Documentation Verification Report

IntegralCharFun

📁 Source: Mathlib/MeasureTheory/Measure/IntegralCharFun.lean

Statistics

MetricCount
Definitions0
Theoremsintegral_charFun_Icc, measureReal_abs_dual_gt_le_integral_charFunDual, measureReal_abs_gt_le_integral_charFun, measureReal_abs_inner_gt_le_integral_charFun
4
Total4

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
integral_charFun_Icc 📖mathematicalReal
Real.instLT
Real.instZero
intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
charFun
Real.measurableSpace
InnerProductSpace.toInner
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RCLike.toInnerProductSpaceReal
Real.instNeg
MeasureSpace.volume
Real.measureSpace
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
integral
Real.normedAddCommGroup
Real.sinc
Real.instMul
—Set.uIoc_of_le
Real.instIsOrderedAddMonoid
LT.lt.le
integrable_norm_iff
Continuous.comp_aestronglyMeasurable
Continuous.cexp
continuous_id'
AEStronglyMeasurable.mul_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_mul
AEStronglyMeasurable.prodMk
Complex.continuous_ofReal
AEStronglyMeasurable.fst
aestronglyMeasurable_id
TopologicalSpace.pseudoMetrizableSpace_prod
PseudoEMetricSpace.pseudoMetrizableSpace
Prod.opensMeasurableSpace
BorelSpace.opensMeasurable
Real.borelSpace
secondCountableTopologyEither_of_right
instSecondCountableTopologyReal
TopologicalSpace.instSecondCountableTopologyProd
AEStronglyMeasurable.snd
Nat.cast_one
Complex.norm_exp_ofReal_mul_I
integrable_const
Measure.prod.instIsFiniteMeasure
Real.isFiniteMeasure_restrict_Ioc
Nat.instAtLeastTwoHAddOfNat
charFun_apply_real
intervalIntegral_integral_swap
instSFiniteOfSigmaFinite
sigmaFinite_of_locallyFinite
isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Measure.Regular.toIsFiniteMeasureOnCompacts
Measure.InnerRegularCompactLTTop.instRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure
instR1Space
TopologicalSpace.PseudoMetrizableSpace.regularSpace
instInnerRegularCompactLTTopOfIsCompletelyPseudoMetrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.toIsCompletelyPseudoMetrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Real.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
MulZeroClass.mul_zero
MulZeroClass.zero_mul
Complex.exp_zero
intervalIntegral.integral_const
Complex.instCompleteSpace
sub_neg_eq_add
Complex.ofReal_add
mul_one
two_mul
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
LT.lt.ne'
Complex.ofReal_inv
intervalIntegral.integral_comp_smul_deriv
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
instIsTopologicalRingReal
HasDerivAt.congr_simp
mul_comm
hasDerivAt_mul_const
continuousOn_const
Continuous.comp'
Continuous.fun_mul
continuous_const
Complex.ofReal_mul
intervalIntegral.integral_const_mul
mul_neg
mul_assoc
mul_inv_cancel₀
one_mul
integral_exp_mul_I_eq_sinc
Real.sinc_zero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
integral_complex_ofReal
integral_const_mul
measureReal_abs_dual_gt_le_integral_charFunDual 📖mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Measure.real
setOf
abs
Real.lattice
Real.instAddGroup
DFunLike.coe
StrongDual
Real.semiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Real.instMul
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Norm.norm
Complex
Complex.instNorm
intervalIntegral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
instInnerProductSpaceRealComplex
Complex.instSub
Complex.instOne
charFunDual
ContinuousLinearMap.instSMul
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
Algebra.to_smulCommClass
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
Ring.uniformContinuousConstSMul
Real.instRing
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.instNeg
MeasureSpace.volume
Real.measureSpace
—Measure.isProbabilityMeasure_map
Measurable.aemeasurable
ContinuousLinearMap.measurable
Real.borelSpace
Nat.instAtLeastTwoHAddOfNat
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
map_measureReal_apply
MeasurableSet.preimage
measurableSet_Ioi
BorelSpace.opensMeasurable
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Continuous.measurable
Continuous.abs
instOrderTopologyReal
continuous_id'
charFun_map_eq_charFunDual_smul
