Documentation Verification Report

MeasureSpace

πŸ“ Source: Mathlib/MeasureTheory/Measure/MeasureSpace.lean

Statistics

MetricCount
DefinitionscoeAddHom, cofinite, instAdd, instAddCommMonoid, instCompleteLattice, instCompleteSemilatticeInf, instDistribMulAction, instInfSet, instInhabited, instModule, instMulAction, instPartialOrder, instSMul, instZero, sum, MeasureSpace, toMeasure
17
TheoremsnullMeasurable, nullMeasurableSet_preimage, measure_iInter, measure_iUnion, measure_iInter, measure_iUnion, Ico_ae_eq_Icc', Ico_ae_eq_Ioc', Iio_ae_eq_Iic', Ioc_ae_eq_Icc', Ioi_ae_eq_Ici', Ioo_ae_eq_Icc', Ioo_ae_eq_Ico', Ioo_ae_eq_Ioc', add_apply, add_toOuterMeasure, add_top, neBot, ae_ennreal_smul_measure_eq, ae_ennreal_smul_measure_iff, ae_smul_measure, ae_smul_measure_eq, ae_smul_measure_iff, ae_smul_measure_le, ae_sum_eq, ae_sum_iff, ae_sum_iff', apply_eq_zero_of_isEmpty, coeAddHom_apply, coe_add, coe_finset_sum, coe_nnreal_smul_apply, coe_smul, coe_zero, instIsMeasurablyGenerated, cofinite_le_ae, compl_mem_cofinite, ennreal_smul_eq_zero, eq_zero_of_isEmpty, eventually_cofinite, finset_sum_apply, inf_apply, instIsCentralScalar, instIsOrderedAddMonoid, instIsScalarTower, instModuleIsTorsionFree, instNeZeroENNRealCoeSetUniv, instSMulCommClass, instSubsingleton, le_add_left, le_add_right, le_iff, le_iff', le_intro, le_sum, le_sum_apply, lt_iff, lt_iff', measure_eq_left_of_subset_of_measure_add_eq, measure_eq_right_of_subset_of_measure_add_eq, measure_inter_eq_of_ae, measure_inter_eq_of_measure_eq, measure_mono_both, measure_mono_left, measure_support_eq_zero_iff, measure_toMeasurable_add_inter_left, measure_toMeasurable_add_inter_right, measure_toMeasurable_inter, measure_univ_eq_zero, measure_univ_ne_zero, measure_univ_pos, mem_cofinite, nnreal_smul_coe_apply, nonempty_of_neZero, nonpos_iff_eq_zero', sInf_apply, sInf_caratheodory, smul_apply, smul_toOuterMeasure, sum_add_sum, sum_add_sum_compl, sum_apply, sum_apply_eq_zero, sum_apply_eq_zero', sum_apply_of_countable, sum_applyβ‚€, sum_bool, sum_coe_finset, sum_comm, sum_comp_equiv, sum_cond, sum_congr, sum_eq_zero, sum_extend_zero, sum_fintype, sum_of_isEmpty, sum_sum, sum_zero, toOuterMeasure_le, toOuterMeasure_top, top_add, zero_le, zero_toOuterMeasure, toMeasure_eq_zero, toMeasure_top, toMeasure_zero, ae_eq_bot, ae_eq_of_ae_subset_of_measure_ge, ae_eq_of_subset_of_measure_ge, ae_isMeasurablyGenerated, ae_neBot, ae_uIoc_iff, ae_zero, biSup_measure_Iic, boundedBy_measure, exists_measure_iInter_lt, exists_nonempty_inter_of_measure_univ_lt_sum_measure, exists_nonempty_inter_of_measure_univ_lt_tsum_measure, ext_of_measurableAtoms, le_measure_diff, le_measure_symmDiff, le_toMeasure_apply, le_toOuterMeasure_caratheodory, measure_add_diff, measure_add_measure_compl, measure_biUnion, measure_biUnion_eq_iSup, measure_biUnion_finset, measure_biUnion_finsetβ‚€, measure_biUnion_toMeasurable, measure_biUnionβ‚€, measure_compl, measure_complβ‚€, measure_diff, measure_diff', measure_diff_add_inter, measure_diff_eq_top, measure_diff_le_iff_le_add, measure_diff_lt_of_lt_add, measure_diff_null', measure_eq_measure_larger_of_between_null_diff, measure_eq_measure_of_between_null_diff, measure_eq_measure_of_null_diff, measure_eq_measure_smaller_of_between_null_diff, measure_eq_top_iff_of_symmDiff, measure_iInter_eq_iInf_measure_iInter_le, measure_iUnion_congr_of_subset, measure_iUnion_eq_iSup_accumulate, measure_iUnion_toMeasurable, measure_if, measure_inter_add_diff, measure_inter_conull, measure_inter_conull', measure_ne_top_iff_of_symmDiff, measure_preimage_eq_zero_iff_of_countable, measure_sUnion, measure_sUnionβ‚€, measure_symmDiff_eq, measure_symmDiff_eq_top, measure_symmDiff_le, measure_toMeasurable_union, measure_union, measure_union', measure_union_add_inter, measure_union_add_inter', measure_union_congr_of_subset, measure_union_toMeasurable, nonempty_inter_of_measure_lt_add, nonempty_inter_of_measure_lt_add', sum_measure_le_measure_univ, sum_measure_preimage_singleton, sum_measure_singleton, tendsto_measure_Ici_atBot, tendsto_measure_Ico_atTop, tendsto_measure_Iic_atTop, tendsto_measure_Ioc_atBot, tendsto_measure_biInter_gt, tendsto_measure_iInter_atBot, tendsto_measure_iInter_atTop, tendsto_measure_iInter_le, tendsto_measure_iUnion_accumulate, tendsto_measure_iUnion_atBot, tendsto_measure_iUnion_atTop, toMeasure_apply, toMeasure_applyβ‚€, toMeasure_toOuterMeasure, toOuterMeasure_toMeasure, tsum_meas_le_meas_iUnion_of_disjoint, tsum_meas_le_meas_iUnion_of_disjointβ‚€, tsum_measure_le_measure_univ, tsum_measure_preimage_singleton, union_ae_eq_left_iff_ae_subset, union_ae_eq_right_iff_ae_subset, measure_iInter, measure_iUnion
195
Total212

AEMeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
nullMeasurable πŸ“–mathematicalAEMeasurableMeasureTheory.NullMeasurableβ€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.NullMeasurable.congr
Measurable.nullMeasurable
Filter.EventuallyEq.symm
nullMeasurableSet_preimage πŸ“–mathematicalAEMeasurable
MeasurableSet
MeasureTheory.NullMeasurableSet
Set.preimage
β€”nullMeasurable

Antitone

Theorems

NameKindAssumesProvesValidatesDepends On
measure_iInter πŸ“–mathematicalAntitone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
MeasureTheory.NullMeasurableSet
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.iInter
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Monotone.measure_iInter
OrderDual.isDirected_ge
OrderDual.instIsCountablyGeneratedAtBot
dual_left
measure_iUnion πŸ“–mathematicalAntitone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Monotone.measure_iUnion
OrderDual.isDirected_le
OrderDual.instIsCountablyGeneratedAtTop
dual_left

Directed

Theorems

NameKindAssumesProvesValidatesDepends On
measure_iInter πŸ“–mathematicalMeasureTheory.NullMeasurableSet
Directed
Set
Set.instHasSubset
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.iInter
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”ne_top_of_le_ne_top
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.sub_sub_cancel
iInf_le
ENNReal.sub_iInf
Set.iInter_subset
MeasureTheory.measure_diff
MeasureTheory.NullMeasurableSet.iInter
Set.diff_iInter
measure_iUnion
mono_comp
Set.diff_subset_diff_right
le_antisymm
iSup_mono'
Set.diff_subset_diff
subset_refl
Set.instReflSubset
iSup_mono
MeasureTheory.le_measure_diff
measure_iUnion πŸ“–mathematicalDirected
Set
Set.instHasSubset
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Countable.exists_injective_nat
extend_bot
le_antisymm
MeasurableSet.disjointed
MeasureTheory.measurableSet_toMeasurable
iUnion_disjointed
MeasureTheory.measure_iUnion_toMeasurable
instCountableNat
MeasureTheory.measure_iUnion_le
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.tsum_eq_iSup_sum
iSup_le
finset_le
Set.instIsTransSubset
MeasureTheory.measure_biUnion_finset
Pairwise.set_pairwise
disjoint_disjointed
MeasureTheory.measure_mono
Set.iUnionβ‚‚_mono
disjointed_subset
MeasureTheory.measure_biUnion_toMeasurable
Finset.countable_toSet
Set.iUnionβ‚‚_subset
le_iSup
Set.subset_iUnion
iSup_extend_bot
Function.apply_extend
MeasureTheory.measure_empty

