Documentation Verification Report

Hausdorff

πŸ“ Source: Mathlib/MeasureTheory/Measure/Hausdorff.lean

Statistics

MetricCount
DefinitionshausdorffMeasure, mkMetric, mkMetric', IsMetric, mkMetric, mkMetric', pre, Β«termΞΌH[_]Β»
8
TheoremshausdorffMeasure_preimage_le, le_hausdorffMeasure_image, hausdorffMeasure_image_le, hausdorffMeasure_image, hausdorffMeasure_preimage, map_hausdorffMeasure, hausdorffMeasure_image, hausdorffMeasure_preimage, map_hausdorffMeasure, measurePreserving_hausdorffMeasure, hausdorffMeasure_image_le, hausdorffMeasure_image_le, hausdorffMeasure_apply, hausdorffMeasure_le_liminf_sum, hausdorffMeasure_le_liminf_tsum, hausdorffMeasure_le_one_of_subsingleton, hausdorffMeasure_mono, hausdorffMeasure_smulβ‚€, hausdorffMeasure_zero_or_top, hausdorffMeasure_zero_singleton, le_hausdorffMeasure, le_mkMetric, mkMetric'_toOuterMeasure, mkMetric_apply, mkMetric_le_liminf_sum, mkMetric_le_liminf_tsum, mkMetric_mono, mkMetric_mono_smul, mkMetric_toOuterMeasure, mkMetric_top, noAtoms_hausdorff, one_le_hausdorffMeasure_zero_of_nonempty, borel_le_caratheodory, finset_iUnion_of_pairwise_separated, le_caratheodory, coe_mkMetric, isometryEquiv_comap_mkMetric, isometryEquiv_map_mkMetric, isometry_comap_mkMetric, isometry_map_mkMetric, le_mkMetric, eq_iSup_nat, le_pre, mono_pre, mono_pre_nat, pre_le, tendsto_pre, tendsto_pre_nat, trim_pre, mkMetric'_isMetric, mkMetric_mono, mkMetric_mono_smul, mkMetric_nnreal_smul, mkMetric_smul, mkMetric_top, trim_mkMetric, hausdorffMeasure_affineSegment, hausdorffMeasure_homothety_image, hausdorffMeasure_homothety_preimage, hausdorffMeasure_lineMap_image, hausdorffMeasure_measurePreserving_funUnique, hausdorffMeasure_measurePreserving_piFinTwo, hausdorffMeasure_orthogonalProjection_le, hausdorffMeasure_pi_real, hausdorffMeasure_prod_real, hausdorffMeasure_real, hausdorffMeasure_segment, hausdorffMeasure_smul, hausdorffMeasure_smul_right_image, hausdorffMeasure_vadd, instIsAddLeftInvariantHausdorffMeasureOfIsIsometricVAdd, instIsAddRightInvariantHausdorffMeasureOfIsIsometricVAddAddOpposite, instIsMulLeftInvariantHausdorffMeasureOfIsIsometricSMul, instIsMulRightInvariantHausdorffMeasureOfIsIsometricSMulMulOpposite, isAddHaarMeasure_hausdorffMeasure
75
Total83

AntilipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffMeasure_preimage_le πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Set.preimage
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instPowReal
ENNReal.ofNNReal
β€”eq_or_ne
Set.eq_empty_or_nonempty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.instCanonicallyOrderedAdd
Set.Subsingleton.anti
Set.subsingleton_univ
subsingleton
Set.subset_univ
Set.subsingleton_iff_singleton
eq_or_lt_of_le
ENNReal.rpow_zero
one_mul
MeasureTheory.Measure.hausdorffMeasure_zero_singleton
MeasureTheory.Measure.one_le_hausdorffMeasure_zero_of_nonempty
MeasureTheory.NoAtoms.measure_singleton
MeasureTheory.Measure.noAtoms_hausdorff
MeasureTheory.Measure.hausdorffMeasure_apply
ENNReal.mul_iSup
iSup_congr_Prop
ENNReal.mul_iInf_of_ne
iInf_congr_Prop
iSupβ‚‚_le
le_iSupβ‚‚_of_le
LT.lt.ne'
le_iInfβ‚‚
le_iInf
Set.preimage_mono
iInfβ‚‚_le_of_le
Set.preimage_iUnion
iInf_le_of_le
LE.le.trans
ediam_preimage_le
ENNReal.mul_le_of_le_div'
ENNReal.tsum_le_tsum
iSup_le_iff
Set.nonempty_of_nonempty_preimage
ciSup_pos
ENNReal.mul_rpow_of_nonneg
ENNReal.rpow_le_rpow
le_hausdorffMeasure_image πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instPowReal
ENNReal.ofNNReal
Set.image
β€”MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.subset_preimage_image
hausdorffMeasure_preimage_le

HolderOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffMeasure_image_le πŸ“–mathematicalHolderOnWith
EMetricSpace.toPseudoEMetricSpace
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Real
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instPowReal
ENNReal.ofNNReal
Real.instMul
NNReal.toReal
β€”LE.le.eq_or_lt
zero_le
NNReal.instCanonicallyOrderedAdd
Set.eq_empty_or_nonempty
Set.image_empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
MulZeroClass.mul_zero
ENNReal.instCanonicallyOrderedAdd
MulZeroClass.zero_mul
ediam_image_le
Set.subsingleton_iff_singleton
Set.mem_image_of_mem
eq_or_lt_of_le
ENNReal.rpow_zero
MeasureTheory.Measure.hausdorffMeasure.congr_simp
one_mul
MeasureTheory.Measure.hausdorffMeasure_zero_singleton
MeasureTheory.Measure.one_le_hausdorffMeasure_zero_of_nonempty
MeasureTheory.NoAtoms.measure_singleton
MeasureTheory.Measure.noAtoms_hausdorff
LT.lt.ne'
MeasureTheory.Measure.hausdorffMeasure_apply
ENNReal.mul_iSup
iSup_congr_Prop
ENNReal.mul_iInf_of_ne
iInf_congr_Prop
iSup_le
ENNReal.tendsto_const_mul_rpow_nhds_zero_of_pos
ENNReal.coe_ne_top
Filter.HasBasis.eventually_iff
ENNReal.nhds_zero_basis_Iic
Filter.Tendsto.eventually
gt_mem_nhds
ENNReal.instOrderTopology
le_iSupβ‚‚_of_le
iInfβ‚‚_mono'
Set.image_iUnion
Set.iUnion_inter
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
subset_refl
Set.instReflSubset
Set.image_mono
Set.inter_subset_inter
Set.inter_self
iInf_mono'
LE.le.trans
ediam_image_inter_le
LT.lt.le
ENNReal.tsum_le_tsum
Set.Nonempty.mono
Set.inter_subset_left
ciSup_pos
ENNReal.rpow_mul
ENNReal.mul_rpow_of_nonneg
ENNReal.rpow_le_rpow