measureReal_abs_gt_le_integral_charFun
measureReal_abs_gt_le_integral_charFun 📖mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Measure.real
Real.measurableSpace
setOf
abs
Real.lattice
Real.instAddGroup
Real.instMul
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Norm.norm
Complex
Complex.instNorm
intervalIntegral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instSub
Complex.instOne
charFun
InnerProductSpace.toInner
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RCLike.toInnerProductSpaceReal
Real.instNeg
MeasureSpace.volume
Real.measureSpace
—integrable_map_measure
StronglyMeasurable.aestronglyMeasurable
Real.stronglyMeasurable_sinc
AEMeasurable.const_mul
ContinuousMul.measurableMul
Real.borelSpace
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
aemeasurable_id
Real.integrable_sinc
Measure.isFiniteMeasure_map
IsZeroOrProbabilityMeasure.toIsFiniteMeasure
instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
Nat.instAtLeastTwoHAddOfNat
Set.ext
abs_mul
Real.instIsOrderedRing
Nat.abs_ofNat
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_assoc
inv_mul_lt_iff₀
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
inv_mul_cancel₀
ne_of_gt
lt_inv_mul_iff₀
mul_one
abs_inv
integral_const
Real.instCompleteSpace
measureReal_restrict_apply
Set.univ_inter
integral_const_mul
mul_inv_cancel₀
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
setIntegral_mono_on
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Integrable.integrableOn
integrable_const
Integrable.sub
MeasurableSet.preimage
measurableSet_Ioi
BorelSpace.opensMeasurable
instClosedIicTopology
Measurable.fun_comp
Continuous.measurable
Continuous.abs
instOrderTopologyReal
continuous_id'
Measurable.const_mul
measurable_id'
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_neg_of_lt
abs_zero
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
le_sub_iff_add_le'
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
one_div
LE.le.trans
Real.sinc_le_inv_abs
inv_le_inv₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Mathlib.Meta.Positivity.abs_pos_of_ne_zero
le_imp_le_of_le_of_le
setIntegral_le_integral
Integrable.sub'
ae_of_all
Measure.instOuterMeasureClass
Real.sinc_le_one
le_refl
Real.le_norm_self
Complex.norm_real
two_mul
mul_sub
norm_mul
NormedDivisionRing.toNormMulClass
Real.norm_ofNat
mul_one_sub
Real.norm_of_nonneg
mul_pos
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.inv_mul
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero
one_mul
integral_sub
probReal_univ
intervalIntegral.integral_sub
intervalIntegrable_const
Real.locallyFinite_volume
enorm_ne_top
intervalIntegrable_charFun
neg_mul
integral_charFun_Icc
Complex.ofReal_inv
intervalIntegral.integral_const
Complex.instCompleteSpace
sub_neg_eq_add
Complex.ofReal_add
Complex.ofReal_mul
measureReal_abs_inner_gt_le_integral_charFun 📖mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Measure.real
setOf
abs
Real.lattice
Real.instAddGroup
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
Real.instMul
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Norm.norm
Complex
Complex.instNorm
intervalIntegral
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instSub
Complex.instOne
charFun
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
Real.instNeg
MeasureSpace.volume
Real.measureSpace
—Measure.isProbabilityMeasure_map
Continuous.aemeasurable
Real.borelSpace
Continuous.inner
continuous_const
continuous_id'
Nat.instAtLeastTwoHAddOfNat
map_measureReal_apply
Continuous.measurable
MeasurableSet.preimage
measurableSet_Ioi
BorelSpace.opensMeasurable
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Continuous.abs
instOrderTopologyReal
inner_smul_right
Complex.ofReal_mul
conj_trivial
instTrivialStarReal
integral_map
Continuous.comp_aestronglyMeasurable
Continuous.cexp
AEStronglyMeasurable.mul_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
AEStronglyMeasurable.const_mul
Continuous.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
secondCountableTopologyEither_of_right
secondCountable_of_proper
Complex.instProperSpace
Complex.continuous_ofReal
real_inner_comm
measureReal_abs_gt_le_integral_charFun

---

← Back to Index