MeasureTheory

Definitions

NameCategoryTheorems
MeasureSpace πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
Ico_ae_eq_Icc' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSingletonSet
instZeroENNReal
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
Set.Ico
PartialOrder.toPreorder
Set.Icc
β€”Filter.EventuallyEq.inter
Measure.instOuterMeasureClass
ae_eq_refl
Iio_ae_eq_Iic'
Ico_ae_eq_Ioc' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSingletonSet
instZeroENNReal
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
Set.Ico
PartialOrder.toPreorder
Set.Ioc
β€”Filter.EventuallyEq.trans
Measure.instOuterMeasureClass
Filter.EventuallyEq.symm
Ioo_ae_eq_Ico'
Ioo_ae_eq_Ioc'
Iio_ae_eq_Iic' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSingletonSet
instZeroENNReal
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
Set.Iio
PartialOrder.toPreorder
Set.Iic
β€”Measure.instOuterMeasureClass
Set.Iic_diff_right
diff_ae_eq_self
measure_mono_null
Set.inter_subset_right
Ioc_ae_eq_Icc' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSingletonSet
instZeroENNReal
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
Set.Ioc
PartialOrder.toPreorder
Set.Icc
β€”Filter.EventuallyEq.inter
Measure.instOuterMeasureClass
Ioi_ae_eq_Ici'
ae_eq_refl
Ioi_ae_eq_Ici' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSingletonSet
instZeroENNReal
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
Set.Ioi
PartialOrder.toPreorder
Set.Ici
β€”Iio_ae_eq_Iic'
Ioo_ae_eq_Icc' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSingletonSet
instZeroENNReal
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
Set.Ioo
PartialOrder.toPreorder
Set.Icc
β€”Filter.EventuallyEq.inter
Measure.instOuterMeasureClass
Ioi_ae_eq_Ici'
Iio_ae_eq_Iic'
Ioo_ae_eq_Ico' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSingletonSet
instZeroENNReal
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
Set.Ioo
PartialOrder.toPreorder
Set.Ico
β€”Filter.EventuallyEq.inter
Measure.instOuterMeasureClass
Ioi_ae_eq_Ici'
ae_eq_refl
Ioo_ae_eq_Ioc' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSingletonSet
instZeroENNReal
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
Set.Ioo
PartialOrder.toPreorder
Set.Ioc
β€”Filter.EventuallyEq.inter
Measure.instOuterMeasureClass
ae_eq_refl
Iio_ae_eq_Iic'
ae_eq_bot πŸ“–mathematicalβ€”ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Bot.bot
Filter
Filter.instBot
Measure.instZero
β€”Measure.instOuterMeasureClass
Filter.empty_mem_iff_bot
mem_ae_iff
Set.compl_empty
Measure.measure_univ_eq_zero
ae_eq_of_ae_subset_of_measure_ge πŸ“–mathematicalFilter.EventuallyLE
Prop.le
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
NullMeasurableSet
Filter.EventuallyEqβ€”Measure.instOuterMeasureClass
Filter.eventuallyLE_antisymm_iff
ae_le_set
LE.le.antisymm
measure_mono_ae
measure_diff'
measure_congr
union_ae_eq_left_iff_ae_subset
tsub_self
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
ae_eq_of_subset_of_measure_ge πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Measure.instFunLike
NullMeasurableSet
Filter.EventuallyEq
ae
Measure.instOuterMeasureClass
β€”ae_eq_of_ae_subset_of_measure_ge
HasSubset.Subset.eventuallyLE
Measure.instOuterMeasureClass
ae_isMeasurablyGenerated πŸ“–mathematicalβ€”Filter.IsMeasurablyGenerated
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
β€”Measure.instOuterMeasureClass
exists_measurable_superset_of_null
compl_mem_ae_iff
MeasurableSet.compl
Set.compl_subset_comm
ae_neBot πŸ“–mathematicalβ€”Filter.NeBot
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
β€”Measure.instOuterMeasureClass
Filter.neBot_iff
ae_eq_bot
ae_uIoc_iff πŸ“–mathematicalβ€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
β€”Measure.instOuterMeasureClass
Set.uIoc_eq_union
ae_zero πŸ“–mathematicalβ€”ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.instZero
Bot.bot
Filter
Filter.instBot
β€”Measure.instOuterMeasureClass
ae_eq_bot
biSup_measure_Iic πŸ“–mathematicalSet
Set.instMembership
Preorder.toLE
DirectedOn
iSup
ENNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
Measure
Measure.instFunLike
Set.Iic
Set.univ
β€”measure_biUnion_eq_iSup
directedOn_iff_directed
Directed.mono_comp
Set.Iic_subset_Iic
DirectedOn.directed_val
Set.iUnionβ‚‚_eq_univ_iff
boundedBy_measure πŸ“–mathematicalβ€”OuterMeasure.boundedBy
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.toOuterMeasure
β€”OuterMeasure.boundedBy_eq_self
exists_measure_iInter_lt πŸ“–mathematicalNullMeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.iInter
Set
Set.instEmptyCollection
DFunLike.coe
Measure
Measure.instFunLike
Preorder.toLE
SemilatticeSup.toPartialOrder
β€”measure_mono
Measure.instOuterMeasureClass
Set.biInter_subset_biInter_left
le_trans
measure_empty
tendsto_measure_iInter_le
ENNReal.tendsto_atTop_zero_iff_lt_of_antitone
exists_nonempty_inter_of_measure_univ_lt_sum_measure πŸ“–mathematicalNullMeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.univ
Finset.sum
ENNReal.instAddCommMonoid
Finset
Finset.instMembership
Set.Nonempty
Set.instInter
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
sum_measure_le_measure_univ
Disjoint.aedisjoint
Set.disjoint_iff_inter_eq_empty
exists_nonempty_inter_of_measure_univ_lt_tsum_measure πŸ“–mathematicalNullMeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.univ
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
Set.Nonempty
Set.instInter
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
tsum_measure_le_measure_univ
Disjoint.aedisjoint
Set.disjoint_iff_inter_eq_empty
ext_of_measurableAtoms πŸ“–β€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
measurableAtom
β€”β€”Measure.ext
Set.ext
mem_measurableAtom_self
mem_of_mem_measurableAtom
Set.sUnion_image
Set.Countable.image
Set.to_countable
SetCoe.countable
disjoint_measurableAtom_of_notMem
measurableAtom_eq_of_mem
MeasurableSet.measurableAtom_of_countable
measure_sUnion
le_measure_diff πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instSub
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.instSDiff
β€”tsub_le_iff_left
ENNReal.instOrderedSub
LE.le.trans
measure_le_inter_add_diff
Measure.instOuterMeasureClass
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
measure_mono
Set.inter_subset_right
le_measure_symmDiff πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instSub
DFunLike.coe
Measure
Set
Measure.instFunLike
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instSDiff
β€”le_trans
le_measure_diff
measure_mono
Measure.instOuterMeasureClass
le_toMeasure_apply πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
OuterMeasure.caratheodory
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
OuterMeasure
Set
OuterMeasure.instFunLikeSetENNReal
Measure
Measure.instFunLike
OuterMeasure.toMeasure
β€”OuterMeasure.le_trim
le_toOuterMeasure_caratheodory πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
OuterMeasure.caratheodory
Measure.toOuterMeasure
β€”measure_inter_add_diff
measure_add_diff πŸ“–mathematicalNullMeasurableSetENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.instSDiff
Set.instUnion
β€”measure_unionβ‚€'
Disjoint.aedisjoint
Set.disjoint_sdiff_right
Set.union_diff_self
measure_add_measure_compl πŸ“–mathematicalMeasurableSetENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
Compl.compl
Set.instCompl
Set.univ
β€”measure_add_measure_complβ‚€
MeasurableSet.nullMeasurableSet
measure_biUnion πŸ“–mathematicalSet.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.iUnion
Set.instMembership
tsum
Set.Elem
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”measure_biUnionβ‚€
Set.PairwiseDisjoint.aedisjoint
MeasurableSet.nullMeasurableSet
measure_biUnion_eq_iSup πŸ“–mathematicalDirectedOn
Function.onFun
Set
Set.instHasSubset
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.iUnion
Set.instMembership
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Set.biUnion_eq_iUnion
Directed.measure_iUnion
Set.Countable.to_subtype
DirectedOn.directed_val
iSup_subtype''
measure_biUnion_finset πŸ“–mathematicalSet.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
Finset.instSetLike
MeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.iUnion
Finset.instMembership
Finset.sum
ENNReal.instAddCommMonoid
β€”measure_biUnion_finsetβ‚€
Set.PairwiseDisjoint.aedisjoint
MeasurableSet.nullMeasurableSet
measure_biUnion_finsetβ‚€ πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Set
AEDisjoint
NullMeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.iUnion
Finset.instMembership
Finset.sum
ENNReal.instAddCommMonoid
β€”Finset.sum_attach