Isometry

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffMeasure_image πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Real.instZero
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Set.image
β€”IsScalarTower.right
MeasureTheory.OuterMeasure.isometry_comap_mkMetric
ENNReal.monotone_rpow_of_nonneg
hausdorffMeasure_preimage πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Real.instZero
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Set.preimage
Set.instInter
Set.range
β€”hausdorffMeasure_image
Set.image_preimage_eq_inter_range
map_hausdorffMeasure πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Real.instZero
MeasureTheory.Measure.map
MeasureTheory.Measure.hausdorffMeasure
MeasureTheory.Measure.restrict
Set.range
β€”MeasureTheory.Measure.ext
MeasureTheory.Measure.map_apply
Continuous.measurable
BorelSpace.opensMeasurable
continuous
MeasureTheory.Measure.restrict_apply
hausdorffMeasure_preimage

IsometryEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffMeasure_image πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Set.image
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
β€”Isometry.hausdorffMeasure_image
isometry
surjective
hausdorffMeasure_preimage πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Set.preimage
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
β€”image_symm
hausdorffMeasure_image
map_hausdorffMeasure πŸ“–mathematicalβ€”MeasureTheory.Measure.map
DFunLike.coe
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
MeasureTheory.Measure.hausdorffMeasure
β€”Isometry.map_hausdorffMeasure
isometry
surjective
Function.Surjective.range_eq
MeasureTheory.Measure.restrict_univ
measurePreserving_hausdorffMeasure πŸ“–mathematicalβ€”MeasureTheory.MeasurePreserving
DFunLike.coe
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
instEquivLike
MeasureTheory.Measure.hausdorffMeasure
β€”Continuous.measurable
BorelSpace.opensMeasurable
continuous
map_hausdorffMeasure

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffMeasure_image_le πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instPowReal
ENNReal.ofNNReal
β€”MeasureTheory.Measure.hausdorffMeasure.congr_simp
one_mul
HolderOnWith.hausdorffMeasure_image_le
holderOnWith
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing

LipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffMeasure_image_le πŸ“–mathematicalLipschitzWith
EMetricSpace.toPseudoEMetricSpace
Real
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.hausdorffMeasure
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instPowReal
ENNReal.ofNNReal
β€”LipschitzOnWith.hausdorffMeasure_image_le
lipschitzOnWith

