetRing
Set
Set.instMembership
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
AddContent
instFunLikeAddContentSet
Set.iUnion
Finset.instMembership
Finset.sum
β€”Finset.induction
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
addContent_empty
Finset.sum_insert
Finset.coe_insert
Set.biUnion_insert
addContent_union
IsSetRing.biUnion_mem
Set.disjoint_iUnionβ‚‚_right
addContent_biUnion_le πŸ“–mathematicalIsSetRing
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AddContent
instFunLikeAddContentSet
Set.iUnion
Finset
Finset.instMembership
Finset.sum
β€”Finset.induction
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
addContent_empty
Finset.sum_insert
Finset.coe_insert
Set.biUnion_insert
LE.le.trans
addContent_union_le
IsSetRing.biUnion_mem
add_le_add
CanonicallyOrderedAdd.toAddLeftMono
covariant_swap_add_of_covariant_add
le_rfl
addContent_diff_of_ne_top πŸ“–mathematicalIsSetRing
Set
Set.instMembership
Set.instHasSubset
DFunLike.coe
AddContent
ENNReal
ENNReal.instAddCommMonoid
instFunLikeAddContentSet
Set.instSDiff
ENNReal.instSub
β€”addContent_union
IsSetRing.diff_mem
disjoint_sdiff_self_right
Set.union_eq_right
Set.union_diff_self
ENNReal.add_sub_cancel_left
addContent_empty πŸ“–mathematicalβ€”DFunLike.coe
AddContent
Set
instFunLikeAddContentSet
Set.instEmptyCollection
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”AddContent.empty'
addContent_eq_add_disjointOfDiffUnion_of_subset πŸ“–mathematicalIsSetSemiring
Set
Set.instMembership
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
DFunLike.coe
AddContent
instFunLikeAddContentSet
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Finset.sum
IsSetSemiring.disjointOfDiffUnion
β€”IsSetSemiring.sUnion_union_disjointOfDiffUnion_of_subset
addContent_sUnion
Finset.coe_union
Set.union_subset
IsSetSemiring.disjointOfDiffUnion_subset
IsSetSemiring.pairwiseDisjoint_union_disjointOfDiffUnion
Finset.sum_union
IsSetSemiring.disjoint_disjointOfDiffUnion
addContent_iUnion πŸ“–mathematicalSet
Set.instMembership
Pairwise
Function.onFun
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.iUnion
DFunLike.coe
AddContent
instFunLikeAddContentSet
Finset.sum
Finset.univ
β€”Set.iUnion_congr_Prop
Set.iUnion_true
addContent_biUnion
Finset.coe_univ
addContent_iUnion_eq_sum_of_tendsto_zero πŸ“–mathematicalIsSetRing
Filter.Tendsto
ENNReal
DFunLike.coe
AddContent
ENNReal.instAddCommMonoid
Set
instFunLikeAddContentSet
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
Set.instMembership
Set.iUnion
Pairwise
Function.onFun
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
tsum
SummationFilter.unconditional
β€”IsSetRing.diff_mem
IsSetRing.accumulate_mem
Set.mem_diff
Set.monotone_accumulate
Set.iInter_inter_distrib
Set.iInter_const
Set.compl_iUnion
Set.iUnion_accumulate
Set.inter_compl_self
addContent_diff_of_ne_top
Set.accumulate_subset_iUnion
addContent_accumulate
tendsto_nhds_unique
ENNReal.instT2Space
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.tendsto_add_atTop_iff_nat
ENNReal.tendsto_const_sub_nhds_zero_iff
addContent_mono
ENNReal.instCanonicallyOrderedAdd
IsSetRing.isSetSemiring
ENNReal.tendsto_nat_tsum
addContent_iUnion_eq_tsum_of_disjoint_of_IsSigmaSubadditive πŸ“–mathematicalIsSetSemiring
AddContent.IsSigmaSubadditive
Set
Set.instMembership
Set.iUnion
Pairwise
Function.onFun
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
