Documentation Verification Report

Exhaustion

πŸ“ Source: Mathlib/MeasureTheory/Measure/Decomposition/Exhaustion.lean

Statistics

MetricCount
DefinitionssigmaFiniteSet, sigmaFiniteSetGE, sigmaFiniteSetWRT, sigmaFiniteSetWRT'
4
Theoremsexists_isSigmaFiniteSet_measure_ge, instSigmaFiniteRestrictSigmaFiniteSet, instSigmaFiniteRestrictSigmaFiniteSetWRT, measurableSet_sigmaFiniteSet, measurableSet_sigmaFiniteSetGE, measurableSet_sigmaFiniteSetWRT, measurableSet_sigmaFiniteSetWRT', measure_compl_sigmaFiniteSet, measure_compl_sigmaFiniteSetWRT, measure_compl_sigmaFiniteSet_eq_zero_iff_sigmaFinite, measure_eq_top_of_subset_compl_sigmaFiniteSetWRT, measure_eq_top_of_subset_compl_sigmaFiniteSetWRT', measure_eq_top_of_subset_compl_sigmaFiniteSetWRT'_of_measurableSet, measure_eq_zero_or_top_of_subset_compl_sigmaFiniteSet, measure_sigmaFiniteSetGE_ge, measure_sigmaFiniteSetGE_le, measure_sigmaFiniteSetWRT', restrict_compl_sigmaFiniteSetWRT, restrict_compl_sigmaFiniteSet_eq_zero_or_top, sigmaFinite_of_measure_compl_sigmaFiniteSet_eq_zero, sigmaFinite_restrict_sigmaFiniteSetGE, sigmaFinite_restrict_sigmaFiniteSetWRT', tendsto_measure_sigmaFiniteSetGE
23
Total27

