Documentation Verification Report

Quotient

πŸ“ Source: Mathlib/MeasureTheory/Measure/Haar/Quotient.lean

Statistics

MetricCount
Definitions0
TheoremsAddQuotientMeasureEqMeasurePreimage_AddHaarMeasure, AddQuotientMeasureEqMeasurePreimage_vaddAddHaarMeasure, QuotientMeasureEqMeasurePreimage_HaarMeasure, QuotientMeasureEqMeasurePreimage_smulHaarMeasure, addHaarMeasure_quotient, addInvariantMeasure_quotient, vaddInvariantMeasure_quotient, absolutelyContinuous_map, absolutelyContinuous_map, addQuotientMeasureEqMeasurePreimage_of_set, quotientMeasureEqMeasurePreimage_of_set, haarMeasure_quotient, mulInvariantMeasure_quotient, smulInvariantMeasure_quotient, leftInvariantIsAddQuotientMeasureEqMeasurePreimage, leftInvariantIsQuotientMeasureEqMeasurePreimage, integral_eq_integral_automorphize, integral_mul_eq_integral_automorphize_mul, measurableVAdd, integral_eq_integral_automorphize, integral_mul_eq_integral_automorphize_mul, measurableSMul, essSup_comp_quotientAddGroup_mk, essSup_comp_quotientGroup_mk, measurePreserving_quotientAddGroup_mk_of_AddQuotientMeasureEqMeasurePreimage, measurePreserving_quotientGroup_mk_of_QuotientMeasureEqMeasurePreimage
26
Total26

