Documentation Verification Report

IntegralRNDeriv

📁 Source: Mathlib/MeasureTheory/Measure/Decomposition/IntegralRNDeriv.lean

Statistics

MetricCount
Definitions0
Theoremsintegrable_toReal_rnDeriv, le_integral_rnDeriv_of_ac, mul_le_integral_rnDeriv_of_ac
3
Total3

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
le_integral_rnDeriv_of_ac 📖mathematicalConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
Real.instPreorder
Real.instZero
ContinuousWithinAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
ENNReal.toReal
Measure.rnDeriv
Measure.AbsolutelyContinuous
Real.instLE
Measure.real
Set.univ
integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
eq_or_lt_of_le
ConvexOn.continuousOn_interior
FiniteDimensional.rclike_to_real
ContinuousAt.continuousWithinAt
continuousWithinAt_iff_continuousAt
Ioi_mem_nhds
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
interior_Ici'
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Measure.integral_toReal_rnDeriv
IsFiniteMeasure.toSigmaFinite
IsZeroOrProbabilityMeasure.toIsFiniteMeasure
instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
average_eq_integral
ConvexOn.map_average_le
Real.instCompleteSpace
IsProbabilityMeasure.neZero
isClosed_Ici
instClosedIciTopology
Measure.instOuterMeasureClass
Measure.integrable_toReal_rnDeriv
mul_le_integral_rnDeriv_of_ac 📖mathematicalConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
Real.instPreorder
Real.instZero
ContinuousWithinAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
ENNReal.toReal
Measure.rnDeriv
Measure.AbsolutelyContinuous
Real.instLE
Real.instMul
Measure.real
Set.univ
DivInvMonoid.toDiv
Real.instDivInvMonoid
integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
div_zero
MulZeroClass.zero_mul
integral_zero_measure
IsScalarTower.right
Measure.smul_finite
Measure.AbsolutelyContinuous.smul
Measure.instOuterMeasureClass
Measure.rnDeriv_smul_left_of_ne_top'
IsFiniteMeasure.toSigmaFinite
IsFiniteMeasure.average
Measure.ae_ennreal_smul_measure_eq
Measure.rnDeriv_smul_right_of_ne_top'
Filter.mp_mem
Filter.univ_mem'
Pi.smul_apply
smul_eq_mul
inv_inv
mul_assoc
ENNReal.inv_mul_cancel
one_mul
integral_smul_measure
ENNReal.toReal_inv
integral_congr_ae
le_integral_rnDeriv_of_ac
isProbabilityMeasureSMul
Integrable.smul_measure
integrable_congr
div_eq_inv_mul
ENNReal.toReal_mul
div_le_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_comm

MeasureTheory.Measure

Theorems

NameKindAssumesProvesValidatesDepends On
integrable_toReal_rnDeriv 📖mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
ENNReal.toReal
rnDeriv
MeasureTheory.integrable_toReal_of_lintegral_ne_top
Measurable.aemeasurable
measurable_rnDeriv
LT.lt.ne
lintegral_rnDeriv_lt_top

---

← Back to Index