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isSigmaFiniteSet_measure_ge πŸ“–mathematicalβ€”MeasurableSet
SigmaFinite
Measure.restrict
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instSub
iSup
Set
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
Measure
Measure.instFunLike
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
AddMonoidWithOne.toNatCast
β€”LE.le.trans_lt
iSup_le
measure_mono
Measure.instOuterMeasureClass
Set.subset_univ
measure_lt_top
exists_lt_of_lt_ciSup
ENNReal.sub_lt_self
LT.lt.ne
LT.lt.ne_bot
one_div
iSup_neg
bot_eq_zero'
ENNReal.instCanonicallyOrderedAdd
iSup_congr_Prop
ENNReal.iSup_zero
LT.lt.le
iSup_true
MeasurableSet.empty
Measure.restrict_empty
IsFiniteMeasure.toSigmaFinite
isFiniteMeasureZero
tsub_eq_zero_of_le
ENNReal.instOrderedSub
zero_le
instSigmaFiniteRestrictSigmaFiniteSet πŸ“–mathematicalβ€”SigmaFinite
Measure.restrict
Measure.sigmaFiniteSet
β€”Measure.sigmaFiniteSet.eq_1
instSigmaFiniteRestrictSigmaFiniteSetWRT
instSigmaFiniteRestrictSigmaFiniteSetWRT πŸ“–mathematicalβ€”SigmaFinite
Measure.restrict
Measure.sigmaFiniteSetWRT
β€”Measure.sigmaFiniteSetWRT.eq_1
Measure.restrict_empty
IsFiniteMeasure.toSigmaFinite
isFiniteMeasureZero
measurableSet_sigmaFiniteSet πŸ“–mathematicalβ€”MeasurableSet
Measure.sigmaFiniteSet
β€”measurableSet_sigmaFiniteSetWRT
measurableSet_sigmaFiniteSetGE πŸ“–mathematicalβ€”MeasurableSet
Measure.sigmaFiniteSetGE
β€”exists_isSigmaFiniteSet_measure_ge
measurableSet_sigmaFiniteSetWRT πŸ“–mathematicalβ€”MeasurableSet
Measure.sigmaFiniteSetWRT
β€”Measure.sigmaFiniteSetWRT.eq_1
MeasurableSet.empty
measurableSet_sigmaFiniteSetWRT' πŸ“–mathematicalβ€”MeasurableSet
Measure.sigmaFiniteSetWRT'
β€”MeasurableSet.iUnion
instCountableNat
measurableSet_sigmaFiniteSetGE
measure_compl_sigmaFiniteSet πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Compl.compl
Set.instCompl
Measure.sigmaFiniteSet
instZeroENNReal
β€”measure_compl_sigmaFiniteSetWRT
Measure.AbsolutelyContinuous.rfl
instSFiniteOfSigmaFinite
measure_compl_sigmaFiniteSetWRT πŸ“–mathematicalMeasure.AbsolutelyContinuousDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Compl.compl
Set.instCompl
Measure.sigmaFiniteSetWRT
instZeroENNReal
β€”measure_eq_top_of_subset_compl_sigmaFiniteSetWRT
subset_rfl
Set.instReflSubset
ENNReal.top_ne_zero
Measure.iSup_restrict_spanningSets
Measure.restrict_apply'
measurableSet_spanningSets
Set.inter_subset_left
ne_of_lt
LE.le.trans_lt
measure_mono
Measure.instOuterMeasureClass
Set.inter_subset_right
measure_spanningSets_lt_top
measure_compl_sigmaFiniteSet_eq_zero_iff_sigmaFinite πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Compl.compl
Set.instCompl
Measure.sigmaFiniteSet
instZeroENNReal
SigmaFinite
β€”sigmaFinite_of_measure_compl_sigmaFiniteSet_eq_zero
measure_compl_sigmaFiniteSet
measure_eq_top_of_subset_compl_sigmaFiniteSetWRT πŸ“–mathematicalSet
Set.instHasSubset
Compl.compl
Set.instCompl
Measure.sigmaFiniteSetWRT
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Top.top
instTopENNReal
β€”exists_isFiniteMeasure_absolutelyContinuous
measurableSet_sigmaFiniteSetWRT'
sigmaFinite_restrict_sigmaFiniteSetWRT'
measure_eq_top_of_subset_compl_sigmaFiniteSetWRT'
Measure.sigmaFiniteSetWRT.eq_1
measure_eq_top_of_subset_compl_sigmaFiniteSetWRT' πŸ“–mathematicalSet
Set.instHasSubset
Compl.compl
Set.instCompl
Measure.sigmaFiniteSetWRT'
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Top.top
instTopENNReal
β€”measure_eq_iInf
measure_eq_top_of_subset_compl_sigmaFiniteSetWRT'_of_measurableSet
measure_mono_null
Measure.instOuterMeasureClass
Set.subset_inter
Set.inter_subset_right
MeasurableSet.inter
MeasurableSet.compl
measurableSet_sigmaFiniteSetWRT'
measure_mono_top
Set.inter_subset_left
measure_eq_top_of_subset_compl_sigmaFiniteSetWRT'_of_measurableSet πŸ“–mathematicalMeasurableSet
Set
Set.instHasSubset
Compl.compl
Set.instCompl
Measure.sigmaFiniteSetWRT'
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Top.top
instTopENNReal
β€”measure_union
Disjoint.mono_right
disjoint_compl_right
ENNReal.lt_add_right
measure_ne_top
measure_sigmaFiniteSetWRT'
LE.le.trans
le_iSup
sigmaFinite_restrict_sigmaFiniteSetWRT'
instSigmaFiniteRestrictUnionSet
le_iSupβ‚‚
MeasurableSet.union
measurableSet_sigmaFiniteSetWRT'
LT.lt.not_ge
Ne.lt_top
IsFiniteMeasure.toSigmaFinite
Restrict.isFiniteMeasure
measure_eq_zero_or_top_of_subset_compl_sigmaFiniteSet πŸ“–mathematicalSet
Set.instHasSubset
Compl.compl
Set.instCompl
Measure.sigmaFiniteSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
instZeroENNReal
Top.top
instTopENNReal
β€”measure_eq_top_of_subset_compl_sigmaFiniteSetWRT
measure_sigmaFiniteSetGE_ge πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instSub
iSup
Set
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
MeasurableSet
SigmaFinite
Measure.restrict
DFunLike.coe
Measure
Measure.instFunLike
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
AddMonoidWithOne.toNatCast
Measure.sigmaFiniteSetGE
β€”exists_isSigmaFiniteSet_measure_ge
measure_sigmaFiniteSetGE_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Measure.sigmaFiniteSetGE
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
MeasurableSet
SigmaFinite
Measure.restrict
β€”LE.le.trans
le_iSup
sigmaFinite_restrict_sigmaFiniteSetGE
le_iSupβ‚‚
measurableSet_sigmaFiniteSetGE
measure_sigmaFiniteSetWRT' πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.sigmaFiniteSetWRT'
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
MeasurableSet
SigmaFinite
Measure.restrict
β€”le_antisymm
LE.le.trans
le_iSup
sigmaFinite_restrict_sigmaFiniteSetWRT'
le_iSupβ‚‚
measurableSet_sigmaFiniteSetWRT'
le_of_tendsto'
instClosedIicTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_measure_sigmaFiniteSetGE
measure_mono
Measure.instOuterMeasureClass
Set.subset_iUnion
restrict_compl_sigmaFiniteSetWRT πŸ“–mathematicalMeasure.AbsolutelyContinuousMeasure.restrict
Compl.compl
Set
Set.instCompl
Measure.sigmaFiniteSetWRT
ENNReal
Measure
Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
Top.top
instTopENNReal
β€”Measure.ext
IsScalarTower.right
Measure.restrict_apply'
MeasurableSet.compl
measurableSet_sigmaFiniteSetWRT
Measure.smul_apply
smul_eq_mul
MulZeroClass.mul_zero
ENNReal.top_mul
measure_eq_top_of_subset_compl_sigmaFiniteSetWRT
Set.inter_subset_right
restrict_compl_sigmaFiniteSet_eq_zero_or_top πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.restrict
Compl.compl
Set.instCompl
Measure.sigmaFiniteSet
instZeroENNReal
Top.top
instTopENNReal
β€”Measure.restrict_apply'
MeasurableSet.compl
measurableSet_sigmaFiniteSet
measure_eq_zero_or_top_of_subset_compl_sigmaFiniteSet
Set.inter_subset_right
sigmaFinite_of_measure_compl_sigmaFiniteSet_eq_zero πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Compl.compl
Set.instCompl
Measure.sigmaFiniteSet
instZeroENNReal
SigmaFiniteβ€”Measure.restrict_add_restrict_compl
measurableSet_sigmaFiniteSet
Measure.restrict_eq_zero
add_zero
instSigmaFiniteRestrictSigmaFiniteSet
sigmaFinite_restrict_sigmaFiniteSetGE πŸ“–mathematicalβ€”SigmaFinite
Measure.restrict
Measure.sigmaFiniteSetGE
β€”exists_isSigmaFiniteSet_measure_ge
sigmaFinite_restrict_sigmaFiniteSetWRT' πŸ“–mathematicalβ€”SigmaFinite
Measure.restrict
Measure.sigmaFiniteSetWRT'
β€”sigmaFinite_restrict_sigmaFiniteSetGE
Measure.restrict_apply'
measurableSet_sigmaFiniteSetWRT'
Set.compl_inter_self
measure_empty
Measure.instOuterMeasureClass
LE.le.trans_lt
measure_mono
Set.inter_subset_left
measurableSet_sigmaFiniteSetGE
measure_spanningSets_lt_top
Set.union_iUnion
Set.iUnion_unpair
Set.iUnion_congr
Set.iUnion_inter
iUnion_spanningSets
Set.univ_inter
Set.compl_union_self
Measure.FiniteSpanningSetsIn.sigmaFinite
tendsto_measure_sigmaFiniteSetGE πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
Measure.sigmaFiniteSetGE
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
MeasurableSet
SigmaFinite
Measure.restrict
β€”tendsto_of_tendsto_of_tendsto_of_le_of_le
ENNReal.instOrderTopology
tsub_zero
ENNReal.instOrderedSub
ENNReal.Tendsto.sub
tendsto_const_nhds
one_div
ENNReal.tendsto_inv_nat_nhds_zero
ENNReal.zero_ne_top
measure_sigmaFiniteSetGE_ge
measure_sigmaFiniteSetGE_le