DFunLike.coe
AddContent
ENNReal
ENNReal.instAddCommMonoid
instFunLikeAddContentSet
tsum
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”addContent_iUnion_eq_tsum_of_disjoint_of_addContent_iUnion_le
addContent_iUnion_eq_tsum_of_disjoint_of_addContent_iUnion_le πŸ“–β€”IsSetSemiring
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
AddContent
ENNReal.instAddCommMonoid
Set
instFunLikeAddContentSet
Set.iUnion
tsum
ENNReal.instTopologicalSpace
SummationFilter.unconditional
Set.instMembership
Pairwise
Function.onFun
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”β€”le_antisymm
Summable.tsum_le_of_sum_le
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
SummationFilter.instNeBotUnconditional
ENNReal.summable
Finset.sum_image_of_disjoint
addContent_empty
Pairwise.pairwiseDisjoint
sum_addContent_le_of_subset
ENNReal.instCanonicallyOrderedAdd
Finset.coe_image
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_preimage_image
Set.preimage_mono
Set.mem_image
Set.subset_iUnion
addContent_le_sum_of_subset_sUnion πŸ“–mathematicalIsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.instMembership
Set.sUnion
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AddContent
instFunLikeAddContentSet
Finset.sum
β€”Finset.coe_image
Set.sUnion_image
Set.inter_iUnionβ‚‚
Set.inter_eq_self_of_subset_left
Set.sUnion_eq_biUnion
LE.le.trans
addContent_sUnion_le_sum
IsSetSemiring.inter_mem
Finset.sum_image_le_of_nonneg
CanonicallyOrderedAdd.toAddLeftMono
zero_le
Finset.sum_le_sum
addContent_mono
Set.inter_subset_right
addContent_mono πŸ“–mathematicalIsSetSemiring
Set
Set.instMembership
Set.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AddContent
instFunLikeAddContentSet
β€”sum_addContent_le_of_subset
Finset.singleton_subset_set_iff
Finset.coe_singleton
Finset.sum_singleton
addContent_sUnion πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instMembership
Set.sUnion
DFunLike.coe
AddContent
instFunLikeAddContentSet
Finset.sum
β€”AddContent.sUnion'
addContent_sUnion_le_sum πŸ“–mathematicalIsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.instMembership
Set.sUnion
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AddContent
instFunLikeAddContentSet
Finset.sum
β€”IsSetSemiring.pairwiseDisjoint_disjointOfUnion
Finset.disjiUnion_eq_biUnion
Finset.coe_biUnion
Set.iUnion_congr_Prop
IsSetSemiring.disjointOfUnion_subset
IsSetSemiring.pairwiseDisjoint_biUnion_disjointOfUnion
IsSetSemiring.disjointOfUnion_props
addContent_sUnion
Finset.sum_disjiUnion
Finset.sum_le_sum
CanonicallyOrderedAdd.toAddLeftMono
sum_addContent_le_of_subset
IsSetSemiring.pairwiseDisjoint_disjointOfUnion_of_mem
IsSetSemiring.subset_of_mem_disjointOfUnion
addContent_union πŸ“–mathematicalIsSetRing
Set
Set.instMembership
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
DFunLike.coe
AddContent
instFunLikeAddContentSet
Set.instUnion
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”addContent_union'
IsSetRing.union_mem
addContent_union' πŸ“–mathematicalSet
Set.instMembership
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
DFunLike.coe
AddContent
instFunLikeAddContentSet
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”Set.ext
Matrix.cons_val_fin_one
Finset.sum_congr
Fin.univ_castSuccEmb
Finset.univ_unique
Finset.map_singleton
Finset.cons.congr_simp