IsFundamentalDomain

Theorems

NameKindAssumesProvesValidatesDepends On
AddQuotientMeasureEqMeasurePreimage_AddHaarMeasure πŸ“–mathematicalMeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
Set.Nonempty
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
interior
QuotientAddGroup.instTopologicalSpace
MeasurableSet
QuotientAddGroup.measurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.instInter
Set.preimage
MeasureTheory.AddQuotientMeasureEqMeasurePreimage
AddSubgroup.toAddGroup
AddAction.instAddAction
AddMonoid.toOppositeAddAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”MeasureTheory.Measure.IsAddLeftInvariant.addQuotientMeasureEqMeasurePreimage_of_set
MeasureTheory.Measure.IsAddHaarMeasure.toIsAddLeftInvariant
MeasureTheory.Measure.IsOpenPosMeasure.open_pos
MeasureTheory.Measure.IsAddHaarMeasure.toIsOpenPosMeasure
isOpen_interior
Set.Nonempty.mono
preimage_interior_subset_interior_preimage
continuous_coinduced_rng
Set.Nonempty.preimage'
Set.subset_univ
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
interior_subset
MeasureTheory.IsAddFundamentalDomain.measure_zero_of_invariant
AddSubgroup.instMeasurableConstVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_opposite_of_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
MeasureTheory.Subgroup.vaddInvariantMeasure
MeasureTheory.Measure.IsAddRightInvariant.toVAddInvariantMeasure_op
AddSubgroup.instCountableSubtypeAddOppositeMemOp
QuotientAddGroup.sound
AddQuotientMeasureEqMeasurePreimage_vaddAddHaarMeasure πŸ“–mathematicalMeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
MeasureTheory.AddQuotientMeasureEqMeasurePreimage
AddSubgroup.toAddGroup
AddAction.instAddAction
AddMonoid.toOppositeAddAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
ENNReal
MeasureTheory.Measure
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
QuotientAddGroup.measurableSpace
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
DFunLike.coe
Set
MeasureTheory.Measure.instFunLike
Set.instInter
Set.preimage
SetLike.coe
TopologicalSpace.PositiveCompacts
QuotientAddGroup.instTopologicalSpace
TopologicalSpace.PositiveCompacts.instSetLike
MeasureTheory.Measure.addHaarMeasure
QuotientAddGroup.Quotient.addGroup
QuotientAddGroup.instIsTopologicalAddGroup
AddCosetSpace.borelSpace
β€”IsScalarTower.right
QuotientAddGroup.instIsTopologicalAddGroup
AddCosetSpace.borelSpace
Mathlib.Tactic.Contrapose.contraposeβ‚„
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.inter_subset_right
top_unique
MeasureTheory.Measure.addHaarMeasure_self
mul_one
AddQuotientMeasureEqMeasurePreimage_AddHaarMeasure
MeasureTheory.isAddLeftInvariant_smul
MeasureTheory.Measure.isAddLeftInvariant_addHaarMeasure
CanLift.prf
ENNReal.canLift
MeasureTheory.SMul.sigmaFinite
MeasureTheory.Measure.sigmaFinite_addHaarMeasure
IsCompact.measurableSet
BorelSpace.opensMeasurable
TopologicalSpace.PositiveCompacts.isCompact
TopologicalSpace.PositiveCompacts.interior_nonempty
QuotientMeasureEqMeasurePreimage_HaarMeasure πŸ“–mathematicalMeasureTheory.IsFundamentalDomain
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
Set.Nonempty
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
interior
QuotientGroup.instTopologicalSpace
MeasurableSet
QuotientGroup.measurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.instInter
Set.preimage
MeasureTheory.QuotientMeasureEqMeasurePreimage
Subgroup.toGroup
MulAction.instMulAction
Monoid.toOppositeMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”MeasureTheory.Measure.IsMulLeftInvariant.quotientMeasureEqMeasurePreimage_of_set
MeasureTheory.Measure.IsHaarMeasure.toIsMulLeftInvariant
MeasureTheory.Measure.IsOpenPosMeasure.open_pos
MeasureTheory.Measure.IsHaarMeasure.toIsOpenPosMeasure
Set.Nonempty.mono
preimage_interior_subset_interior_preimage
continuous_coinduced_rng
Set.Nonempty.preimage'
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
interior_subset
MeasureTheory.IsFundamentalDomain.measure_zero_of_invariant
Subgroup.instMeasurableConstSMul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_opposite_of_mul
ContinuousMul.measurableMul
IsTopologicalGroup.toContinuousMul
MeasureTheory.Subgroup.smulInvariantMeasure
MeasureTheory.Measure.IsMulRightInvariant.toSMulInvariantMeasure_op
Subgroup.instCountableSubtypeMulOppositeMemOp
QuotientGroup.sound
QuotientMeasureEqMeasurePreimage_smulHaarMeasure πŸ“–mathematicalMeasureTheory.IsFundamentalDomain
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
MeasureTheory.QuotientMeasureEqMeasurePreimage
Subgroup.toGroup
MulAction.instMulAction
Monoid.toOppositeMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ENNReal
MeasureTheory.Measure
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.measurableSpace
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
DFunLike.coe
Set
MeasureTheory.Measure.instFunLike
Set.instInter
Set.preimage
SetLike.coe
TopologicalSpace.PositiveCompacts
QuotientGroup.instTopologicalSpace
TopologicalSpace.PositiveCompacts.instSetLike
MeasureTheory.Measure.haarMeasure
QuotientGroup.Quotient.group
QuotientGroup.instIsTopologicalGroup
CosetSpace.borelSpace
β€”IsScalarTower.right
QuotientGroup.instIsTopologicalGroup
CosetSpace.borelSpace
Mathlib.Tactic.Contrapose.contraposeβ‚„
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.inter_subset_right
top_unique
MeasureTheory.Measure.haarMeasure_self
mul_one
QuotientMeasureEqMeasurePreimage_HaarMeasure
MeasureTheory.isMulLeftInvariant_smul
MeasureTheory.Measure.isMulLeftInvariant_haarMeasure
CanLift.prf
ENNReal.canLift
MeasureTheory.SMul.sigmaFinite
MeasureTheory.Measure.sigmaFinite_haarMeasure
IsCompact.measurableSet
BorelSpace.opensMeasurable
TopologicalSpace.PositiveCompacts.isCompact
TopologicalSpace.PositiveCompacts.interior_nonempty