MeasureTheory.Measure

Definitions

NameCategoryTheorems
sigmaFiniteSet πŸ“–CompOp
6 mathmath: MeasureTheory.measure_compl_sigmaFiniteSet, MeasureTheory.restrict_compl_sigmaFiniteSet, MeasureTheory.measurableSet_sigmaFiniteSet, MeasureTheory.measure_compl_sigmaFiniteSet_eq_zero_iff_sigmaFinite, MeasureTheory.restrict_compl_sigmaFiniteSet_eq_zero_or_top, MeasureTheory.instSigmaFiniteRestrictSigmaFiniteSet
sigmaFiniteSetGE πŸ“–CompOp
5 mathmath: MeasureTheory.measurableSet_sigmaFiniteSetGE, MeasureTheory.measure_sigmaFiniteSetGE_le, MeasureTheory.sigmaFinite_restrict_sigmaFiniteSetGE, MeasureTheory.tendsto_measure_sigmaFiniteSetGE, MeasureTheory.measure_sigmaFiniteSetGE_ge
sigmaFiniteSetWRT πŸ“–CompOp
4 mathmath: MeasureTheory.measure_compl_sigmaFiniteSetWRT, MeasureTheory.instSigmaFiniteRestrictSigmaFiniteSetWRT, MeasureTheory.restrict_compl_sigmaFiniteSetWRT, MeasureTheory.measurableSet_sigmaFiniteSetWRT
sigmaFiniteSetWRT' πŸ“–CompOp
3 mathmath: MeasureTheory.measure_sigmaFiniteSetWRT', MeasureTheory.measurableSet_sigmaFiniteSetWRT', MeasureTheory.sigmaFinite_restrict_sigmaFiniteSetWRT'

---

← Back to Index