Finset.attach_eq_univ
tsum_fintype
SummationFilter.instLeAtTopUnconditional
measure_biUnionβ‚€
Finset.countable_toSet
measure_biUnion_toMeasurable πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.iUnion
Set.instMembership
toMeasurable
β€”Set.biUnion_eq_iUnion
measure_iUnion_toMeasurable
Encodable.countable
measure_biUnionβ‚€ πŸ“–mathematicalSet.Pairwise
Function.onFun
Set
AEDisjoint
NullMeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.iUnion
Set.instMembership
tsum
Set.Elem
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”Set.biUnion_eq_iUnion
measure_iUnionβ‚€
Encodable.countable
Set.Pairwise.on_injective
Subtype.coe_injective
measure_compl πŸ“–mathematicalMeasurableSetDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Compl.compl
Set.instCompl
ENNReal.instSub
Set.univ
β€”measure_complβ‚€
MeasurableSet.nullMeasurableSet
measure_complβ‚€ πŸ“–mathematicalNullMeasurableSetDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Compl.compl
Set.instCompl
ENNReal.instSub
Set.univ
β€”measure_add_measure_complβ‚€
ENNReal.add_sub_cancel_left
measure_diff πŸ“–mathematicalSet
Set.instHasSubset
NullMeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.instSDiff
ENNReal.instSub
β€”measure_diff'
Set.union_eq_self_of_subset_right
measure_diff' πŸ“–mathematicalNullMeasurableSetDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSDiff
ENNReal.instSub
Set.instUnion
β€”ENNReal.eq_sub_of_add_eq
add_comm
measure_add_diff
Set.union_comm
measure_diff_add_inter πŸ“–mathematicalMeasurableSetENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.instSDiff
Set.instInter
β€”add_comm
measure_inter_add_diff
measure_diff_eq_top πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Top.top
instTopENNReal
Set.instSDiffβ€”Mathlib.Tactic.Contrapose.contrapose₁
LT.lt.ne
LE.le.trans_lt
measure_mono
Measure.instOuterMeasureClass
Set.subset_diff_union
measure_union_le
ENNReal.add_lt_top
Ne.lt_top
measure_diff_le_iff_le_add πŸ“–mathematicalNullMeasurableSet
Set
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Measure.instFunLike
Set.instSDiff
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”measure_diff
tsub_le_iff_left
ENNReal.instOrderedSub
measure_diff_lt_of_lt_add πŸ“–mathematicalNullMeasurableSet
Set
Set.instHasSubset
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set.instSDiffβ€”measure_diff
ENNReal.sub_lt_of_lt_add
measure_mono
Measure.instOuterMeasureClass
add_comm
measure_diff_null' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instInter
instZeroENNReal
Set.instSDiffβ€”measure_congr
Measure.instOuterMeasureClass
diff_ae_eq_self
measure_eq_measure_larger_of_between_null_diff πŸ“–β€”Set
Set.instHasSubset
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.instSDiff
instZeroENNReal
β€”β€”measure_eq_measure_of_between_null_diff
measure_eq_measure_of_between_null_diff πŸ“–β€”Set
Set.instHasSubset
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.instSDiff
instZeroENNReal
β€”β€”measure_mono
Measure.instOuterMeasureClass
Set.diff_union_of_subset
HasSubset.Subset.trans
Set.instIsTransSubset
measure_union_le
zero_add
LE.le.antisymm
LE.le.trans
measure_eq_measure_of_null_diff πŸ“–β€”Set
Set.instHasSubset
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.instSDiff
instZeroENNReal
β€”β€”measure_congr
Measure.instOuterMeasureClass
Filter.EventuallyLE.antisymm
HasSubset.Subset.eventuallyLE
ae_le_set
measure_eq_measure_smaller_of_between_null_diff πŸ“–β€”Set
Set.instHasSubset
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.instSDiff
instZeroENNReal
β€”β€”measure_eq_measure_of_between_null_diff
measure_eq_top_iff_of_symmDiff πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Top.top
instTopENNReal
β€”Set.symmDiff_def
eq_top_iff
ENNReal.sub_eq_top_iff
le_measure_diff
measure_mono
Measure.instOuterMeasureClass
Set.subset_union_left
symmDiff_comm
measure_iInter_eq_iInf_measure_iInter_le πŸ“–mathematicalNullMeasurableSetDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.iInter
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Preorder.toLE
β€”Antitone.measure_iInter
Filter.atTop.isCountablyGenerated
Set.biInter_mono
Set.Iic_subset_Iic
Set.Subset.rfl
NullMeasurableSet.biInter
Set.to_countable
SetCoe.countable
ne_top_of_le_ne_top
measure_mono
Measure.instOuterMeasureClass
Set.iInterβ‚‚_subset
le_refl
Set.iInter_comm
Set.iInter_congr
biInf_const
Set.nonempty_Ici
measure_iUnion_congr_of_subset πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Measure.instFunLike
Set.iUnionβ€”le_antisymm
measure_mono
Measure.instOuterMeasureClass
Set.iUnion_mono''
le_top
Set.subset_iUnion
ae_eq_of_subset_of_measure_ge
Set.inter_subset_left
measure_toMeasurable
Set.subset_inter
HasSubset.Subset.trans
Set.instIsTransSubset
subset_toMeasurable
Set.iUnion_mono
measure_congr
Filter.EventuallyEq.symm
EventuallyEq.countable_iUnion
instCountableInterFilter
Set.iUnion_subset
Set.inter_subset_right
measure_iUnion_eq_iSup_accumulate πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.accumulate
Preorder.toLE
β€”Set.iUnion_accumulate
Monotone.measure_iUnion
Set.monotone_accumulate
measure_iUnion_toMeasurable πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.iUnion
toMeasurable
β€”measure_iUnion_congr_of_subset
subset_toMeasurable
Eq.le
measure_toMeasurable
measure_if πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instMembership
Set.instEmptyCollection
Set.indicator
instZeroENNReal
β€”Set.indicator_of_mem
measure_empty
Measure.instOuterMeasureClass
Set.indicator_of_notMem
measure_inter_add_diff πŸ“–mathematicalMeasurableSetENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.instInter
Set.instSDiff
β€”measure_inter_add_diffβ‚€
MeasurableSet.nullMeasurableSet
measure_inter_conull πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Compl.compl
Set.instCompl
instZeroENNReal
Set.instInterβ€”Set.diff_compl
measure_diff_null
Measure.instOuterMeasureClass
measure_inter_conull' πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instSDiff
instZeroENNReal
Set.instInterβ€”Set.diff_compl
measure_diff_null'
Set.diff_eq
measure_ne_top_iff_of_symmDiff πŸ“–β€”β€”β€”β€”Iff.ne
measure_eq_top_iff_of_symmDiff
measure_preimage_eq_zero_iff_of_countable πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.preimage
instZeroENNReal
Set.instSingletonSet
β€”Set.biUnion_preimage_singleton
measure_biUnion_null_iff
Measure.instOuterMeasureClass
measure_sUnion πŸ“–mathematicalSet.Pairwise
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.sUnion
tsum
Set.Elem
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
Set.instMembership
SummationFilter.unconditional
β€”Set.sUnion_eq_biUnion
measure_biUnion
measure_sUnionβ‚€ πŸ“–mathematicalSet.Pairwise
Set
AEDisjoint
NullMeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.sUnion
tsum
Set.Elem
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
Set.instMembership
SummationFilter.unconditional
β€”Set.sUnion_eq_biUnion
measure_biUnionβ‚€
measure_symmDiff_eq πŸ“–mathematicalNullMeasurableSetDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instSDiff
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”measure_unionβ‚€
NullMeasurableSet.diff
Disjoint.aedisjoint
disjoint_sdiff_sdiff
measure_symmDiff_eq_top πŸ“–mathematicalDFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Top.top
instTopENNReal
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instSDiff
β€”measure_mono_top
Set.subset_union_right
measure_diff_eq_top
measure_symmDiff_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instSDiff
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”le_trans
OuterMeasure.mono
symmDiff_triangle
measure_union_le
Measure.instOuterMeasureClass
measure_toMeasurable_union πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instUnion
toMeasurable
β€”measure_union_congr_of_subset
subset_toMeasurable
Eq.le
measure_toMeasurable
Set.Subset.rfl
le_rfl
measure_union πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”measure_unionβ‚€
MeasurableSet.nullMeasurableSet
Disjoint.aedisjoint
measure_union' πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”measure_unionβ‚€'
MeasurableSet.nullMeasurableSet
Disjoint.aedisjoint
measure_union_add_inter πŸ“–mathematicalMeasurableSetENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.instUnion
Set.instInter
β€”measure_inter_add_diff
Set.union_inter_cancel_right
Set.union_diff_right
Set.inter_isAssoc
Set.inter_isComm
AddSemigroup.to_isAssociative
AddCommMagma.to_isCommutative
measure_union_add_inter' πŸ“–mathematicalMeasurableSetENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.instUnion