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
leftInvariantIsAddQuotientMeasureEqMeasurePreimage πŸ“–mathematicaladdCovolume
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
DFunLike.coe
Measure
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
QuotientAddGroup.measurableSpace
Set
ENNReal
Measure.instFunLike
Set.univ
AddQuotientMeasureEqMeasurePreimage
AddSubgroup.toAddGroup
AddAction.instAddAction
AddMonoid.toOppositeAddAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”HasAddFundamentalDomain.ExistsIsAddFundamentalDomain
measure_lt_top
Measure.measure_univ_eq_zero
IsAddFundamentalDomain.covolume_eq_volume
AddSubgroup.instCountableSubtypeAddOppositeMemOp
AddSubgroup.instMeasurableConstVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_opposite_of_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
Subgroup.vaddInvariantMeasure
Measure.IsAddRightInvariant.toVAddInvariantMeasure_op
IsAddFundamentalDomain.addQuotientMeasureEqMeasurePreimage_of_zero
Measure.IsAddLeftInvariant.addQuotientMeasureEqMeasurePreimage_of_set
MeasurableSet.univ
Set.univ_inter
LT.lt.ne
leftInvariantIsQuotientMeasureEqMeasurePreimage πŸ“–mathematicalcovolume
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
DFunLike.coe
Measure
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.measurableSpace
Set
ENNReal
Measure.instFunLike
Set.univ
QuotientMeasureEqMeasurePreimage
Subgroup.toGroup
MulAction.instMulAction
Monoid.toOppositeMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”HasFundamentalDomain.ExistsIsFundamentalDomain
measure_lt_top
Measure.measure_univ_eq_zero
IsFundamentalDomain.covolume_eq_volume
Subgroup.instCountableSubtypeMulOppositeMemOp
Subgroup.instMeasurableConstSMul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_opposite_of_mul
ContinuousMul.measurableMul
IsTopologicalGroup.toContinuousMul
Subgroup.smulInvariantMeasure
Measure.IsMulRightInvariant.toSMulInvariantMeasure_op
IsFundamentalDomain.quotientMeasureEqMeasurePreimage_of_zero
Measure.IsMulLeftInvariant.quotientMeasureEqMeasurePreimage_of_set
MeasurableSet.univ
Set.univ_inter
LT.lt.ne