Finset.cons_eq_insert
Finset.sum_insert
Fin.instNeZeroHAddNatOfNat_mathlib_1
Finset.sum_singleton
add_comm
addContent_iUnion
Fintype.complete
addContent_union_le πŸ“–mathematicalIsSetRing
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
AddContent
instFunLikeAddContentSet
Set.instUnion
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”Set.union_diff_self
addContent_union
IsSetRing.diff_mem
Set.disjoint_iff_inter_eq_empty
Set.inter_diff_self
add_le_add_right
CanonicallyOrderedAdd.toAddLeftMono
addContent_mono
IsSetRing.isSetSemiring
Set.diff_subset
eq_add_disjointOfDiff_of_subset πŸ“–mathematicalIsSetSemiring
Set
Set.instMembership
Set.instHasSubset
DFunLike.coe
AddContent
instFunLikeAddContentSet
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Finset.sum
IsSetSemiring.disjointOfDiff
β€”IsSetSemiring.sUnion_insert_disjointOfDiff
Finset.coe_insert
addContent_sUnion
Set.insert_subset
IsSetSemiring.subset_disjointOfDiff
IsSetSemiring.pairwiseDisjoint_insert_disjointOfDiff
Finset.sum_insert
IsSetSemiring.notMem_disjointOfDiff
isSigmaSubadditive_of_addContent_iUnion_eq_tsum πŸ“–mathematicalIsSetRing
DFunLike.coe
AddContent
ENNReal
ENNReal.instAddCommMonoid
Set
instFunLikeAddContentSet
Set.iUnion
tsum
ENNReal.instTopologicalSpace
SummationFilter.unconditional
AddContent.IsSigmaSubadditiveβ€”Set.iSup_eq_iUnion
iSup_partialSups_eq
tendsto_atTop_addContent_iUnion_of_addContent_iUnion_eq_tsum
partialSups_monotone
IsSetRing.partialSups_mem
Filter.tendsto_add_atTop_iff_nat
ENNReal.tendsto_nat_tsum
le_of_tendsto_of_tendsto'
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
partialSups_eq_biUnion_range
addContent_biUnion_le
ENNReal.instCanonicallyOrderedAdd
le_addContent_diff πŸ“–mathematicalIsSetRing
Set
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instSub
DFunLike.coe
AddContent
ENNReal.instAddCommMonoid
instFunLikeAddContentSet
Set.instSDiff
β€”Set.inter_union_diff
addContent_union
IsSetRing.inter_mem
IsSetRing.diff_mem
disjoint_inf_sdiff
add_comm
LE.le.trans_eq
add_tsub_le_assoc
ENNReal.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
tsub_eq_zero_of_le
ENNReal.instCanonicallyOrderedAdd
addContent_mono
IsSetRing.isSetSemiring
Set.inter_subset_right
add_zero
sum_addContent_eq_of_sUnion_eq πŸ“–mathematicalIsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.sUnion
Finset.sum
DFunLike.coe
AddContent
instFunLikeAddContentSet
β€”Finset.sum_congr
Set.subset_sUnion_of_mem
addContent_biUnion
IsSetSemiring.inter_mem
Set.PairwiseDisjoint.mono
Finset.sum_comm
sum_addContent_le_of_subset πŸ“–mathematicalIsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
Finset.sum
DFunLike.coe
AddContent
instFunLikeAddContentSet
β€”addContent_eq_add_disjointOfDiffUnion_of_subset
le_add_right
le_rfl
tendsto_atTop_addContent_iUnion_of_addContent_iUnion_eq_tsum πŸ“–mathematicalIsSetRing
DFunLike.coe
AddContent
ENNReal
ENNReal.instAddCommMonoid
Set
instFunLikeAddContentSet
Set.iUnion
tsum
ENNReal.instTopologicalSpace
SummationFilter.unconditional
Monotone
Nat.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instMembership
Filter.Tendsto
Filter.atTop
nhds
β€”iUnion_disjointed
IsSetRing.disjointed_mem
disjoint_disjointed
addContent_accumulate
Monotone.partialSups_eq
partialSups_disjointed
partialSups_eq_biSup
Set.accumulate.eq_1
Filter.tendsto_add_atTop_iff_nat
ENNReal.tendsto_nat_tsum