Set.instInter
β€”Set.union_comm
Set.inter_comm
measure_union_add_inter
add_comm
measure_union_congr_of_subset πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Measure.instFunLike
Set.instUnionβ€”Set.union_eq_iUnion
measure_iUnion_congr_of_subset
Bool.countable
measure_union_toMeasurable πŸ“–mathematicalβ€”DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Set.instUnion
toMeasurable
β€”measure_union_congr_of_subset
Set.Subset.rfl
le_rfl
subset_toMeasurable
Eq.le
measure_toMeasurable
nonempty_inter_of_measure_lt_add πŸ“–mathematicalMeasurableSet
Set
Set.instHasSubset
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set.Nonempty
Set.instInter
β€”Set.not_disjoint_iff_nonempty_inter
Mathlib.Tactic.Contrapose.contrapose₃
measure_union
measure_mono
Measure.instOuterMeasureClass
Set.union_subset
nonempty_inter_of_measure_lt_add' πŸ“–mathematicalMeasurableSet
Set
Set.instHasSubset
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set.Nonempty
Set.instInter
β€”Set.inter_comm
nonempty_inter_of_measure_lt_add
add_comm
sum_measure_le_measure_univ πŸ“–mathematicalNullMeasurableSet
Set.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Set
AEDisjoint
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Finset.sum
ENNReal.instAddCommMonoid
DFunLike.coe
Measure
Measure.instFunLike
Set.univ
β€”measure_biUnion_finsetβ‚€
measure_mono
Measure.instOuterMeasureClass
Set.subset_univ
sum_measure_preimage_singleton πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
Finset.sum
ENNReal
ENNReal.instAddCommMonoid
DFunLike.coe
Measure
Measure.instFunLike
SetLike.coe
Finset
Finset.instSetLike
β€”measure_biUnion_finset
Set.pairwiseDisjoint_fiber
Finset.set_biUnion_preimage_singleton
sum_measure_singleton πŸ“–mathematicalβ€”Finset.sum
ENNReal
ENNReal.instAddCommMonoid
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.instSingletonSet
SetLike.coe
Finset
Finset.instSetLike
β€”Finset.sum_congr
sum_measure_preimage_singleton
tendsto_measure_Ici_atBot πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.Ici
Filter.atBot
nhds
ENNReal.instTopologicalSpace
Set.univ
β€”tendsto_measure_Iic_atTop
OrderDual.instIsCountablyGeneratedAtTop
tendsto_measure_Ico_atTop πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.Ico
Filter.atTop
nhds
ENNReal.instTopologicalSpace
Set.Ici
β€”Set.iUnion_Ico_right
tendsto_measure_iUnion_atTop
Antitone.Ico
antitone_const
monotone_id
tendsto_measure_Iic_atTop πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.Iic
Filter.atTop
nhds
ENNReal.instTopologicalSpace
Set.univ
β€”Set.iUnion_Iic
tendsto_measure_iUnion_atTop
monotone_Iic
tendsto_measure_Ioc_atBot πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.Ioc
Filter.atBot
nhds
ENNReal.instTopologicalSpace
Set.Iic
β€”Set.iUnion_Ioc_left
tendsto_measure_iUnion_atBot
Monotone.Ioc
monotone_id
antitone_const
tendsto_measure_biInter_gt πŸ“–mathematicalNullMeasurableSet
Set
Set.instHasSubset
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Measure.instFunLike
nhdsWithin
Set.Ioi
nhds
ENNReal.instTopologicalSpace
Set.iInter
β€”comap_coe_Ioi_nhdsGT
Filter.comap.isCountablyGenerated
TopologicalSpace.isCountablyGenerated_nhdsWithin
FirstCountableTopology.nhds_generated_countable
map_coe_Ioi_atBot
Set.iInter_congr_Prop
Set.biInter_eq_iInter
tendsto_measure_iInter_atBot
Order.not_isPredPrelimit_iff_exists_covBy
CovBy.nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
tendsto_measure_iInter_atBot πŸ“–mathematicalNullMeasurableSet
Monotone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Measure.instFunLike
Filter.atBot
nhds
ENNReal.instTopologicalSpace
Set.iInter
β€”tendsto_measure_iInter_atTop
OrderDual.instIsCountablyGeneratedAtTop
Monotone.dual_left
tendsto_measure_iInter_atTop πŸ“–mathematicalNullMeasurableSet
Antitone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Measure.instFunLike
Filter.atTop
nhds
ENNReal.instTopologicalSpace
Set.iInter
β€”Filter.Tendsto.of_neBot_imp
Filter.atTop_neBot_iff
Antitone.measure_iInter
tendsto_atTop_iInf
LinearOrder.infConvergenceClass
ENNReal.instOrderTopology
measure_mono
Measure.instOuterMeasureClass
tendsto_measure_iInter_le πŸ“–mathematicalNullMeasurableSetFilter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.iInter
Preorder.toLE
Filter.atTop
nhds
ENNReal.instTopologicalSpace
β€”Filter.Tendsto.of_neBot_imp
Filter.atTop_neBot_iff
measure_iInter_eq_iInf_measure_iInter_le
tendsto_atTop_iInf
LinearOrder.infConvergenceClass
ENNReal.instOrderTopology
measure_mono
Measure.instOuterMeasureClass
Set.biInter_subset_biInter_left
le_trans
tendsto_measure_iUnion_accumulate πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
Set.accumulate
Preorder.toLE
Filter.atTop
nhds
ENNReal.instTopologicalSpace
Set.iUnion
β€”Filter.Tendsto.of_neBot_imp
Filter.atTop_neBot_iff
measure_iUnion_eq_iSup_accumulate
tendsto_atTop_iSup
LinearOrder.supConvergenceClass
ENNReal.instOrderTopology
measure_mono
Measure.instOuterMeasureClass
Set.accumulate_subset_accumulate
tendsto_measure_iUnion_atBot πŸ“–mathematicalAntitone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Measure.instFunLike
Filter.atBot
nhds
ENNReal.instTopologicalSpace
Set.iUnion
β€”tendsto_measure_iUnion_atTop
OrderDual.instIsCountablyGeneratedAtTop
Antitone.dual_left
tendsto_measure_iUnion_atTop πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Measure.instFunLike
Filter.atTop
nhds
ENNReal.instTopologicalSpace
Set.iUnion
β€”Filter.Tendsto.of_neBot_imp
Filter.atTop_neBot_iff
Monotone.measure_iUnion
tendsto_atTop_iSup
LinearOrder.supConvergenceClass
ENNReal.instOrderTopology
measure_mono
Measure.instOuterMeasureClass
toMeasure_apply πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
OuterMeasure.caratheodory
MeasurableSet
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
OuterMeasure.toMeasure
OuterMeasure
OuterMeasure.instFunLikeSetENNReal
β€”OuterMeasure.trim_eq
toMeasure_applyβ‚€ πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
OuterMeasure.caratheodory
NullMeasurableSet
OuterMeasure.toMeasure
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
OuterMeasure
OuterMeasure.instFunLikeSetENNReal
β€”le_antisymm
Measure.instOuterMeasureClass
NullMeasurableSet.exists_measurable_subset_ae_eq
measure_congr
Filter.EventuallyEq.symm
toMeasure_apply
OuterMeasure.mono
le_toMeasure_apply
toMeasure_toOuterMeasure πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
OuterMeasure.caratheodory
Measure.toOuterMeasure
OuterMeasure.toMeasure
OuterMeasure.trim
β€”β€”
toOuterMeasure_toMeasure πŸ“–mathematicalβ€”OuterMeasure.toMeasure
Measure.toOuterMeasure
le_toOuterMeasure_caratheodory
β€”Measure.ext
le_toOuterMeasure_caratheodory
OuterMeasure.trim_eq
tsum_meas_le_meas_iUnion_of_disjoint πŸ“–mathematicalMeasurableSet
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
DFunLike.coe
Measure
Measure.instFunLike
SummationFilter.unconditional
Set.iUnion
β€”tsum_meas_le_meas_iUnion_of_disjointβ‚€
MeasurableSet.nullMeasurableSet
Disjoint.aedisjoint
tsum_meas_le_meas_iUnion_of_disjointβ‚€ πŸ“–mathematicalNullMeasurableSet
Pairwise
Function.onFun
Set
AEDisjoint
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
DFunLike.coe
Measure
Measure.instFunLike
SummationFilter.unconditional
Set.iUnion
β€”ENNReal.tsum_eq_iSup_sum
iSup_le_iff
measure_biUnion_finsetβ‚€
measure_mono
Measure.instOuterMeasureClass
Set.iUnion_mono''
Set.iUnion_subset
Set.Subset.rfl
tsum_measure_le_measure_univ πŸ“–mathematicalNullMeasurableSet
Pairwise
Function.onFun
Set
AEDisjoint
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
DFunLike.coe
Measure
Measure.instFunLike
SummationFilter.unconditional
Set.univ
β€”ENNReal.tsum_eq_iSup_sum
iSup_le
sum_measure_le_measure_univ
tsum_measure_preimage_singleton πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
tsum
ENNReal
Set.Elem
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
DFunLike.coe
Measure
Measure.instFunLike
Set.instMembership
SummationFilter.unconditional
β€”Set.biUnion_preimage_singleton
measure_biUnion
Set.pairwiseDisjoint_fiber
union_ae_eq_left_iff_ae_subset πŸ“–mathematicalβ€”Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Set
Set.instUnion
Filter.EventuallyLE
Prop.le
β€”Measure.instOuterMeasureClass
ae_le_set
Set.union_diff_left
ae_eq_set
Filter.eventuallyLE_antisymm_iff
HasSubset.Subset.eventuallyLE
Set.subset_union_left
union_ae_eq_right_iff_ae_subset πŸ“–mathematicalβ€”Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Set
Set.instUnion
Filter.EventuallyLE
Prop.le
β€”Measure.instOuterMeasureClass
Set.union_comm
union_ae_eq_left_iff_ae_subset