MeasureTheory.AddQuotientMeasureEqMeasurePreimage

Theorems

NameKindAssumesProvesValidatesDepends On
addHaarMeasure_quotient πŸ“–mathematicalβ€”MeasureTheory.Measure.IsAddHaarMeasure
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
QuotientAddGroup.Quotient.addGroup
QuotientAddGroup.instTopologicalSpace
QuotientAddGroup.measurableSpace
β€”TopologicalSpace.PositiveCompacts.nonempty'
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
Zero.instNonempty
QuotientAddGroup.isOpenMap_coe
IsTopologicalAddGroup.toContinuousAdd
IsScalarTower.right
QuotientAddGroup.instIsTopologicalAddGroup
AddCosetSpace.borelSpace
MeasureTheory.Measure.addHaarMeasure_unique
MeasureTheory.sigmaFinite_of_locallyFinite
MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
addInvariantMeasure_quotient
MeasureTheory.Measure.IsAddHaarMeasure.toIsAddLeftInvariant
ne_top_of_lt
covolume_ne_top
MeasureTheory.Subgroup.vaddInvariantMeasure
MeasureTheory.Measure.IsAddRightInvariant.toVAddInvariantMeasure_op
AddSubgroup.instCountableSubtypeAddOppositeMemOp
AddSubgroup.instMeasurableConstVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_opposite_of_add
ContinuousAdd.measurableAdd
MeasureTheory.IsAddFundamentalDomain.addProjection_respects_measure_apply
IsCompact.measurableSet
BorelSpace.opensMeasurable
TopologicalSpace.PositiveCompacts.isCompact
MeasureTheory.Measure.IsAddHaarMeasure.smul
MeasureTheory.Measure.isAddHaarMeasure_addHaarMeasure
MeasureTheory.Measure.IsAddHaarMeasure.toIsOpenPosMeasure
MeasureTheory.Measure.IsOpenPosMeasure.open_pos
isOpen_interior
TopologicalSpace.PositiveCompacts.interior_nonempty
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
HasSubset.Subset.trans
Set.instIsTransSubset
interior_subset
QuotientAddGroup.coe_mk'
Set.subset_preimage_image
MeasureTheory.IsAddFundamentalDomain.measure_zero_of_invariant
QuotientAddGroup.sound
ne_of_lt
lt_of_le_of_lt
MeasureTheory.measure_mono
Set.inter_subset_right
Ne.lt_top
MeasureTheory.IsAddFundamentalDomain.covolume_eq_volume
addInvariantMeasure_quotient πŸ“–mathematicalβ€”MeasureTheory.Measure.IsAddLeftInvariant
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
QuotientAddGroup.measurableSpace
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
QuotientAddGroup.Quotient.addGroup
β€”MeasureTheory.Measure.ext
AddAction.left_quotientAction
MeasureTheory.Measure.map_apply
MeasurableAdd.measurable_const_add
ContinuousAdd.measurableAdd
AddCosetSpace.borelSpace
IsTopologicalAddGroup.toContinuousAdd
QuotientAddGroup.instIsTopologicalAddGroup
AddAction.Quotient.coe_vadd_out
Quotient.out_eq
MeasureTheory.measure_preimage_vadd
vaddInvariantMeasure_quotient
vaddInvariantMeasure_quotient πŸ“–mathematicalβ€”MeasureTheory.VAddInvariantMeasure
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.quotient
AddMonoid.toAddAction
AddAction.left_quotientAction
QuotientAddGroup.measurableSpace
β€”AddAction.left_quotientAction
Continuous.measurable
BorelSpace.opensMeasurable
Quotient.borelSpace
T1Space.t0Space
T2Space.t1Space
continuous_quotient_mk'
MeasureTheory.HasAddFundamentalDomain.ExistsIsAddFundamentalDomain
MeasureTheory.IsAddFundamentalDomain.vadd_of_comm
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_of_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
MeasureTheory.Measure.IsAddLeftInvariant.vaddInvariantMeasure
AddSubgroup.vaddCommClass_right
VAddCommClass.opposite_mid
VAddAssocClass.left
MeasureTheory.IsAddFundamentalDomain.addProjection_respects_measure_apply
measurableSet_preimage
MeasurableConstVAdd.measurable_const_vadd
QuotientAddGroup.measurableVAdd
AddCosetSpace.borelSpace
Set.ext
Set.mem_preimage
Set.preimage_inter
neg_add_cancel_left
MeasureTheory.measure_preimage_add
Set.preimage_vadd_neg

MeasureTheory.IsAddFundamentalDomain

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous_map πŸ“–mathematicalMeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
MeasureTheory.Measure.AbsolutelyContinuous
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
MeasureTheory.Measure.map
MeasureTheory.Measure.restrict
β€”Continuous.measurable
BorelSpace.opensMeasurable
continuous_quotient_mk'
MeasureTheory.Measure.map_apply
measure_zero_of_invariant
AddSubgroup.instMeasurableConstVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_opposite_of_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
MeasureTheory.Subgroup.vaddInvariantMeasure
MeasureTheory.Measure.IsAddRightInvariant.toVAddInvariantMeasure_op
AddSubgroup.instCountableSubtypeAddOppositeMemOp
Set.ext
Set.mem_vadd_set_iff_neg_vadd_mem
Set.mem_preimage
QuotientAddGroup.mk_add_of_mem
MeasureTheory.Measure.restrict_apply
MeasurableSet.preimage

MeasureTheory.IsFundamentalDomain

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous_map πŸ“–mathematicalMeasureTheory.IsFundamentalDomain
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
MeasureTheory.Measure.AbsolutelyContinuous
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
MeasureTheory.Measure.map
MeasureTheory.Measure.restrict
β€”Continuous.measurable
BorelSpace.opensMeasurable
continuous_quotient_mk'
MeasureTheory.Measure.map_apply
measure_zero_of_invariant
Subgroup.instMeasurableConstSMul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_opposite_of_mul
ContinuousMul.measurableMul
IsTopologicalGroup.toContinuousMul
MeasureTheory.Subgroup.smulInvariantMeasure
MeasureTheory.Measure.IsMulRightInvariant.toSMulInvariantMeasure_op
Subgroup.instCountableSubtypeMulOppositeMemOp
Set.ext
Set.mem_smul_set_iff_inv_smul_mem
Set.mem_preimage
QuotientGroup.mk_mul_of_mem
MeasureTheory.Measure.restrict_apply
MeasurableSet.preimage