MeasureTheory.AddContent

Definitions

NameCategoryTheorems
IsSigmaSubadditive πŸ“–MathDef
3 mathmath: ProbabilityTheory.Kernel.isSigmaSubadditive_trajContent, MeasureTheory.isSigmaSubadditive_of_addContent_iUnion_eq_tsum, MeasureTheory.isSigmaSubadditive_piContent
extend πŸ“–CompOp
3 mathmath: extend_eq, extend_eq_top, extend_eq_extend
onIoc πŸ“–CompOp
1 mathmath: onIoc_apply
onIocAux πŸ“–CompOp
2 mathmath: onIocAux_apply, onIocAux_empty
supClosure πŸ“–CompOp
3 mathmath: supClosure_apply_finpartition, supClosure_apply_of_mem, supClosure_apply
toFun πŸ“–CompOp
2 mathmath: sUnion', empty'

Theorems

NameKindAssumesProvesValidatesDepends On
empty' πŸ“–mathematicalβ€”toFun
Set
Set.instEmptyCollection
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
ext πŸ“–β€”DFunLike.coe
MeasureTheory.AddContent
Set
MeasureTheory.instFunLikeAddContentSet
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.AddContent
Set
MeasureTheory.instFunLikeAddContentSet
β€”ext
extend_eq πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
DFunLike.coe
MeasureTheory.AddContent
ENNReal
ENNReal.instAddCommMonoid
MeasureTheory.instFunLikeAddContentSet
extend
β€”extend_eq_extend
MeasureTheory.extend_eq
extend_eq_extend πŸ“–mathematicalMeasureTheory.IsSetSemiringDFunLike.coe
MeasureTheory.AddContent
ENNReal
ENNReal.instAddCommMonoid
Set
MeasureTheory.instFunLikeAddContentSet
extend
MeasureTheory.extend
Set.instMembership
β€”β€”
extend_eq_top πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
DFunLike.coe
MeasureTheory.AddContent
ENNReal
ENNReal.instAddCommMonoid
MeasureTheory.instFunLikeAddContentSet
extend
Top.top
instTopENNReal
β€”extend_eq_extend
MeasureTheory.extend_eq_top
onIocAux_apply πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
onIocAux
Set.Ioc
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”LE.le.eq_or_lt
Set.Ioc_eq_Ioc_iff
onIocAux_empty πŸ“–mathematicalβ€”onIocAux
Set
Set.instEmptyCollection
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”onIocAux.eq_1
onIoc_apply πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
MeasureTheory.AddContent
AddCommGroup.toAddCommMonoid
setOf
Set
Set.Ioc
MeasureTheory.instFunLikeAddContentSet
onIoc
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”onIocAux_apply
sUnion' πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instMembership
Set.sUnion
toFun
Finset.sum
β€”β€”
supClosure_apply πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.sUnion
DFunLike.coe
MeasureTheory.AddContent
ClosureOperator
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
ClosureOperator.instFunLike
supClosure
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
MeasureTheory.instFunLikeAddContentSet
supClosure
Finset.sum
β€”β€”
supClosure_apply_finpartition πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finpartition.parts
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
DFunLike.coe
MeasureTheory.AddContent
ClosureOperator
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ClosureOperator.instFunLike
supClosure
Lattice.toSemilatticeSup
MeasureTheory.instFunLikeAddContentSet
supClosure
Finset.sum
β€”supClosure_apply
Finpartition.disjoint
Finpartition.sup_parts
Finset.sup_set_eq_biUnion
Set.sUnion_eq_biUnion
Set.iUnion_congr_Prop
supClosure_apply_of_mem πŸ“–mathematicalMeasureTheory.IsSetSemiring
Set
Set.instMembership
DFunLike.coe
MeasureTheory.AddContent
ClosureOperator
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
supClosure
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
MeasureTheory.instFunLikeAddContentSet
supClosure
β€”β€”

MeasureTheory.IsSetRing

Definitions

NameCategoryTheorems
addContent_of_union πŸ“–CompOpβ€”

---

← Back to Index