MeasureTheory

Definitions

NameCategoryTheorems
Β«termΞΌH[_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffMeasure_affineSegment πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.hausdorffMeasure
MetricSpace.toEMetricSpace
Real
Real.instOne
affineSegment
Real.instRing
Real.partialOrder
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
EDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
β€”affineSegment.eq_1
Real.borelSpace
hausdorffMeasure_lineMap_image
hausdorffMeasure_real
Real.volume_Icc
sub_zero
ENNReal.ofReal_one
Algebra.algebraMap_eq_smul_one
edist_nndist
hausdorffMeasure_homothety_image πŸ“–mathematicalReal
Real.instLE
Real.instZero
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.hausdorffMeasure
MetricSpace.toEMetricSpace
Set.image
AffineMap
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
AffineMap.instFunLike
AffineMap.homothety
NNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
NNReal.instPowReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
β€”IsometryEquiv.hausdorffMeasure_image
Set.image_smul
Measure.hausdorffMeasure_smulβ‚€
NormedSpace.toNormSMulClass
Set.image_image
hausdorffMeasure_homothety_preimage πŸ“–mathematicalReal
Real.instLE
Real.instZero
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.hausdorffMeasure
MetricSpace.toEMetricSpace
Set.preimage
AffineMap
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
AffineMap.instFunLike
AffineMap.homothety
NNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
NNReal.instPowReal
NNReal.instInv
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
β€”AffineEquiv.image_symm
AffineEquiv.coe_homothetyUnitsMulHom_apply_symm
hausdorffMeasure_homothety_image
IsUnit.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Units.isUnit
Units.val_inv_eq_inv_val
Units.val_mk0
nnnorm_inv
hausdorffMeasure_lineMap_image πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.hausdorffMeasure
MetricSpace.toEMetricSpace
Real
Real.instOne
Set.image
AffineMap
Real.instRing
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
AffineMap.instFunLike
AffineMap.lineMap
NNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
NNDist.nndist
PseudoMetricSpace.toNNDist
Real.measurableSpace
Real.metricSpace
Real.borelSpace
β€”Real.borelSpace
IsometryEquiv.hausdorffMeasure_image
hausdorffMeasure_smul_right_image
nndist_eq_nnnorm_vsub'
Set.image_image
hausdorffMeasure_measurePreserving_funUnique πŸ“–mathematicalβ€”MeasurePreserving
MeasurableSpace.pi
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.funUnique
Measure.hausdorffMeasure
emetricSpacePi
Unique.fintype
Pi.borelSpace_of_subsingleton
Unique.instSubsingleton
UniformSpace.toTopologicalSpace
β€”IsometryEquiv.measurePreserving_hausdorffMeasure
Pi.borelSpace_of_subsingleton
Unique.instSubsingleton
hausdorffMeasure_measurePreserving_piFinTwo πŸ“–mathematicalBorelSpace
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
SecondCountableTopology
MeasurePreserving
MeasurableSpace.pi
Prod.instMeasurableSpace
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.piFinTwo
Measure.hausdorffMeasure
emetricSpacePi
Fin.fintype
Pi.borelSpace
instCountableFin
Prod.emetricSpaceMax
Prod.borelSpace
secondCountableTopologyEither_of_right
β€”IsometryEquiv.measurePreserving_hausdorffMeasure
Pi.borelSpace
instCountableFin
Prod.borelSpace
secondCountableTopologyEither_of_right
hausdorffMeasure_orthogonalProjection_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
SetLike.instMembership
Submodule.setLike
Subtype.instMeasurableSpace
Set
Measure.instFunLike
Measure.hausdorffMeasure
instEMetricSpaceSubtype
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Subtype.borelSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Set.image
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
instTopologicalSpaceSubtype
Submodule.addCommMonoid
Submodule.module
ContinuousLinearMap.funLike
Submodule.orthogonalProjection
β€”Subtype.borelSpace
ENNReal.one_rpow
one_mul
LipschitzWith.hausdorffMeasure_image_le
Submodule.lipschitzWith_orthogonalProjection
hausdorffMeasure_pi_real πŸ“–mathematicalβ€”Measure.hausdorffMeasure
emetricSpacePi
Real
MetricSpace.toEMetricSpace
Real.metricSpace
MeasurableSpace.pi
Real.measurableSpace
Pi.borelSpace
Finite.to_countable
Finite.of_fintype
UniformSpace.toTopologicalSpace
instSecondCountableTopologyReal
Real.borelSpace
Real.instNatCast
Fintype.card
MeasureSpace.volume
MeasureSpace.pi
Real.measureSpace
β€”Pi.borelSpace
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
Real.borelSpace
Measure.pi_eq_generateFrom
Real.borel_eq_generateFrom_Ioo_rat
Real.isPiSystem_Ioo_rat
Real.locallyFinite_volume
Finset.prod_congr
le_antisymm
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instIsStrictOrderedRing
LT.lt.le
one_div
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Metric.ediam_pi_le_of_le
add_div
Real.ediam_Icc
add_sub_add_left_eq_sub
add_sub_cancel_left
ENNReal.ofReal_div_of_pos
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
ENNReal.ofReal_one
ENNReal.ofReal_natCast
Nat.floor_lt_ceil_of_lt_of_pos
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
sub_lt_sub_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.cast_pos'
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
add_le_add_right
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
Nat.floor_le
mul_nonneg
IsOrderedRing.toPosMulMono
sub_nonneg
le_of_lt
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Nat.lt_floor_add_one
Measure.hausdorffMeasure_le_liminf_sum
Filter.liminf_le_liminf
Filter.mp_mem
Filter.univ_mem'
Finset.sum_le_sum
ENNReal.instIsOrderedAddMonoid
ENNReal.rpow_natCast
pow_le_pow_left'
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
covariant_swap_mul_of_covariant_mul
Filter.isBounded_ge_of_bot
Filter.isCobounded_ge_of_top
Finset.sum_congr
div_eq_mul_inv
Finset.sum_const
Fintype.card_pi
Fintype.card_fin
nsmul_eq_mul
Nat.cast_prod
Finset.prod_mul_distrib
Finset.prod_const
Real.volume_Ioo
Filter.Tendsto.liminf_eq
ENNReal.instOrderTopology
Filter.atTop_neBot
ENNReal.tendsto_finset_prod_of_ne_top
Filter.Tendsto.congr'
Filter.Tendsto.comp