MeasureTheory.Measure.IsAddLeftInvariant

Theorems

NameKindAssumesProvesValidatesDepends On
addQuotientMeasureEqMeasurePreimage_of_set πŸ“–mathematicalMeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
MeasurableSet
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
QuotientAddGroup.measurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.instInter
Set.preimage
MeasureTheory.AddQuotientMeasureEqMeasurePreimage
AddSubgroup.toAddGroup
AddAction.instAddAction
AddMonoid.toOppositeAddAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”MeasureTheory.IsAddFundamentalDomain.addQuotientMeasureEqMeasurePreimage
MeasureTheory.Subgroup.vaddInvariantMeasure
MeasureTheory.Measure.IsAddRightInvariant.toVAddInvariantMeasure_op
AddSubgroup.instCountableSubtypeAddOppositeMemOp
AddSubgroup.instMeasurableConstVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_opposite_of_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
MeasureTheory.Measure.ext
Continuous.measurable
BorelSpace.opensMeasurable
Quotient.borelSpace
T1Space.t0Space
T2Space.t1Space
continuous_quotient_mk'
MeasureTheory.IsAddFundamentalDomain.addQuotientMeasureEqMeasurePreimage_addQuotientMeasure
MeasureTheory.AddQuotientMeasureEqMeasurePreimage.addInvariantMeasure_quotient
MeasureTheory.AddQuotientMeasureEqMeasurePreimage.sigmaFiniteQuotient
IsScalarTower.right
MeasureTheory.measure_eq_sub_vadd
ContinuousAdd.measurableMulβ‚‚
AddCosetSpace.borelSpace
QuotientAddGroup.instIsTopologicalAddGroup
ContinuousNeg.measurableNeg
IsTopologicalAddGroup.toContinuousNeg
MeasureTheory.Measure.map_apply
MeasureTheory.Measure.restrict_apply
measurableSet_quotient
ENNReal.div_self
one_smul

MeasureTheory.Measure.IsMulLeftInvariant

Theorems

NameKindAssumesProvesValidatesDepends On
quotientMeasureEqMeasurePreimage_of_set πŸ“–mathematicalMeasureTheory.IsFundamentalDomain
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
MeasurableSet
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.measurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.instInter
Set.preimage
MeasureTheory.QuotientMeasureEqMeasurePreimage
Subgroup.toGroup
MulAction.instMulAction
Monoid.toOppositeMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”MeasureTheory.IsFundamentalDomain.quotientMeasureEqMeasurePreimage
MeasureTheory.Subgroup.smulInvariantMeasure
MeasureTheory.Measure.IsMulRightInvariant.toSMulInvariantMeasure_op
Subgroup.instCountableSubtypeMulOppositeMemOp
Subgroup.instMeasurableConstSMul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_opposite_of_mul
ContinuousMul.measurableMul
IsTopologicalGroup.toContinuousMul
MeasureTheory.Measure.ext
Continuous.measurable
BorelSpace.opensMeasurable
Quotient.borelSpace
T1Space.t0Space
T2Space.t1Space
continuous_quotient_mk'
MeasureTheory.IsFundamentalDomain.quotientMeasureEqMeasurePreimage_quotientMeasure
MeasureTheory.QuotientMeasureEqMeasurePreimage.mulInvariantMeasure_quotient
MeasureTheory.QuotientMeasureEqMeasurePreimage.sigmaFiniteQuotient
IsScalarTower.right
MeasureTheory.measure_eq_div_smul
ContinuousMul.measurableMulβ‚‚
CosetSpace.borelSpace
QuotientGroup.instIsTopologicalGroup
ContinuousInv.measurableInv
IsTopologicalGroup.toContinuousInv
MeasureTheory.Measure.map_apply
MeasureTheory.Measure.restrict_apply
measurableSet_quotient
ENNReal.div_self
one_smul

