Documentation Verification Report

Doubling

πŸ“ Source: Mathlib/MeasureTheory/Measure/Doubling.lean

Statistics

MetricCount
DefinitionsIsUnifLocDoublingMeasure, doublingConstant, scalingConstantOf, scalingScaleOf
4
Theoremseventually_measure_le_doublingConstant_mul, eventually_measure_le_scaling_constant_mul, eventually_measure_le_scaling_constant_mul', eventually_measure_mul_le_scalingConstantOf_mul, exists_eventually_forall_measure_closedBall_le_mul, exists_measure_closedBall_le_mul, exists_measure_closedBall_le_mul', exists_measure_closedBall_le_mul'', measure_mul_le_scalingConstantOf_mul, one_le_scalingConstantOf, scalingScaleOf_pos
11
Total15

IsUnifLocDoublingMeasure

Definitions

NameCategoryTheorems
doublingConstant πŸ“–CompOpβ€”
scalingConstantOf πŸ“–CompOp
3 mathmath: eventually_measure_mul_le_scalingConstantOf_mul, measure_mul_le_scalingConstantOf_mul, one_le_scalingConstantOf
scalingScaleOf πŸ“–CompOp
1 mathmath: scalingScaleOf_pos

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_measure_le_doublingConstant_mul πŸ“–mathematicalβ€”Filter.Eventually
Real
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
β€”Nat.instAtLeastTwoHAddOfNat
exists_measure_closedBall_le_mul
eventually_measure_le_scaling_constant_mul πŸ“–mathematicalβ€”Filter.Eventually
Real
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
β€”Filter.mp_mem
exists_eventually_forall_measure_closedBall_le_mul
Filter.univ_mem'
le_imp_le_of_le_of_le
le_rfl
le_refl
scalingConstantOf.eq_1
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.coe_le_coe_of_le
le_max_left
eventually_measure_le_scaling_constant_mul' πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Eventually
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
β€”inv_mul_cancel_leftβ‚€
LT.lt.ne'
eventually_nhdsGT_zero_mul_left
Real.instIsStrictOrderedRing
instOrderTopologyReal
eventually_measure_le_scaling_constant_mul
eventually_measure_mul_le_scalingConstantOf_mul πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Metric.closedBall
Real.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
scalingConstantOf
β€”exists_eventually_forall_measure_closedBall_le_mul
mem_nhdsGT_iff_exists_Ioc_subset
instOrderTopologyReal
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
lt_trichotomy
mul_neg_of_pos_of_neg
Metric.closedBall_eq_empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.instCanonicallyOrderedAdd
MulZeroClass.mul_zero
le_mul_of_one_le_of_le
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.one_le_coe_iff
le_max_right
le_rfl
LE.le.trans
mul_le_mul_left
ENNReal.coe_le_coe_of_le
le_max_left
exists_eventually_forall_measure_closedBall_le_mul πŸ“–mathematicalβ€”Filter.Eventually
Real
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
β€”Nat.instAtLeastTwoHAddOfNat
pow_zero
one_mul
eventually_nhdsGT_zero_mul_left
Real.instIsStrictOrderedRing
instOrderTopologyReal
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Filter.mp_mem
eventually_measure_le_doublingConstant_mul
Filter.univ_mem'
pow_succ
mul_assoc
le_imp_le_of_le_of_le
le_refl
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
pow_unbounded_of_one_lt
Real.instArchimedean
AddGroup.existsAddOfLE
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
eventually_mem_nhdsWithin
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Metric.closedBall_subset_closedBall
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_of_lt
Set.mem_Ioi
ENNReal.coe_pow
exists_measure_closedBall_le_mul πŸ“–mathematicalβ€”Filter.Eventually
Real
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
β€”exists_measure_closedBall_le_mul''
exists_measure_closedBall_le_mul' πŸ“–mathematicalβ€”Filter.Eventually
Real
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
β€”eventually_measure_le_doublingConstant_mul
exists_measure_closedBall_le_mul'' πŸ“–mathematicalβ€”Filter.Eventually
Real
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
β€”β€”
measure_mul_le_scalingConstantOf_mul πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instZero
Real.instLE
scalingScaleOf
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Metric.closedBall
Real.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
scalingConstantOf
β€”eventually_measure_mul_le_scalingConstantOf_mul
one_le_scalingConstantOf πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
scalingConstantOf
β€”le_max_of_le_right
exists_eventually_forall_measure_closedBall_le_mul
le_refl
scalingScaleOf_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
scalingScaleOf
β€”eventually_measure_mul_le_scalingConstantOf_mul

(root)

Definitions

NameCategoryTheorems
IsUnifLocDoublingMeasure πŸ“–CompData
4 mathmath: MeasureTheory.Measure.isUnifLocDoublingMeasureOfIsAddHaarMeasure, MeasureTheory.Measure.IsUnifLocDoublingMeasure.volume_prod, AddCircle.instIsUnifLocDoublingMeasureRealVolume, IsUnifLocDoublingMeasure.prod

---

← Back to Index