MeasureTheory.Measure

Definitions

NameCategoryTheorems
coeAddHom πŸ“–CompOp
1 mathmath: coeAddHom_apply
cofinite πŸ“–CompOp
8 mathmath: cofinite.instIsMeasurablyGenerated, mem_cofinite, MeasureTheory.cofinite_eq_bot, eventually_cofinite, MeasureTheory.UnifTight.eventually_cofinite_indicator, MeasureTheory.cofinite_eq_bot_iff, compl_mem_cofinite, cofinite_le_ae
instAdd πŸ“–CompOp
126 mathmath: InnerRegular.instHAdd, MeasurableEmbedding.comap_add, MeasureTheory.lintegral_add_measure, MeasureTheory.isFiniteMeasureAdd, MeasureTheory.DominatedFinMeasAdditive.add_measure_left, rnDeriv_add_right_of_absolutelyContinuous_of_mutuallySingular, rnDeriv_add_of_mutuallySingular, AbsolutelyContinuous.add_left, comp_add, measure_toMeasurable_add_inter_right, map_add, MeasureTheory.integral_add_measure, ProbabilityTheory.Kernel.coe_add, ProbabilityTheory.boolKernel_comp_measure, instMeasurableAddβ‚‚, MeasureTheory.AEStronglyMeasurable.add_measure, measure_toMeasurable_add_inter_left, restrict_add, MeasureTheory.instSFiniteHAddMeasure, restrict_add_restrict_compl, MutuallySingular.add_left, MeasureTheory.SignedMeasure.toJordanDecomposition_eq_of_eq_add_withDensity, conv_add, MeasureTheory.VAddInvariantMeasure.add, add_right_inj, add_comp, haveLebesgueDecomposition_add, MeasureTheory.nndist_integral_add_measure_le_lintegral, AEMeasurable.add_measure, sum_add_sum_compl, MeasureTheory.ae_add_measure_iff, AbsolutelyContinuous.add_left_iff, MeasureTheory.SignedMeasure.singularPart_totalVariation, singularPart_def, rnDeriv_add_singularPart, ProbabilityTheory.setBernoulli_apply', restrict_inter_add_diffβ‚€, MeasureTheory.MeasurePreserving.add_measure, sub_le_iff_le_add, ae_eq_or_eq_iff_map_eq_dirac_add_dirac, restrict_union, restrict_union', MeasureTheory.IntegrableOn.add_measure, sub_le_iff_le_add_of_le, add_comp', MeasureTheory.FiniteMeasure.toMeasure_add, MeasureTheory.measureReal_add_apply, ProbabilityTheory.mgf_add_measure, sub_add_cancel_of_le, restrict_union_add_inter, MeasureTheory.withDensity_add_left, MeasureTheory.SMulInvariantMeasure.add, add_apply, MeasureTheory.eLpNorm_le_add_measure_left, rnDeriv_add, add_sub_cancel, sum_cond, MeasureTheory.eLpNorm_le_add_measure_right, ae_eq_or_eq_iff_eq_dirac_add_dirac, MeasureTheory.Integrable.add_measure, coe_add, AbsolutelyContinuous.add_right, rnDeriv_add_right_of_mutuallySingular', ProbabilityTheory.Kernel.add_apply, MeasureTheory.weightedSMul_add_measure, HaveLebesgueDecomposition.lebesgue_decomposition, add_mconv, toSignedMeasure_add, restrict_unionβ‚€, sum_add_sum, toENNRealVectorMeasure_add, add_top, MeasureTheory.integrableOn_add_measure, fst_add, rnDeriv_def, aestronglyMeasurable_add_measure_iff, MeasureTheory.Add.sigmaFinite, MeasureTheory.instIsProbabilityMeasureHAddMeasureHSMulNNRealToNNRealSymm, restrict_union_add_interβ‚€, MutuallySingular.add_right, MutuallySingular.add_left_iff, MeasureTheory.average_add_measure, MeasureTheory.hasFiniteIntegral_add_measure, prod_add, MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular, MeasureTheory.integrable_add_measure, MeasureTheory.withDensity_add_measure, sum_bool, compProd_add_left, StieltjesFunction.measure_add, MeasureTheory.SimpleFunc.lintegral_add, ProbabilityTheory.Kernel.const_add, AbsolutelyContinuous.add, add_left_inj, MeasureTheory.withDensity_add_right, le_add_right, le_add_left, sub_def, singularPart_add_rnDeriv, add_prod, restrict_union_add_inter', snd_add, compProd_add_right, MeasureTheory.laverage_add_measure, MeasureTheory.eLpNorm_one_add_measure, add_sub_of_mutuallySingular, HaveLebesgueDecomposition.add_left, MeasureTheory.HasFiniteIntegral.add_measure, top_add, aemeasurable_add_measure_iff, rnDeriv_add', mconv_add, restrict_union_le, ProbabilityTheory.setBernoulli_apply, restrict_compl_add_restrict, haveLebesgueDecomposition_spec, add_conv, add_toOuterMeasure, support_add, singularPart_add, MeasureTheory.DominatedFinMeasAdditive.add_measure_right, MeasureTheory.trim_add, MutuallySingular.add_right_iff, restrict_inter_add_diff, ProbabilityTheory.setBernoulli_eq_map, rnDeriv_add_right_of_mutuallySingular
instAddCommMonoid πŸ“–CompOp
52 mathmath: ProbabilityTheory.Kernel.coe_nsmul, MeasureTheory.instIsFiniteMeasureSumMeasure, MeasureTheory.integral_domSMul, MeasureTheory.addHaarScalarFactor_smul_inv_eq_distribHaarChar, instIsOrderedAddMonoid, ae_mem_finset_iff, ProbabilityTheory.sum_meas_smul_cond_fiber, domSMul_apply, comapβ‚—_eq_comap, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar_inv, ae_mem_finset_iff_map_eq_sum_dirac, ProbabilityTheory.Kernel.nsmul_apply, ProbabilityTheory.Kernel.coeAddHom_apply, IsAddHaarMeasure.domSMul, InnerRegular.instSum, sum_fintype, MeasureTheory.addHaarScalarFactor_smul_eq_distribHaarChar, comapβ‚—_apply, mapβ‚—_congr, coeAddHom_apply, addHaarScalarFactor_smul_congr, Ergodic.iff_mem_extremePoints_measure_univ_eq, MeasureTheory.distribHaarChar_apply, map_def, MeasureTheory.integral_finset_sum_measure, finset_sum_apply, mapβ‚—_mk_apply_of_aemeasurable, Regular.domSMul, instSMulCommClassDomMulActNNReal, le_liftLinear_apply, ProbabilityTheory.Kernel.coe_finset_sum, MeasureTheory.ae_finsetSum_measure_iff, coe_finset_sum, instSMulCommClassNNRealDomMulAct, mapβ‚—_apply_of_measurable, liftLinear_apply, Ergodic.iff_mem_extremePoints, MeasureTheory.lintegral_finset_sum_measure, ProbabilityTheory.Kernel.finset_sum_apply, Ergodic.mem_extremePoints_measure_univ_eq, mapβ‚—_eq_zero_iff, MeasureTheory.SimpleFunc.lintegral_finset_sum, addHaarScalarFactor_domSMul, restrictβ‚—_apply, addHaarScalarFactor_smul_congr', sum_restrict_le, MeasureTheory.integrable_finset_sum_measure, Ergodic.mem_extremePoints, MeasureTheory.FiniteMeasure.toMeasure_sum, MeasureTheory.FiniteMeasure.toMeasureAddMonoidHom_apply, instModuleIsTorsionFree, sum_coe_finset
instCompleteLattice πŸ“–CompOp