MeasureTheory.QuotientMeasureEqMeasurePreimage

Theorems

NameKindAssumesProvesValidatesDepends On
haarMeasure_quotient πŸ“–mathematicalβ€”MeasureTheory.Measure.IsHaarMeasure
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.Quotient.group
QuotientGroup.instTopologicalSpace
QuotientGroup.measurableSpace
β€”TopologicalSpace.PositiveCompacts.nonempty'
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
One.instNonempty
QuotientGroup.isOpenMap_coe
IsTopologicalGroup.toContinuousMul
IsScalarTower.right
QuotientGroup.instIsTopologicalGroup
CosetSpace.borelSpace
MeasureTheory.Measure.haarMeasure_unique
MeasureTheory.sigmaFinite_of_locallyFinite
MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
mulInvariantMeasure_quotient
MeasureTheory.Measure.IsHaarMeasure.toIsMulLeftInvariant
ne_top_of_lt
covolume_ne_top
MeasureTheory.Subgroup.smulInvariantMeasure
MeasureTheory.Measure.IsMulRightInvariant.toSMulInvariantMeasure_op
Subgroup.instCountableSubtypeMulOppositeMemOp
Subgroup.instMeasurableConstSMul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_opposite_of_mul
ContinuousMul.measurableMul
MeasureTheory.IsFundamentalDomain.projection_respects_measure_apply
IsCompact.measurableSet
BorelSpace.opensMeasurable
TopologicalSpace.PositiveCompacts.isCompact
MeasureTheory.Measure.IsHaarMeasure.smul
MeasureTheory.Measure.isHaarMeasure_haarMeasure
MeasureTheory.Measure.IsHaarMeasure.toIsOpenPosMeasure
MeasureTheory.Measure.IsOpenPosMeasure.open_pos
isOpen_interior
TopologicalSpace.PositiveCompacts.interior_nonempty
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
HasSubset.Subset.trans
Set.instIsTransSubset
interior_subset
QuotientGroup.coe_mk'
Set.subset_preimage_image
MeasureTheory.IsFundamentalDomain.measure_zero_of_invariant
QuotientGroup.sound
ne_of_lt
lt_of_le_of_lt
MeasureTheory.measure_mono
Set.inter_subset_right
Ne.lt_top
MeasureTheory.IsFundamentalDomain.covolume_eq_volume
mulInvariantMeasure_quotient πŸ“–mathematicalβ€”MeasureTheory.Measure.IsMulLeftInvariant
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.measurableSpace
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
β€”MeasureTheory.Measure.ext
MulAction.left_quotientAction
MeasureTheory.Measure.map_apply
MeasurableMul.measurable_const_mul
ContinuousMul.measurableMul
CosetSpace.borelSpace
IsTopologicalGroup.toContinuousMul
QuotientGroup.instIsTopologicalGroup
Quotient.out_eq
MeasureTheory.measure_preimage_smul
smulInvariantMeasure_quotient
smulInvariantMeasure_quotient πŸ“–mathematicalβ€”MeasureTheory.SMulInvariantMeasure
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
QuotientGroup.measurableSpace
β€”MulAction.left_quotientAction
Continuous.measurable
BorelSpace.opensMeasurable
Quotient.borelSpace
T1Space.t0Space
T2Space.t1Space
continuous_quotient_mk'
MeasureTheory.HasFundamentalDomain.ExistsIsFundamentalDomain
MeasureTheory.IsFundamentalDomain.smul_of_comm
MeasurableSMul.toMeasurableConstSMul
measurableSMul_of_mul
ContinuousMul.measurableMul
IsTopologicalGroup.toContinuousMul
MeasureTheory.Measure.IsMulLeftInvariant.smulInvariantMeasure
Subgroup.smulCommClass_right
SMulCommClass.opposite_mid
IsScalarTower.left
MeasureTheory.IsFundamentalDomain.projection_respects_measure_apply
measurableSet_preimage
MeasurableConstSMul.measurable_const_smul
QuotientGroup.measurableSMul
CosetSpace.borelSpace
Set.ext
Set.preimage_inter
inv_mul_cancel_left
MeasureTheory.measure_preimage_mul
Set.preimage_smul_inv

QuotientAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
integral_eq_integral_automorphize πŸ“–mathematicalMeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
MeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.AEStronglyMeasurable
HasQuotient.Quotient
instHasQuotientAddSubgroup
automorphize
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
MeasureTheory.Measure.map
MeasureTheory.Measure.restrict
MeasureTheory.integralβ€”MeasureTheory.IsAddFundamentalDomain.integral_eq_tsum''
AddSubgroup.instMeasurableConstVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_opposite_of_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
MeasureTheory.Subgroup.vaddInvariantMeasure
MeasureTheory.Measure.IsAddRightInvariant.toVAddInvariantMeasure_op
AddSubgroup.instCountableSubtypeAddOppositeMemOp
MeasureTheory.integral_tsum
MeasureTheory.AEStronglyMeasurable.restrict
MeasureTheory.AEStronglyMeasurable.comp_quasiMeasurePreserving
MeasureTheory.MeasurePreserving.quasiMeasurePreserving
MeasureTheory.measurePreserving_vadd
MeasureTheory.IsAddFundamentalDomain.lintegral_eq_tsum''
ne_of_lt
MeasureTheory.integral_map
Continuous.aemeasurable
BorelSpace.opensMeasurable
continuous_quotient_mk'
integral_mul_eq_integral_automorphize_mul πŸ“–mathematicalMeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
MeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
MeasureTheory.AEStronglyMeasurable
HasQuotient.Quotient
instHasQuotientAddSubgroup
MeasureTheory.Measure.map
MeasureTheory.Measure.restrict
automorphize
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
MeasureTheory.integral
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
β€”Continuous.measurable
BorelSpace.opensMeasurable
continuous_quotient_mk'
automorphize_smul_left
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
MeasureTheory.AEStronglyMeasurable.comp_measurable
MeasureTheory.AEStronglyMeasurable.mono_ac
MeasureTheory.IsAddFundamentalDomain.absolutelyContinuous_map
MeasureTheory.Integrable.essSup_smul
NormedSpace.toIsBoundedSMul
Continuous.comp_aestronglyMeasurable
continuous_enorm
MeasureTheory.AEStronglyMeasurable.aemeasurable
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
ENNReal.instMetrizableSpace
ENNReal.borelSpace
MeasureTheory.AEStronglyMeasurable.mul
integral_eq_integral_automorphize
measurableVAdd πŸ“–mathematicalβ€”MeasurableVAdd
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddAction.quotient
AddMonoid.toAddAction
AddAction.left_quotientAction
measurableSpace
β€”AddAction.left_quotientAction
MeasurableVAdd.toMeasurableConstVAdd
ContinuousVAdd.toMeasurableVAdd
BorelSpace.opensMeasurable
instContinuousVAdd
IsTopologicalAddGroup.toContinuousAdd
Measurable.vadd_const
measurable_id'

