Documentation Verification Report

Integral

πŸ“ Source: Mathlib/MeasureTheory/Measure/Lebesgue/Integral.lean

Statistics

MetricCount
Definitions0
Theoremsintegrable_of_summable_norm_Icc, integral_comp_abs, integral_comp_neg_Iic, integral_comp_neg_Ioi, volume_regionBetween_eq_integral, volume_regionBetween_eq_integral'
6
Total6

Real

Theorems

NameKindAssumesProvesValidatesDepends On
integrable_of_summable_norm_Icc πŸ“–mathematicalSummable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Norm.norm
ContinuousMap
Set.Elem
Set.Icc
instPreorder
instZero
instOne
instTopologicalSpaceSubtype
Set
Set.instMembership
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ContinuousMap.instNorm
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instConditionallyCompleteLinearOrder
instOrderTopologyReal
ContinuousMap.restrict
ContinuousMap.comp
ContinuousMap.addRight
instAdd
IsTopologicalSemiring.toContinuousAdd
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
normedCommRing
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instIntCast
SummationFilter.unconditional
MeasureTheory.Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
DFunLike.coe
ContinuousMap.instFunLike
MeasureTheory.MeasureSpace.volume
β€”compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.integrable_of_summable_norm_restrict
instCountableInt
borelSpace
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
locallyFinite_volume
CompactIccSpace.isCompact_Icc
Summable.of_nonneg_of_le
ContinuousMap.instCompactSpaceElemCoeCompacts
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
norm_nonneg
ENNReal.toReal_nonneg
volume_real_Icc_of_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
instZeroLEOneClass
add_sub_cancel_left
mul_one
ContinuousMap.norm_le
sub_nonneg
covariant_swap_add_of_covariant_add
sub_le_iff_le_add'
ContinuousMap.norm_coe_le_norm
sub_add_cancel
iUnion_Icc_intCast
instIsStrictOrderedRing
instArchimedean

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
integral_comp_abs πŸ“–mathematicalβ€”MeasureTheory.integral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.MeasureSpace.volume
abs
Real.lattice
Real.instAddGroup
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.restrict
Set.Ioi
Real.instPreorder
Real.instZero
β€”MeasureTheory.setIntegral_congr_fun
measurableSet_Ioi
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
abs_eq_self
le_of_lt
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.map_neg_eq_self
MeasureTheory.Measure.IsAddHaarMeasure.isNegInvariant_of_innerRegular
instIsTopologicalAddGroupReal
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.Measure.instInnerRegularOfPseudoMetrizableSpaceOfSigmaCompactSpaceOfBorelSpaceOfSigmaFinite
PseudoEMetricSpace.pseudoMetrizableSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
Homeomorph.measurableEmbedding
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
MeasurableEmbedding.integrableOn_map_iff
abs_neg
Set.neg_Iic
neg_zero
integrableOn_Ici_iff_integrableOn_Ioi
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Real.noAtoms_volume
enorm_ne_top
MeasureTheory.setIntegral_union
Set.Iic_disjoint_Ioi
le_rfl
Set.Iic_union_Ioi
MeasureTheory.Measure.restrict_univ
two_mul
integral_comp_neg_Iic
measurableSet_Iic
abs_eq_neg_self
Mathlib.Tactic.Contrapose.contraposeβ‚„
MeasureTheory.Integrable.integrableOn
MeasureTheory.integral_undef
MulZeroClass.mul_zero
integral_comp_neg_Iic πŸ“–mathematicalβ€”MeasureTheory.integral
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Iic
Real.instPreorder
Real.instNeg
Set.Ioi
β€”Topology.IsClosedEmbedding.measurableEmbedding
Real.borelSpace
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
Homeomorph.isClosedEmbedding
MeasurableEmbedding.setIntegral_map
Real.noAtoms_volume
MeasureTheory.Measure.map_neg_eq_self
MeasureTheory.Measure.IsAddHaarMeasure.isNegInvariant_of_innerRegular
instIsTopologicalAddGroupReal
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.Measure.instInnerRegularOfPseudoMetrizableSpaceOfSigmaCompactSpaceOfBorelSpaceOfSigmaFinite
PseudoEMetricSpace.pseudoMetrizableSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
Set.neg_Ici
Real.instIsOrderedAddMonoid
neg_neg
integral_comp_neg_Ioi πŸ“–mathematicalβ€”MeasureTheory.integral
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
Real.instPreorder
Real.instNeg
Set.Iic
β€”neg_neg
integral_comp_neg_Iic
volume_regionBetween_eq_integral πŸ“–mathematicalMeasureTheory.IntegrableOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasurableSet
Real.instLE
DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.prod
MeasureTheory.MeasureSpace.volume
regionBetween
ENNReal.ofReal
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.restrict
Pi.instSub
Real.instSub
β€”volume_regionBetween_eq_integral'
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_restrict_iff'
Filter.Eventually.of_forall
volume_regionBetween_eq_integral' πŸ“–mathematicalMeasureTheory.IntegrableOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasurableSet
Filter.EventuallyLE
Real.instLE
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
DFunLike.coe
Prod.instMeasurableSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.prod
MeasureTheory.MeasureSpace.volume
regionBetween
ENNReal.ofReal
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Pi.instSub
Real.instSub
β€”MeasureTheory.Measure.instOuterMeasureClass
Filter.Eventually.mono
Real.coe_toNNReal
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
volume_regionBetween_eq_lintegral
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Integrable.aemeasurable
Real.borelSpace
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.integral_congr_ae
MeasureTheory.lintegral_congr_ae
Filter.EventuallyEq.refl
MeasureTheory.lintegral_coe_eq_integral
MeasureTheory.integrable_congr
MeasureTheory.Integrable.sub

---

← Back to Index