Continuous.tendsto
ENNReal.continuous_ofReal
tendsto_nat_ceil_mul_div_atTop
instOrderTopologyReal
tendsto_natCast_atTop_atTop
Real.instArchimedean
Measure.le_hausdorffMeasure
ENNReal.coe_lt_top
Real.volume_pi_le_diam_pow
volume_pi_pi
Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Measure.le_iff'
hausdorffMeasure_prod_real πŸ“–mathematicalβ€”Measure.hausdorffMeasure
Real
Prod.emetricSpaceMax
MetricSpace.toEMetricSpace
Real.metricSpace
Prod.instMeasurableSpace
Real.measurableSpace
Prod.borelSpace
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Real.borelSpace
secondCountableTopologyEither_of_right
instSecondCountableTopologyReal
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
MeasureSpace.volume
Measure.prod.measureSpace
Real.measureSpace
β€”Prod.borelSpace
Real.borelSpace
secondCountableTopologyEither_of_right
instSecondCountableTopologyReal
Nat.instAtLeastTwoHAddOfNat
MeasurePreserving.map_eq
volume_preserving_piFinTwo
Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Pi.borelSpace
instCountableFin
hausdorffMeasure_measurePreserving_piFinTwo
Finite.to_countable
Finite.of_fintype
hausdorffMeasure_pi_real
Fintype.card_fin
Nat.cast_two
hausdorffMeasure_real πŸ“–mathematicalβ€”Measure.hausdorffMeasure
Real
MetricSpace.toEMetricSpace
Real.metricSpace
Real.measurableSpace
Real.borelSpace
Real.instOne
MeasureSpace.volume
Real.measureSpace
β€”Real.borelSpace
MeasurePreserving.map_eq
volume_preserving_funUnique
Pi.borelSpace_of_subsingleton
Unique.instSubsingleton
hausdorffMeasure_measurePreserving_funUnique
Pi.borelSpace
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
hausdorffMeasure_pi_real
Fintype.card_unit
Nat.cast_one
hausdorffMeasure_segment πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.hausdorffMeasure
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Real.instOne
segment
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
EDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
β€”affineSegment_eq_segment
Real.instIsOrderedRing
hausdorffMeasure_affineSegment
hausdorffMeasure_smul πŸ“–mathematicalReal
Real.instLE
Real.instZero
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.hausdorffMeasure
Set.smulSet
β€”Isometry.hausdorffMeasure_image
IsIsometricSMul.isometry_smul
hausdorffMeasure_smul_right_image πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.hausdorffMeasure
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Real.instOne
Set.image
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
NNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Real.measurableSpace
Real.metricSpace
Real.borelSpace
β€”Real.borelSpace
eq_or_ne
Set.eq_empty_or_nonempty
Set.image_congr
smul_zero
Set.image_empty
measure_empty
Measure.instOuterMeasureClass
nnnorm_zero
hausdorffMeasure_real
Set.Nonempty.image_const
NoAtoms.measure_singleton
Measure.noAtoms_hausdorff
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
zero_smul
norm_ne_zero_iff
AddMonoidHomClass.isometry_of_norm
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
norm_smul
NormedSpace.toNormSMulClass
norm_inv
norm_norm
inv_mul_cancelβ‚€
mul_one
LinearMap.id_apply
Set.image_smul
Measure.hausdorffMeasure_smulβ‚€
zero_le_one
nnnorm_norm
NNReal.rpow_one
Isometry.hausdorffMeasure_image
zero_le_one'
Set.image_image
SMulCommClass.smul_comm
smulCommClass_self
inv_smul_smulβ‚€
hausdorffMeasure_vadd πŸ“–mathematicalReal
Real.instLE
Real.instZero
HVAdd.hVAdd
instHVAdd
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.hausdorffMeasure
Set.vaddSet
β€”Isometry.hausdorffMeasure_image
IsIsometricVAdd.isometry_vadd
instIsAddLeftInvariantHausdorffMeasureOfIsIsometricVAdd πŸ“–mathematicalβ€”Measure.IsAddLeftInvariant
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Measure.hausdorffMeasure
β€”IsometryEquiv.map_hausdorffMeasure
instIsAddRightInvariantHausdorffMeasureOfIsIsometricVAddAddOpposite πŸ“–mathematicalβ€”Measure.IsAddRightInvariant
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Measure.hausdorffMeasure
β€”IsometryEquiv.map_hausdorffMeasure
instIsMulLeftInvariantHausdorffMeasureOfIsIsometricSMul πŸ“–mathematicalβ€”Measure.IsMulLeftInvariant
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Measure.hausdorffMeasure
β€”IsometryEquiv.map_hausdorffMeasure
instIsMulRightInvariantHausdorffMeasureOfIsIsometricSMulMulOpposite πŸ“–mathematicalβ€”Measure.IsMulRightInvariant
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Measure.hausdorffMeasure
β€”IsometryEquiv.map_hausdorffMeasure
isAddHaarMeasure_hausdorffMeasure πŸ“–mathematicalβ€”Measure.IsAddHaarMeasure
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Measure.hausdorffMeasure
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Real.instNatCast
Module.finrank
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
β€”RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Pi.topologicalAddGroup
instIsTopologicalAddGroupReal
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.instCompleteSpace
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Pi.t2Space
FiniteDimensional.finiteDimensional_pi'
Finite.of_fintype
FiniteDimensional.rclike_to_real
Module.finrank_fintype_fun_eq_card
commRing_strongRankCondition
Real.instNontrivial
Fintype.card_fin
Pi.borelSpace
instCountableFin
instSecondCountableTopologyReal
Real.borelSpace
Finite.to_countable
hausdorffMeasure_pi_real
IsCompact.measure_lt_top
Measure.instIsFiniteMeasureOnCompactsForallVolumeOfSigmaFinite
Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Measure.IsAddHaarMeasure.toIsFiniteMeasureOnCompacts
IsCompact.image
ContinuousLinearEquiv.continuous
ContinuousLinearEquiv.symm_image_image
lt_of_le_of_lt
RingHomIsometric.ids
LipschitzWith.hausdorffMeasure_image_le
ContinuousLinearEquiv.lipschitz
Real.instIsOrderedRing
ENNReal.rpow_natCast
ENNReal.mul_lt_top
ENNReal.pow_lt_top
ENNReal.coe_lt_top
instIsAddLeftInvariantHausdorffMeasureOfIsIsometricVAdd
NormedAddGroup.to_isIsometricVAdd_left
IsOpen.measure_pos
Measure.instIsOpenPosMeasureForallVolumeOfSigmaFinite
Measure.IsAddHaarMeasure.toIsOpenPosMeasure
ContinuousLinearEquiv.isOpenMap
LT.lt.ne'
ENNReal.mul_pos_iff
lt_of_lt_of_le