QuotientGroup

Theorems

NameKindAssumesProvesValidatesDepends On
integral_eq_integral_automorphize πŸ“–mathematicalMeasureTheory.IsFundamentalDomain
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
MeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.AEStronglyMeasurable
HasQuotient.Quotient
instHasQuotientSubgroup
automorphize
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
MeasureTheory.Measure.map
MeasureTheory.Measure.restrict
MeasureTheory.integralβ€”MeasureTheory.IsFundamentalDomain.integral_eq_tsum''
Subgroup.instMeasurableConstSMul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_opposite_of_mul
ContinuousMul.measurableMul
IsTopologicalGroup.toContinuousMul
MeasureTheory.Subgroup.smulInvariantMeasure
MeasureTheory.Measure.IsMulRightInvariant.toSMulInvariantMeasure_op
Subgroup.instCountableSubtypeMulOppositeMemOp
MeasureTheory.integral_tsum
MeasureTheory.AEStronglyMeasurable.restrict
MeasureTheory.AEStronglyMeasurable.comp_quasiMeasurePreserving
MeasureTheory.MeasurePreserving.quasiMeasurePreserving
MeasureTheory.measurePreserving_smul
MeasureTheory.IsFundamentalDomain.lintegral_eq_tsum''
ne_of_lt
MeasureTheory.integral_map
Continuous.aemeasurable
BorelSpace.opensMeasurable
continuous_quotient_mk'
integral_mul_eq_integral_automorphize_mul πŸ“–mathematicalMeasureTheory.IsFundamentalDomain
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
MeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
MeasureTheory.AEStronglyMeasurable
HasQuotient.Quotient
instHasQuotientSubgroup
MeasureTheory.Measure.map
MeasureTheory.Measure.restrict
automorphize
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
MeasureTheory.integral
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
β€”Continuous.measurable
BorelSpace.opensMeasurable
continuous_quotient_mk'
automorphize_smul_left
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
MeasureTheory.AEStronglyMeasurable.comp_measurable
MeasureTheory.AEStronglyMeasurable.mono_ac
MeasureTheory.IsFundamentalDomain.absolutelyContinuous_map
MeasureTheory.Integrable.essSup_smul
NormedSpace.toIsBoundedSMul
Continuous.comp_aestronglyMeasurable
continuous_enorm
MeasureTheory.AEStronglyMeasurable.aemeasurable
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
ENNReal.instMetrizableSpace
ENNReal.borelSpace
MeasureTheory.AEStronglyMeasurable.mul
integral_eq_integral_automorphize
measurableSMul πŸ“–mathematicalβ€”MeasurableSMul
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
MulAction.quotient
Monoid.toMulAction
MulAction.left_quotientAction
measurableSpace
β€”MulAction.left_quotientAction
MeasurableSMul.toMeasurableConstSMul
ContinuousSMul.toMeasurableSMul
BorelSpace.opensMeasurable
instContinuousSMul
IsTopologicalGroup.toContinuousMul
Measurable.smul_const
measurable_id'

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
essSup_comp_quotientAddGroup_mk πŸ“–mathematicalMeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
AEMeasurable
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
ENNReal
ENNReal.measurableSpace
MeasureTheory.Measure.map
MeasureTheory.Measure.restrict
essSup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Continuous.measurable
BorelSpace.opensMeasurable
continuous_quotient_mk'
essSup_map_measure
ENNReal.instSecondCountableTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
ENNReal.borelSpace
Measurable.aemeasurable
MeasureTheory.IsAddFundamentalDomain.essSup_measure_restrict
AddSubgroup.instMeasurableConstVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_opposite_of_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
MeasureTheory.Subgroup.vaddInvariantMeasure
MeasureTheory.Measure.IsAddRightInvariant.toVAddInvariantMeasure_op
AddSubgroup.instCountableSubtypeAddOppositeMemOp
QuotientAddGroup.mk_add_of_mem
essSup_comp_quotientGroup_mk πŸ“–mathematicalMeasureTheory.IsFundamentalDomain
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
AEMeasurable
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
ENNReal
ENNReal.measurableSpace
MeasureTheory.Measure.map
MeasureTheory.Measure.restrict
essSup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Continuous.measurable
BorelSpace.opensMeasurable
continuous_quotient_mk'
essSup_map_measure
ENNReal.instSecondCountableTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
ENNReal.borelSpace
Measurable.aemeasurable
MeasureTheory.IsFundamentalDomain.essSup_measure_restrict
Subgroup.instMeasurableConstSMul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_opposite_of_mul
ContinuousMul.measurableMul
IsTopologicalGroup.toContinuousMul
MeasureTheory.Subgroup.smulInvariantMeasure
MeasureTheory.Measure.IsMulRightInvariant.toSMulInvariantMeasure_op
Subgroup.instCountableSubtypeMulOppositeMemOp
QuotientGroup.mk_mul_of_mem
measurePreserving_quotientAddGroup_mk_of_AddQuotientMeasureEqMeasurePreimage πŸ“–mathematicalMeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zero
AddSubgroup.instVAdd
MeasureTheory.MeasurePreserving
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
QuotientAddGroup.measurableSpace
MeasureTheory.Measure.restrict
β€”β€”
measurePreserving_quotientGroup_mk_of_QuotientMeasureEqMeasurePreimage πŸ“–mathematicalMeasureTheory.IsFundamentalDomain
MulOpposite
Subgroup
MulOpposite.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.op
Subgroup.one
Subgroup.instSMul
MeasureTheory.MeasurePreserving
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.measurableSpace
MeasureTheory.Measure.restrict
β€”β€”

---

← Back to Index