11 mathmath: sub_top, mutuallySingular_tfae, mkMetric_top, disjoint_of_disjoint_ae, mutuallySingular_iff_disjoint, inf_apply, add_top, toOuterMeasure_top, MutuallySingular.disjoint, top_add, MeasureTheory.OuterMeasure.toMeasure_top
instCompleteSemilatticeInf πŸ“–CompOpβ€”
instDistribMulAction πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
3 mathmath: restrict_sInf_eq_sInf_restrict, sInf_apply, sub_def
instInhabited πŸ“–CompOpβ€”
instModule πŸ“–CompOp
11 mathmath: comapβ‚—_eq_comap, comapβ‚—_apply, mapβ‚—_congr, map_def, mapβ‚—_mk_apply_of_aemeasurable, le_liftLinear_apply, mapβ‚—_apply_of_measurable, liftLinear_apply, mapβ‚—_eq_zero_iff, restrictβ‚—_apply, instModuleIsTorsionFree
instMulAction πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
41 mathmath: mutuallySingular_tfae, instIsOrderedAddMonoid, toSignedMeasure_le_toSignedMeasure_iff, MeasureTheory.sfiniteSeq_le, le_mkMetric, restrict_biUnion_le, mkMetric_mono, sub_le_iff_le_add, withDensity_rnDeriv_le, nonpos_iff_eq_zero', le_iff', restrict_mono_set, lt_iff', disjoint_of_disjoint_ae, singularPart_le, mutuallySingular_iff_disjoint, le_hausdorffMeasure, MeasureTheory.IsHahnDecomposition.ge_on_compl, MeasureTheory.withDensity_inv_same_le, IicSnd_le_fst, restrict_mono_ae, ProbabilityTheory.Kernel.withDensity_rnDeriv_le, zero_le, restrict_le_self, MeasureTheory.withDensity_pdf_le_map, le_iff, toOuterMeasure_le, le_sum, sub_def, IicSnd_mono, sub_le, MutuallySingular.disjoint, MeasureTheory.withDensity_mono, sum_restrict_le, restrict_union_le, le_intro, lt_iff, MeasureTheory.IsHahnDecomposition.le_on, mkMetric_mono_smul, rnDeriv_le_one_iff_le, restrict_iUnion_le
instSMul πŸ“–CompOp
240 mathmath: MutuallySingular.smul_nnreal, MeasureTheory.SMulInvariantMeasure.smul, IsHaarMeasure.nnreal_smul, restrict_singleton, isAddInvariant_eq_smul_of_compactSpace, IsEverywherePos.smul_measure, join_smul, restrict_smul, ae_ennreal_smul_measure_eq, MeasureTheory.integral_smul_nnreal_measure, Real.smul_map_volume_mul_right, IsAddHaarMeasure.smul, WeaklyRegular.smul_nnreal, AbsolutelyContinuous.smul_left, rnDeriv_smul_right', AddCircle.volume_eq_smul_haarAddCircle, ae_mem_finset_iff, MeasureTheory.FinMeasAdditive.smul_measure, ProbabilityTheory.boolKernel_comp_measure, MeasureTheory.lintegral_smul_measure, haveLebesgueDecompositionSMul, MeasureTheory.tilted_neg_same', ProbabilityTheory.sum_meas_smul_cond_fiber, coe_nnreal_smul_apply, MeasureTheory.restrict_compl_sigmaFiniteSet, haarMeasure_unique, MeasureTheory.eLpNorm_smul_measure_of_ne_top', rnDeriv_smul_right, rnDeriv_smul_left_of_ne_top', sum_smul_dirac, ae_mem_finset_iff_map_eq_sum_dirac, haarScalarFactor_smul, OuterRegular.smul_nnreal, Real.smul_map_diagonal_volume_pi, map_fst_prod, const_comp, MeasureTheory.laverage_eq', MeasureTheory.AEStronglyMeasurable.smul_measure, Ergodic.eq_smul_of_absolutelyContinuous, essSup_ennreal_smul_measure, InnerRegular.smul, integral_isAddLeftInvariant_eq_smul_of_hasCompactSupport, QuasiErgodic.smul_measure, MeasureTheory.isProbabilityMeasureSMul, comp_eq_sum_of_countable, LinearMap.exists_map_addHaar_eq_smul_addHaar, discard_comp, rnDeriv_smul_left_of_ne_top, Real.map_matrix_volume_pi_eq_smul_volume_pi, Real.smul_map_volume_mul_left, map_linearMap_addHaar_eq_smul_addHaar, MeasureTheory.lpNorm_smul_measure_of_ne_zero, MeasureTheory.NullMeasurableSet.smul_measure, ProbabilityTheory.setBernoulli_apply', QuasiMeasurePreserving.smul_measure, Ergodic.iff_mem_extremePoints_measure_univ_eq, MeasureTheory.instSFiniteHSMulENNRealMeasure, MeasureTheory.mulEquivHaarChar_smul_map, MeasureTheory.isAddLeftInvariant_smul, ae_eq_or_eq_iff_map_eq_dirac_add_dirac, Regular.smul, MeasureTheory.eLpNorm_one_smul_measure, MeasureTheory.MeasurePreserving.smul_measure, MutuallySingular.smul, PreErgodic.smul_measure, MeasureTheory.SMul.sigmaFinite, addHaarMeasure_unique, MeasureTheory.isMulLeftInvariant_smul, isMulLeftInvariant_eq_smul_of_innerRegular, MeasureTheory.isFiniteMeasureSMulOfNNRealTower, rnDeriv_smul_left', pi_map_eval, MeasureTheory.isMulRightInvariant_smul, MeasureTheory.eLpNorm'_smul_measure, MeasureTheory.eLpNorm_smul_measure_of_ne_top, ProbabilityTheory.Kernel.IsProper.restrict_eq_indicator_smul, isMulLeftInvariant_eq_smul_of_regular, smul_toOuterMeasure, MeasureTheory.FinMeasAdditive.smul_measure_iff, map_eq_sum, rnDeriv_smul_right_of_ne_top', MeasureTheory.integrable_smul_measure, MeasureTheory.setLAverage_eq', ProbabilityTheory.Kernel.instIsIrreducibleHSMulENNRealMeasure, MeasureTheory.nullMeasurableSet_smul_measure_iff, toSignedMeasure_smul, intervalIntegral.integral_smul_measure, MeasureTheory.MemLp.smul_measure, ae_eq_or_eq_iff_eq_dirac_add_dirac, conv_smul_left, ProbabilityTheory.Kernel.IsProper.restrict_eq_indicator_smul', isOpenPosMeasure_smul, MeasureTheory.setAverage_eq', Ergodic.smul_measure, ProbabilityTheory.Kernel.comp_discard', ae_smul_measure_iff, instSMulCommClassDomMulActNNReal, MeasureTheory.eLpNormEssSup_smul_measure, MeasureTheory.Integrable.to_average, MeasureTheory.tilted_const', isMulInvariant_eq_smul_of_compactSpace, exists_integral_isMulLeftInvariant_eq_smul_of_hasCompactSupport, MeasureTheory.measure_eq_div_smul, smul_absolutelyContinuous, MeasureTheory.JordanDecomposition.smul_posPart, ProbabilityTheory.Kernel.isProper_iff_restrict_eq_indicator_smul, coe_smul, smul_finite, MeasureTheory.SimpleFunc.lintegral_smul, ae_ennreal_smul_measure_iff, addHaarScalarFactor_smul_smul, MeasureTheory.JordanDecomposition.real_smul_posPart_nonneg, MeasureTheory.IsFiniteMeasure.average, absolutelyContinuous_smul, MeasureTheory.count_withDensity, bind_smul, MeasureTheory.FiniteMeasure.toMeasure_normalize_eq_of_nonzero, MeasureTheory.IsFiniteMeasureOnCompacts.smul_nnreal, exists_sum_smul_dirac, MeasureTheory.measureReal_ennreal_smul_apply, InnerRegularWRT.smul, comap_smul, instSMulCommClassNNRealDomMulAct, MeasureTheory.IsFiniteMeasureOnCompacts.smul, MeasureTheory.count_withDensity', map_right_mul_eq_modularCharacterFun_smul, MeasureTheory.addEquivAddHaarChar_smul_map, Measurable.smul_measure, MeasureTheory.isMulLeftInvariant_smul_nnreal, MeasureTheory.instIsProbabilityMeasureHAddMeasureHSMulNNRealToNNRealSymm, Real.map_linearMap_volume_pi_eq_smul_volume_pi, map_linearMap_addHaar_pi_eq_smul_addHaar, aemeasurable_smul_measure_iff, MeasureTheory.isAddRightInvariant_smul, mul_addHaarScalarFactor_smul, map_addHaar_smul, integral_isMulLeftInvariant_eq_smul_of_hasCompactSupport, ae_smul_measure, MeasureTheory.inv_measure_univ_smul_eq_self, isMulLeftInvariant_eq_smul, MeasureTheory.VAddInvariantMeasure.vadd_nnreal, IsHaarMeasure.smul, InnerRegular.smul_nnreal, Ergodic.iff_mem_extremePoints, MeasureTheory.HasFiniteIntegral.smul_measure, MeasureTheory.JordanDecomposition.smul_negPart, MeasureTheory.isAddRightInvariant_smul_nnreal, mconv_smul_right, MeasureTheory.SMulInvariantMeasure.smul_nnreal, prod_smul_right, MeasureTheory.JordanDecomposition.real_smul_posPart_neg, isAddLeftInvariant_eq_smul_of_regular, WeaklyRegular.smul, MeasureTheory.measure_eq_sub_vadd, IsFundamentalDomain.QuotientMeasureEqMeasurePreimage_smulHaarMeasure, OuterRegular.smul, smul_apply, MeasureTheory.average_eq', MeasureTheory.tilted_zero', MeasureTheory.addEquivAddHaarChar_smul_eq_comap, ae_smul_measure_le, MeasureTheory.mulEquivHaarChar_smul_eq_comap, comp_smul, isAddLeftInvariant_eq_smul_of_innerRegular, MeasureTheory.JordanDecomposition.real_smul_negPart_neg, Ergodic.mem_extremePoints_measure_univ_eq, map_const, AlternatingMap.measure_def, MeasureTheory.dirac_withDensity', Real.map_volume_mul_right, haarScalarFactor_smul_smul, rnDeriv_smul_left, instIsScalarTower, exists_integral_isAddLeftInvariant_eq_smul_of_hasCompactSupport, StieltjesFunction.measure_smul, MeasureTheory.Integrable.smul_measure, Regular.smul_nnreal, MeasureTheory.isZeroOrProbabilityMeasureSMul, MeasureTheory.setLIntegral_smul_measure, MeasureTheory.isLocallyFiniteMeasureSMulNNReal, MeasureTheory.FiniteMeasure.toMeasure_smul, AbsolutelyContinuous.smul, essSup_smul_measure, MeasureTheory.isFiniteMeasureSMulNNReal, MeasureTheory.Integrable.smul_measure_nnreal, MeasureTheory.withDensity_smul_measure, MeasureTheory.restrict_compl_sigmaFiniteSetWRT, map_smul, InnerRegularCompactLTTop.smul_nnreal, ennreal_smul_eq_zero, IsEverywherePos.smul_measure_nnreal, MeasureTheory.withDensity_smul, haveLebesgueDecompositionSMulRight, IsAddHaarMeasure.nnreal_smul, compProd_smul_left, mul_haarScalarFactor_smul, MeasureTheory.llr_smul_right, AEMeasurable.smul_measure, MeasureTheory.integrable_average, MeasureTheory.lpNorm_smul_measure_of_ne_top, mconv_smul_left, instSMulCommClass, MeasureTheory.JordanDecomposition.real_smul_negPart_nonneg, MeasureTheory.eLpNorm_smul_measure_of_ne_zero, MeasureTheory.isMulRightInvariant_smul_nnreal, instIsCentralScalar, ProbabilityTheory.mgf_smul_measure, MeasureTheory.isAddLeftInvariant_smul_nnreal, map_right_add_eq_addModularCharacterFun_vadd, MeasureTheory.weightedSMul_smul_measure, MeasureTheory.VAddInvariantMeasure.vadd, MeasureTheory.eLpNorm_smul_measure_of_ne_zero', MeasureTheory.withDensity_const, singularPart_smul_right, MeasureTheory.eLpNormEssSup_ennreal_smul_measure, Ergodic.mem_extremePoints, isAddLeftInvariant_eq_smul, ProbabilityTheory.setBernoulli_apply, ProbabilityTheory.Kernel.const_comp, MeasureTheory.integrable_inv_smul_measure, MeasureTheory.integral_smul_measure, conv_smul_right, addHaarScalarFactor_smul, MeasureTheory.withDensity_smul', MeasureTheory.llr_smul_left, map_snd_prod, singularPart_smul, LinearMap.exists_map_addHaar_eq_smul_addHaar', rnDeriv_smul_right_of_ne_top, InnerRegularCompactLTTop.smul, mkMetric_mono_smul, MeasureTheory.measureReal_nnreal_smul_apply, ae_smul_measure_eq, prod_smul_left, haveLebesgueDecompositionSMul', ProbabilityTheory.setBernoulli_eq_map, bind_const, IsFundamentalDomain.AddQuotientMeasureEqMeasurePreimage_vaddAddHaarMeasure, MeasureTheory.dirac_withDensity, Real.map_volume_mul_left
instZero πŸ“–CompOp
185 mathmath: comap_undef, rnDeriv_zero, MeasureTheory.restrict_dirac', MeasureTheory.isFiniteMeasureZero, MeasureTheory.IsFundamentalDomain.quotientMeasureEqMeasurePreimage_of_zero, sub_top, MeasureTheory.unifIntegrable_zero_meas, MeasureTheory.hasFiniteIntegral_zero_measure, WeaklyRegular.zero, conv_zero, StieltjesFunction.measure_zero, MeasureTheory.average_zero_measure, ProbabilityTheory.Kernel.indep_zero_right, singularPart_eq_zero, Ergodic.zero_measure, restrict_empty, ProbabilityTheory.Kernel.withDensity_rnDeriv_eq_zero_iff_measure_eq_zero, restrict_singleton', AbsolutelyContinuous.zero, MeasureTheory.IsProbabilityMeasure.neZero, snd_zero, MeasureTheory.condExpL1_measure_zero, MeasureTheory.withDensity_eq_zero_iff, MeasureTheory.withDensity_zero, ProbabilityTheory.Kernel.coe_zero, instHaveLebesgueDecompositionZeroRight, ProbabilityTheory.Kernel.instNeZeroMeasureCoeSectROfProdMk, OuterRegular.zero, essInf_measure_zero, ProbabilityTheory.covarianceOperator_zero, restrict_eq_zero, MeasureTheory.ae_zero, MeasureTheory.memLp_measure_zero, MeasureTheory.aestronglyMeasurable_zero_measure, singularPart_def, MeasureTheory.eLpNorm'_measure_zero_of_pos, MeasureTheory.restrict_dirac, MeasureTheory.laverage_zero_measure, ProbabilityTheory.uniformOn_eq_zero, MeasureTheory.SignedMeasure.totalVariation_zero, instNeZeroOfNonempty, MeasureTheory.lpNorm_measure_zero, zero_toOuterMeasure, InformationTheory.klDiv_zero_right, ProbabilityTheory.covarianceBilin_zero, eq_zero_of_absolutelyContinuous_of_mutuallySingular, MeasureTheory.measureReal_zero, ProbabilityTheory.cond_eq_zero_of_meas_eq_zero, MeasureTheory.JordanDecomposition.zero_posPart, map_def, MeasureTheory.zero_trim, nonpos_iff_eq_zero', InformationTheory.klDiv_zero