MeasureTheory.Measure

Definitions

NameCategoryTheorems
hausdorffMeasure πŸ“–CompOp
47 mathmath: MeasureTheory.hausdorffMeasure_segment, hausdorffMeasure_zero_singleton, AntilipschitzWith.hausdorffMeasure_preimage_le, MeasureTheory.isAddHaarMeasure_hausdorffMeasure, Isometry.hausdorffMeasure_image, MeasureTheory.instIsMulLeftInvariantHausdorffMeasureOfIsIsometricSMul, hausdorffMeasure_le_liminf_sum, MeasureTheory.hausdorffMeasure_measurePreserving_piFinTwo, hausdorffMeasure_mono, noAtoms_hausdorff, IsometryEquiv.hausdorffMeasure_image, MeasureTheory.hausdorffMeasure_pi_real, hausdorffMeasure_smulβ‚€, MeasureTheory.instIsAddRightInvariantHausdorffMeasureOfIsIsometricVAddAddOpposite, MeasureTheory.hausdorffMeasure_prod_real, MeasureTheory.hausdorffMeasure_lineMap_image, IsometryEquiv.map_hausdorffMeasure, dimH_eq_iInf, AntilipschitzWith.le_hausdorffMeasure_image, hausdorffMeasure_zero_or_top, IsometryEquiv.hausdorffMeasure_preimage, le_hausdorffMeasure, MeasureTheory.hausdorffMeasure_homothety_image, IsometryEquiv.measurePreserving_hausdorffMeasure, one_le_hausdorffMeasure_zero_of_nonempty, MeasureTheory.instIsMulRightInvariantHausdorffMeasureOfIsIsometricSMulMulOpposite, MeasureTheory.hausdorffMeasure_vadd, hausdorffMeasure_le_liminf_tsum, MeasureTheory.hausdorffMeasure_measurePreserving_funUnique, Isometry.hausdorffMeasure_preimage, MeasureTheory.hausdorffMeasure_smul_right_image, MeasureTheory.hausdorffMeasure_real, hausdorffMeasure_of_dimH_lt, Isometry.map_hausdorffMeasure, hausdorffMeasure_apply, MeasureTheory.hausdorffMeasure_orthogonalProjection_le, MeasureTheory.hausdorffMeasure_smul, hausdorffMeasure_le_one_of_subsingleton, LipschitzOnWith.hausdorffMeasure_image_le, MeasureTheory.hausdorffMeasure_affineSegment, LipschitzWith.hausdorffMeasure_image_le, Real.hausdorffMeasure_of_finrank_lt, MeasureTheory.instIsAddLeftInvariantHausdorffMeasureOfIsIsometricVAdd, MeasureTheory.hausdorffMeasure_homothety_preimage, HolderOnWith.hausdorffMeasure_image_le, dimH_def, hausdorffMeasure_of_lt_dimH
mkMetric πŸ“–CompOp
9 mathmath: mkMetric_apply, mkMetric_le_liminf_tsum, le_mkMetric, mkMetric_top, mkMetric_mono, mkMetric_le_liminf_sum, MeasureTheory.OuterMeasure.coe_mkMetric, mkMetric_toOuterMeasure, mkMetric_mono_smul
mkMetric' πŸ“–CompOp
1 mathmath: mkMetric'_toOuterMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffMeasure_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
hausdorffMeasure
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.instHasSubset
Set.iUnion
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
Set.Nonempty
Real
ENNReal.instPowReal
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
SummationFilter.unconditional
β€”mkMetric_apply
hausdorffMeasure_le_liminf_sum πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
Filter.Eventually
Set
Set.instHasSubset
Set.iUnion
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
instFunLike
hausdorffMeasure
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Finset.sum
ENNReal.instAddCommMonoid
Finset.univ
Real
ENNReal.instPowReal
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
β€”mkMetric_le_liminf_sum
hausdorffMeasure_le_liminf_tsum πŸ“–mathematicalCountable
Filter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
Filter.Eventually
Set
Set.instHasSubset
Set.iUnion
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
instFunLike
hausdorffMeasure
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
tsum
ENNReal.instAddCommMonoid
Real
ENNReal.instPowReal
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
SummationFilter.unconditional
β€”mkMetric_le_liminf_tsum
hausdorffMeasure_le_one_of_subsingleton πŸ“–mathematicalSet.Subsingleton
Real
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
hausdorffMeasure
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”Set.eq_empty_or_nonempty
MeasureTheory.measure_empty
instOuterMeasureClass
ENNReal.instCanonicallyOrderedAdd
Set.subsingleton_iff_singleton
eq_or_lt_of_le
hausdorffMeasure_zero_singleton
MeasureTheory.NoAtoms.measure_singleton
noAtoms_hausdorff
hausdorffMeasure_mono πŸ“–mathematicalReal
Real.instLE
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
hausdorffMeasure
β€”LE.le.eq_or_lt
le_rfl
hausdorffMeasure_zero_or_top
zero_le
ENNReal.instCanonicallyOrderedAdd
le_top
hausdorffMeasure_smulβ‚€ πŸ“–mathematicalReal
Real.instLE
Real.instZero
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
hausdorffMeasure
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Set.smulSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
NNReal.instPowReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
NormedDivisionRing.toNormedRing
β€”ENNReal.coe_rpow_of_nonneg
LipschitzWith.hausdorffMeasure_image_le
lipschitzWith_smul
NormSMulClass.toIsBoundedSMul
le_antisymm
le_inv_smul_iff_of_pos
PosSMulStrictMono.toPosSMulMono
ENNReal.instPosSMulStrictMonoNNReal
PosSMulMono.toPosSMulReflectLE
NNReal.instIsStrictOrderedRing
NNReal.instCanonicallyOrderedAdd
NNReal.inv_rpow
nnnorm_inv
Eq.trans_le
inv_smul_smulβ‚€
hausdorffMeasure_zero_or_top πŸ“–mathematicalReal
Real.instLT
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
hausdorffMeasure
instZeroENNReal
Top.top
instTopENNReal
β€”IsScalarTower.right
le_iff'
mkMetric_mono_smul
ENNReal.coe_ne_top
Nat.cast_zero
ENNReal.coe_rpow_of_ne_zero
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
ENNReal.coe_eq_zero
NNReal.rpow_eq_zero_iff
Filter.mp_mem
Ico_mem_nhdsGE
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Filter.univ_mem'
CanLift.prf
ENNReal.canLift
ne_top_of_lt
Pi.smul_apply
smul_eq_mul
ENNReal.div_le_iff_le_mul
eq_or_ne
lt_or_ge
ENNReal.zero_rpow_of_pos
