Documentation Verification Report

Hahn

📁 Source: Mathlib/MeasureTheory/Measure/Decomposition/Hahn.lean

Statistics

MetricCount
DefinitionsIsHahnDecomposition
1
Theoremscompl, ge_on_compl, le_on, measurableSet, exists_isHahnDecomposition, hahn_decomposition
6
Total7

MeasureTheory

Definitions

NameCategoryTheorems
IsHahnDecomposition 📖CompData
1 mathmath: exists_isHahnDecomposition

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isHahnDecomposition 📖mathematicalIsHahnDecompositionhahn_decomposition
Measure.le_iff
Measure.restrict_apply
hahn_decomposition 📖mathematicalMeasurableSet
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
measure_ne_top
ENNReal.coe_toNNReal
measure_inter_add_diff
ENNReal.toNNReal_add
NNReal.coe_add
sub_eq_add_neg
neg_add
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
add_zero
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
NNReal.tendsto_coe
Filter.Tendsto.comp
ENNReal.tendsto_toNNReal
tendsto_measure_iUnion_atTop
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
tendsto_measure_iInter_atTop
MeasurableSet.nullMeasurableSet
le_trans
sub_le_self
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
NNReal.coe_nonneg
NNReal.coe_le_coe
ENNReal.coe_le_coe
measure_mono
Measure.instOuterMeasureClass
Set.subset_univ
Set.Nonempty.image
MeasurableSet.empty
le_csSup
Nat.instAtLeastTwoHAddOfNat
sub_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
zero_lt_one
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
exists_lt_of_lt_csSup
Classical.axiom_of_choice
Finset.inf_eq_iInf
MeasurableSet.biInter
Set.to_countable
SetCoe.countable
Set.biInter_subset_biInter_left
Finset.Ico_subset_Ico
le_of_lt
Finset.insert_Ico_right_eq_Ico_add_one
Nat.instNoMaxOrder
Finset.inf_insert
Set.inter_comm
Nat.le_induction
Nat.Ico_succ_singleton
Finset.inf_singleton
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
CancelDenoms.sub_subst
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.add_subst
CancelDenoms.mul_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
le_of_add_le_add_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
contravariant_lt_of_covariant_le
pow_succ
mul_one_div
sub_half
CharZero.NeZero.two
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
add_le_add
covariant_swap_add_of_covariant_add
add_assoc
le_refl
Set.union_diff_left
Set.union_inter_cancel_left
le_imp_le_of_le_of_le
add_le_add_left
MeasurableSet.union
tendsto_const_nhds
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_pow_atTop_nhds_zero_of_lt_one
AddGroup.existsAddOfLE
Real.instArchimedean
instOrderTopologyReal
half_lt_self
MulZeroClass.mul_zero
tsub_zero
AddGroup.toOrderedSub
Set.subset_iInter
Set.Subset.trans
Set.iInter_subset
le_rfl
le_of_tendsto_of_tendsto'
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
ge_of_tendsto
instClosedIciTopology
Filter.eventually_atTop
le_add_of_le_of_nonneg
pow_nonneg
IsOrderedRing.toPosMulMono
MeasurableSet.iUnion
MeasurableSet.iInter
add_le_add_iff_left
Set.inter_eq_self_of_subset_right
MeasurableSet.diff
Set.union_diff_right
Set.union_inter_cancel_right
Disjoint.sdiff_eq_left
Set.subset_compl_iff_disjoint_left

MeasureTheory.IsHahnDecomposition

Theorems

NameKindAssumesProvesValidatesDepends On
compl 📖mathematicalMeasureTheory.IsHahnDecompositionCompl.compl
Set
Set.instCompl
MeasurableSet.compl
measurableSet
ge_on_compl
compl_compl
le_on
ge_on_compl 📖mathematicalMeasureTheory.IsHahnDecompositionMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.Measure.instPartialOrder
MeasureTheory.Measure.restrict
Compl.compl
Set
Set.instCompl
le_on 📖mathematicalMeasureTheory.IsHahnDecompositionMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.Measure.instPartialOrder
MeasureTheory.Measure.restrict
measurableSet 📖mathematicalMeasureTheory.IsHahnDecompositionMeasurableSet

---

← Back to Index