ENNReal.zero_div
ENNReal.zero_rpow_of_neg
LT.lt.trans_le
ENNReal.div_top
ENNReal.rpow_sub
LE.le.trans
LT.lt.le
ENNReal.rpow_lt_rpow
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ENNReal.rpow_mul
inv_mul_cancelβ‚€
LT.lt.ne'
ENNReal.rpow_one
le_refl
ENNReal.exists_nnreal_pos_mul_lt
LT.lt.not_ge
NNReal.instCanonicallyOrderedAdd
hausdorffMeasure_zero_singleton πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
hausdorffMeasure
Real
Real.instZero
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”le_antisymm
Metric.ediam_singleton
ENNReal.instCanonicallyOrderedAdd
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Set.iUnion_singleton_eq_range
Set.range_const
Set.instReflSubset
Finset.sum_congr
Finset.univ_unique
ENNReal.rpow_zero
Finset.sum_const
Finset.card_singleton
one_smul
Filter.liminf_const
Filter.atTop_neBot
hausdorffMeasure_le_liminf_sum
tendsto_const_nhds
hausdorffMeasure_apply
iInf_congr_Prop
iSup_congr_Prop
Set.mem_iUnion
Set.mem_singleton
ciSup_pos
ENNReal.le_tsum
le_trans
le_iSupβ‚‚
zero_lt_one
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.charZero_one
ENNReal.instCharZero
le_hausdorffMeasure πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Preorder.toLE
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Real
ENNReal.instPowReal
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
instPartialOrder
hausdorffMeasure
β€”le_mkMetric
le_mkMetric πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Preorder.toLE
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
instPartialOrder
mkMetric
β€”toOuterMeasure_le
mkMetric_toOuterMeasure
MeasureTheory.OuterMeasure.le_mkMetric
mkMetric'_toOuterMeasure πŸ“–mathematicalβ€”toOuterMeasure
mkMetric'
MeasureTheory.OuterMeasure.trim
MeasureTheory.OuterMeasure.mkMetric'
β€”β€”
mkMetric_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
mkMetric
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Set.instHasSubset
Set.iUnion
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
Set.Nonempty
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
SummationFilter.unconditional
β€”iSup_congr_Prop
MeasureTheory.OuterMeasure.iSup_apply
MeasureTheory.OuterMeasure.boundedBy_apply
iInf_congr_Prop
Function.Surjective.iSup_congr
Function.Surjective.iInf_congr
iInf_eq_if
Mathlib.Tactic.Push.not_forall_eq
ENNReal.tsum_eq_top_of_eq_top
iSup_eq_if
Metric.ediam_pos_iff
LE.le.trans_lt
zero_le
ENNReal.instCanonicallyOrderedAdd
LT.lt.not_ge
mkMetric_le_liminf_sum πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
Filter.Eventually
Set
Set.instHasSubset
Set.iUnion
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
instFunLike
mkMetric
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Finset.sum
ENNReal.instAddCommMonoid
Finset.univ
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
β€”tsum_fintype
SummationFilter.instLeAtTopUnconditional
mkMetric_le_liminf_tsum
Finite.to_countable
Finite.of_fintype
mkMetric_le_liminf_tsum πŸ“–mathematicalCountable
Filter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
Filter.Eventually
Set
Set.instHasSubset
Set.iUnion
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
instFunLike
mkMetric
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
tsum
ENNReal.instAddCommMonoid
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
SummationFilter.unconditional
β€”mkMetric_apply
iSupβ‚‚_le
le_of_forall_gt_imp_ge_of_dense
ENNReal.instDenselyOrdered
Filter.Frequently.exists
Filter.Frequently.and_eventually
Filter.frequently_lt_of_liminf_lt
Filter.isCobounded_ge_of_top
Filter.Eventually.and
Filter.Tendsto.eventually
gt_mem_nhds
ENNReal.instOrderTopology
iInfβ‚‚_le_of_le
Encodable.iUnion_decodeβ‚‚
iInf_le_of_le
Metric.ediam_iUnion_mem_option
LE.le.trans
LT.lt.le
tsum_iUnion_decodeβ‚‚
iSup_congr_Prop
Metric.ediam_empty
iSup_neg
bot_eq_zero'
ENNReal.instCanonicallyOrderedAdd
ENNReal.tsum_le_tsum
iSup_le
le_rfl
mkMetric_mono πŸ“–mathematicalFilter.EventuallyLE
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
nhdsWithin
ENNReal.instTopologicalSpace
instZeroENNReal
Set.Ici
MeasureTheory.Measure
instPartialOrder
mkMetric
β€”IsScalarTower.right
one_smul
mkMetric_mono_smul
ENNReal.one_ne_top
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
mkMetric_mono_smul πŸ“–mathematicalFilter.EventuallyLE
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
nhdsWithin
ENNReal.instTopologicalSpace
instZeroENNReal
Set.Ici
Function.hasSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
MeasureTheory.Measure
instPartialOrder
mkMetric
instSMul
IsScalarTower.right
β€”IsScalarTower.right
MeasureTheory.OuterMeasure.coe_mkMetric
coe_smul
MeasureTheory.OuterMeasure.mkMetric_mono_smul
mkMetric_toOuterMeasure πŸ“–mathematicalβ€”toOuterMeasure
mkMetric
MeasureTheory.OuterMeasure.mkMetric
β€”MeasureTheory.OuterMeasure.trim_mkMetric
mkMetric_top πŸ“–mathematicalβ€”mkMetric
Top.top
ENNReal
instTopENNReal
MeasureTheory.Measure
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”toOuterMeasure_injective
mkMetric_toOuterMeasure
MeasureTheory.OuterMeasure.mkMetric_top
toOuterMeasure_top
noAtoms_hausdorff πŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.NoAtoms
hausdorffMeasure
β€”nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
hausdorffMeasure_apply
iSupβ‚‚_le
iInfβ‚‚_le_of_le
Set.subset_iUnion
iInf_le_of_le
Metric.ediam_singleton
iSup_congr_Prop
ENNReal.zero_rpow_of_pos
iSup_pos
tsum_zero
one_le_hausdorffMeasure_zero_of_nonempty πŸ“–mathematicalSet.NonemptyENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
hausdorffMeasure
Real
Real.instZero
β€”hausdorffMeasure_zero_singleton
MeasureTheory.measure_mono
instOuterMeasureClass
Set.singleton_subset_iff

MeasureTheory.OuterMeasure

Definitions

NameCategoryTheorems
IsMetric πŸ“–MathDef
1 mathmath: mkMetric'_isMetric
mkMetric πŸ“–CompOp
13 mathmath: mkMetric_top, le_mkMetric, isometry_comap_mkMetric, isometryEquiv_map_mkMetric, isometry_map_mkMetric, coe_mkMetric, mkMetric_mono, mkMetric_smul, trim_mkMetric, mkMetric_nnreal_smul, mkMetric_mono_smul, MeasureTheory.Measure.mkMetric_toOuterMeasure, isometryEquiv_comap_mkMetric
mkMetric' πŸ“–CompOp
5 mathmath: mkMetric'.tendsto_pre, mkMetric'.tendsto_pre_nat, mkMetric'_isMetric, MeasureTheory.Measure.mkMetric'_toOuterMeasure, mkMetric'.eq_iSup_nat

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mkMetric πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
instFunLikeSetENNReal
mkMetric
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.mkMetric
β€”MeasureTheory.Measure.mkMetric_toOuterMeasure
MeasureTheory.Measure.coe_toOuterMeasure
isometryEquiv_comap_mkMetric πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
ENNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
MeasureTheory.OuterMeasure
addCommMonoid
instModule
Semiring.toModule
IsScalarTower.right
Algebra.id
LinearMap.instFunLike
comap
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
IsometryEquiv.instEquivLike
mkMetric
β€”isometry_comap_mkMetric
IsometryEquiv.isometry
IsometryEquiv.surjective
isometryEquiv_map_mkMetric πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
ENNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
MeasureTheory.OuterMeasure
addCommMonoid
instModule
Semiring.toModule
IsScalarTower.right
Algebra.id
LinearMap.instFunLike
map
IsometryEquiv
EMetricSpace.toPseudoEMetricSpace
EquivLike.toFunLike
IsometryEquiv.instEquivLike
mkMetric
β€”IsScalarTower.right
isometryEquiv_comap_mkMetric
map_comap_of_surjective
IsometryEquiv.surjective
isometry_comap_mkMetric πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
Monotone
ENNReal
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
LinearMap
CommSemiring.toSemiring
ENNReal.instCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
MeasureTheory.OuterMeasure
addCommMonoid
instModule
Semiring.toModule
IsScalarTower.right
Algebra.id
LinearMap.instFunLike
comap
mkMetric
β€”IsScalarTower.right
iSup_congr_Prop
comap_iSup
Function.Surjective.iSup_congr
comap_boundedBy
iInf_congr_Prop
le_trans
LE.le.trans
Metric.ediam_mono
ciInf_pos
MeasureTheory.extend_congr
Isometry.ediam_image
isometry_map_mkMetric πŸ“–mathematicalIsometry
EMetricSpace.toPseudoEMetricSpace
Monotone
ENNReal
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
LinearMap
CommSemiring.toSemiring
ENNReal.instCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
MeasureTheory.OuterMeasure
addCommMonoid
instModule
Semiring.toModule
IsScalarTower.right
Algebra.id
LinearMap.instFunLike
map
mkMetric
restrict
Set.range
β€”IsScalarTower.right
isometry_comap_mkMetric
map_comap
le_mkMetric πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Preorder.toLE
DFunLike.coe
MeasureTheory.OuterMeasure
Set
instFunLikeSetENNReal
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
instPartialOrder
mkMetric
β€”le_iSupβ‚‚_of_le
mkMetric'.le_pre
mkMetric'_isMetric πŸ“–mathematicalβ€”IsMetric
mkMetric'
β€”tendsto_nhds_unique_of_eventuallyEq
ENNReal.instT2Space
ENNReal.nhdsGT_zero_neBot
mkMetric'.tendsto_pre
Filter.Tendsto.add
ENNReal.instContinuousAdd
Filter.mp_mem
Ioo_mem_nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
Filter.univ_mem'
boundedBy_union_of_top_of_nonempty_inter
LT.lt.trans_le
LE.le.trans
Metric.edist_le_ediam_of_mem
iInf_eq_top
LT.lt.not_ge
mkMetric_mono πŸ“–mathematicalFilter.EventuallyLE
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
nhdsWithin
ENNReal.instTopologicalSpace
instZeroENNReal
Set.Ici
MeasureTheory.OuterMeasure
instPartialOrder
mkMetric
β€”IsScalarTower.right
one_smul
mkMetric_mono_smul
ENNReal.one_ne_top
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
mkMetric_mono_smul πŸ“–mathematicalFilter.EventuallyLE
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
nhdsWithin
ENNReal.instTopologicalSpace
instZeroENNReal
Set.Ici
Function.hasSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
MeasureTheory.OuterMeasure
instPartialOrder
mkMetric
instSMul
IsScalarTower.right
β€”IsScalarTower.right
mem_nhdsGE_iff_exists_Ico_subset'
ENNReal.instOrderTopology
zero_lt_one
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.charZero_one
ENNReal.instCharZero
le_of_tendsto_of_tendsto
OrderTopology.to_orderClosedTopology
ENNReal.nhdsGT_zero_neBot
mkMetric'.tendsto_pre
ENNReal.Tendsto.const_mul
Filter.mem_of_superset
Ioo_mem_nhdsGT
instClosedIciTopology
smul_eq_mul
smul_apply
smul_boundedBy
le_boundedBy
LE.le.trans
boundedBy_le
iInf_congr_Prop
iInf_eq_if
zero_le
ENNReal.instCanonicallyOrderedAdd
LE.le.trans_lt
ENNReal.mul_top
mkMetric_nnreal_smul πŸ“–mathematicalβ€”mkMetric
NNReal
Function.hasSMul
ENNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
MeasureTheory.OuterMeasure
instSMul
IsScalarTower.right
β€”IsScalarTower.right
ENNReal.smul_def
mkMetric_smul
ENNReal.coe_ne_top
ENNReal.coe_ne_zero
mkMetric_smul πŸ“–mathematicalβ€”mkMetric
ENNReal
Function.hasSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
MeasureTheory.OuterMeasure
instSMul
IsScalarTower.right
β€”IsScalarTower.right
iSup_congr_Prop
smul_iSup
smul_boundedBy
MeasureTheory.ennreal_smul_extend
mkMetric_top πŸ“–mathematicalβ€”mkMetric
Top.top
ENNReal
instTopENNReal
MeasureTheory.OuterMeasure
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”iSup_congr_Prop
MeasureTheory.extend_top
boundedBy_top
le_iSup_iff
iSup_pos
trim_mkMetric πŸ“–mathematicalβ€”trim
mkMetric
β€”mkMetric'.eq_iSup_nat
trim_iSup
instCountableNat
mkMetric'.trim_pre
BorelSpace.opensMeasurable
Metric.ediam_closure

MeasureTheory.OuterMeasure.IsMetric

Theorems

NameKindAssumesProvesValidatesDepends On
borel_le_caratheodory πŸ“–mathematicalMeasureTheory.OuterMeasure.IsMetricMeasurableSpace
MeasurableSpace.instLE
borel
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
MeasureTheory.OuterMeasure.caratheodory
β€”borel_eq_generateFrom_isClosed
MeasurableSpace.generateFrom_le
MeasureTheory.OuterMeasure.isCaratheodory_iff_le
ENNReal.inv_ne_zero
ENNReal.natCast_ne_top
LE.le.trans
Metric.infEDist_le_edist_of_mem
Metric.AreSeparated.mono
Set.Subset.rfl
Set.inter_subset_right
Set.subset_inter
Set.inter_subset_left
Metric.AreSeparated.subset_compl_right
Metric.AreSeparated.symm
MeasureTheory.OuterMeasure.mono
Set.union_subset_union_right
Set.inter_union_diff
Set.Subset.antisymm
Set.iUnion_subset
ENNReal.exists_inv_nat_lt
Metric.mem_iff_infEDist_zero_of_closed
Set.mem_iUnion
LT.lt.le
add_top
Set.diff_subset
le_trans
ENNReal.inv_le_inv
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
Eq.le
MeasureTheory.OuterMeasure.iUnion_nat_of_monotone_of_tsum_ne_top
tsum_even_add_odd
ENNReal.instT2Space
ENNReal.instContinuousAdd
ENNReal.summable
ENNReal.add_ne_top
ne_top_of_le_ne_top
ENNReal.tsum_eq_iSup_nat
iSup_le_iff
finset_iUnion_of_pairwise_separated
ENNReal.inv_lt_inv
Nat.cast_lt
Nat.instAtLeastTwoHAddOfNat
Nat.cast_add
Nat.cast_mul
Nat.cast_one
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
not_le
Metric.infEDist_lt_iff
Metric.le_infEDist
ENNReal.le_of_add_le_add_right
LT.lt.ne_top
add_le_add
covariant_swap_add_of_covariant_add
le_rfl
Eq.trans_le
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
PseudoEMetricSpace.edist_triangle
Ne.lt_or_gt
add_zero
add_le_add_right
ENNReal.add_iSup
iSup_le
finset_iUnion_of_pairwise_separated πŸ“–mathematicalMeasureTheory.OuterMeasure.IsMetric
Metric.AreSeparated
EMetricSpace.toPseudoEMetricSpace
DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
Set.iUnion
Finset
Finset.instMembership
Finset.sum
ENNReal.instAddCommMonoid
β€”Finset.induction_on
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
MeasureTheory.measure_empty
MeasureTheory.OuterMeasure.instOuterMeasureClass
Finset.set_biUnion_insert
Metric.AreSeparated.finset_iUnion_right
Finset.sum_insert
le_caratheodory πŸ“–mathematicalMeasureTheory.OuterMeasure.IsMetricMeasurableSpace
MeasurableSpace.instLE
MeasureTheory.OuterMeasure.caratheodory
β€”BorelSpace.measurable_eq
borel_le_caratheodory

MeasureTheory.OuterMeasure.mkMetric'

Definitions

NameCategoryTheorems
pre πŸ“–CompOp
8 mathmath: tendsto_pre, tendsto_pre_nat, pre_le, mono_pre_nat, trim_pre, mono_pre, eq_iSup_nat, le_pre

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iSup_nat πŸ“–mathematicalβ€”MeasureTheory.OuterMeasure.mkMetric'
iSup
MeasureTheory.OuterMeasure
MeasureTheory.OuterMeasure.instSupSet
pre
ENNReal
ENNReal.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”MeasureTheory.OuterMeasure.ext
MeasureTheory.OuterMeasure.iSup_apply
tendsto_nhds_unique
ENNReal.instT2Space
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_pre_nat
tendsto_atTop_iSup
LinearOrder.supConvergenceClass
ENNReal.instOrderTopology
mono_pre_nat
le_pre πŸ“–mathematicalβ€”MeasureTheory.OuterMeasure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.OuterMeasure.instPartialOrder
pre
ENNReal
ENNReal.instPartialOrder
DFunLike.coe
Set
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
β€”iInf_congr_Prop
mono_pre πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.OuterMeasure
MeasureTheory.OuterMeasure.instPartialOrder
pre
β€”le_pre
pre_le
LE.le.trans
mono_pre_nat πŸ“–mathematicalβ€”Monotone
MeasureTheory.OuterMeasure
Nat.instPreorder
PartialOrder.toPreorder
MeasureTheory.OuterMeasure.instPartialOrder
pre
ENNReal
ENNReal.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”le_pre
pre_le
LE.le.trans
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
pre_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
DFunLike.coe
MeasureTheory.OuterMeasure
Set
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
pre
β€”LE.le.trans
MeasureTheory.OuterMeasure.boundedBy_le
iInf_le
tendsto_pre πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
MeasureTheory.OuterMeasure
Set
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
pre
nhdsWithin
ENNReal.instTopologicalSpace
instZeroENNReal
Set.Ioi
PartialOrder.toPreorder
ENNReal.instPartialOrder
nhds
MeasureTheory.OuterMeasure.mkMetric'
β€”tendsto_comp_coe_Ioi_atBot
ENNReal.instOrderTopology
Order.IsPredPrelimit.of_dense
ENNReal.instDenselyOrdered
iSup_subtype'
MeasureTheory.OuterMeasure.iSup_apply
tendsto_atBot_iSup
LinearOrder.supConvergenceClass
mono_pre
tendsto_pre_nat πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
MeasureTheory.OuterMeasure
Set
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
pre
ENNReal.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
MeasureTheory.OuterMeasure.mkMetric'
β€”Filter.Tendsto.comp
tendsto_pre
Filter.tendsto_inf
ENNReal.tendsto_inv_nat_nhds_zero
Filter.tendsto_principal
Filter.Eventually.of_forall
trim_pre πŸ“–mathematicalclosure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
MeasureTheory.OuterMeasure.trim
pre
β€”le_antisymm
le_pre
MeasureTheory.OuterMeasure.trim_eq_iInf
iInf_le_of_le
subset_closure
measurableSet_closure
LE.le.trans_eq
pre_le
Metric.ediam_closure
MeasureTheory.OuterMeasure.le_trim

---

← Back to Index