_left, ProbabilityTheory.covarianceBilinDual_zero, MeasureTheory.measureUnivNNReal_eq_zero, ProbabilityTheory.Kernel.iIndepFun_zero_right, MeasureTheory.instSFiniteOfNatMeasure, ProbabilityTheory.avgRisk_zero_prior, map_eq_zero_iff, MeasureTheory.SMulInvariantMeasure.zero, restrict.neZero, ProbabilityTheory.centralMoment_zero_measure, MeasureTheory.IsProjectiveMeasureFamily.eq_zero_of_isEmpty, ProbabilityTheory.Kernel.singularPart_eq_zero_iff_apply_eq_zero, ProbabilityTheory.variance_zero_measure, singularPart_zero_right, withDensity_rnDeriv_eq_zero, MeasureTheory.uniformIntegrable_zero_meas, MutuallySingular.restrict_nullSet, ProbabilityTheory.mgf_zero_measure, ProbabilityTheory.Kernel.singularPart_eq_zero_iff_measure_eq_zero, ProbabilityTheory.uniformOn_empty_meas, zero_prod, zero_conv, bind_zero_right, ProbabilityTheory.Kernel.compProd_eq_zero_iff, ProbabilityTheory.Kernel.indepSet_zero_right, singularPart_withDensity, MeasureTheory.SimpleFunc.lintegral_zero, MutuallySingular.zero_left, MeasureTheory.ae_eq_bot, MeasureTheory.JordanDecomposition.zero_negPart, singularPart_self, MeasureTheory.toFinite_eq_zero_iff, ProbabilityTheory.Kernel.instNeZeroMeasureCoeSectLOfProdMk, restrict_zero, MutuallySingular.zero_right, ProbabilityTheory.Kernel.indepSets_zero_right, essSup_measure_zero, MeasureTheory.lintegral_zero_measure, compProd_zero_left, ProbabilityTheory.moment_zero_measure, ProbabilityTheory.Kernel.const_zero, zero_le, sub_eq_zero_of_le, MeasureTheory.tilted_zero_measure, ProbabilityTheory.covariance_zero_measure, singularPart_zero, MeasureTheory.instIsZeroOrProbabilityMeasureOfNatMeasure, ProbabilityTheory.Kernel.iIndepSets_zero_right, MeasureTheory.eLpNorm'_measure_zero_of_neg, ProbabilityTheory.Kernel.withDensity_rnDeriv_eq_zero_iff_mutuallySingular, ProbabilityTheory.Kernel.iIndep_zero_right, ProbabilityTheory.Kernel.withDensity_rnDeriv_eq_zero_iff_apply_eq_zero, ProbabilityTheory.Kernel.singularPart_eq_zero_iff_absolutelyContinuous, sum_eq_zero, MeasureTheory.IsAddFundamentalDomain.addQuotientMeasureEqMeasurePreimage_of_zero, MeasureTheory.charFun_zero_measure, restrict_zero_set, MeasureTheory.tilted_of_not_integrable, MeasureTheory.VAddInvariantMeasure.zero, MeasureTheory.eq_zero_or_isProbabilityMeasure, aemeasurable_zero_measure, MeasureTheory.measureUnivNNReal_zero, ProbabilityTheory.uncenteredCovarianceBilin_zero, zero_mconv, sum_zero, eq_zero_of_isEmpty, support_zero, absolutelyContinuous_zero_iff, ProbabilityTheory.cond_eq_zero, QuasiErgodic.zero_measure, mapβ‚—_eq_zero_iff, MeasureTheory.null_iff_of_isAddLeftInvariant, MutuallySingular.self_iff, MeasureTheory.OuterMeasure.toMeasure_zero, ProbabilityTheory.cond_empty, MeasureTheory.sfiniteSeq_zero, MeasureTheory.Lp.norm_measure_zero, sum_of_isEmpty, compProd_of_not_sfinite, ProbabilityTheory.Kernel.zero_apply, MeasureTheory.integral_zero_measure, MutuallySingular.restrict_compl_nullSet, compProd_zero_right, compProd_of_not_isSFiniteKernel, MeasureTheory.integrable_zero_measure, ProbabilityTheory.Kernel.indepFun_zero_right, ennreal_smul_eq_zero, MeasureTheory.measureReal_zero_apply, zero_sub, compProd_eq_zero_iff, Real.hausdorffMeasure_of_finrank_lt, MeasureTheory.eLpNorm'_measure_zero_of_exponent_zero, ProbabilityTheory.bayesRisk_zero_right, MeasureTheory.null_iff_of_isMulLeftInvariant, measure_univ_eq_zero, sub_self, bind_zero_right', prod_zero, toSphere_eq_zero_iff_finrank, map_zero, fst_zero, MeasureTheory.FiniteMeasure.toMeasure_zero, join_zero, MeasureTheory.tilted_of_not_aemeasurable, bind_zero_left, singularPart_of_not_haveLebesgueDecomposition, MeasureTheory.eLpNormEssSup_measure_zero, toSignedMeasure_zero, ProbabilityTheory.cgf_zero_measure, mconv_zero, MeasureTheory.OuterMeasure.toMeasure_eq_zero, ProbabilityTheory.evariance_zero_measure, map_of_not_aemeasurable, MeasureTheory.eLpNorm_measure_zero, MeasureTheory.weightedSMul_zero_measure, toENNRealVectorMeasure_zero, singularPart_eq_zero_of_ac, instHaveLebesgueDecompositionZeroLeft, PreErgodic.zero_measure, MeasureTheory.toFinite_zero, ProbabilityTheory.uncenteredCovarianceBilinDual_zero, ProbabilityTheory.Kernel.iIndepSet_zero_right, coe_zero, comap_zero, sub_zero, Regular.zero, StieltjesFunction.measure_const, toSphere_eq_zero_iff, MeasureTheory.withDensity_zero_left, ProbabilityTheory.Kernel.HasSubgaussianMGF.zero_measure, ProbabilityTheory.uniformOn_eq_zero', InnerRegular.zero, sum_extend_zero
sum πŸ“–CompOp
75 mathmath: sum_apply_eq_zero', sum_sum, MeasureTheory.instSFiniteSumOfCountable, MeasureTheory.SimpleFunc.lintegral_sum, aestronglyMeasurable_sum_measure_iff, MeasureTheory.IsAddFundamentalDomain.sum_restrict, MeasureTheory.AEStronglyMeasurable.sum_measure, sum_smul_dirac, le_sum_apply, sum_apply_of_countable, ae_sum_iff, comp_eq_sum_of_countable, sum_add_sum_compl, sum_fintype, restrict_sum_of_countable, ProbabilityTheory.Kernel.sum_const, MeasureTheory.hasSum_lintegral_measure, join_sum, ae_sum_eq, sum_comm, MeasureTheory.withDensity_sum, sum_comp_equiv, restrict_biUnion_le, MeasureTheory.IsFundamentalDomain.sum_restrict, restrict_iUnion, sum_apply, snd_sum, MeasureTheory.withDensity_tsum, map_eq_sum, InnerRegular.instSum_1, sum_cond, compProd_sum_left, AEMeasurable.sum_measure, MeasureTheory.sum_sfiniteSeq, restrict_sum, sum_apply_eq_zero, sum_add_sum, MeasureTheory.count_withDensity, MeasureTheory.sum.sigmaFinite, exists_sum_smul_dirac, MeasureTheory.count_withDensity', restrict_biUnion_finset, HaveLebesgueDecomposition.sum_left, restrict_iUnion_ae, ProbabilityTheory.Kernel.sum_apply, MutuallySingular.sum_right, prod_sum_right, MeasureTheory.IsAddFundamentalDomain.sum_restrict_of_ac, restrict_biUnion, sum_eq_zero, sum_bool, aemeasurable_sum_measure_iff, sum_congr, le_sum, MeasureTheory.IsFundamentalDomain.sum_restrict_of_ac, prod_sum, sum_zero, ProbabilityTheory.Kernel.measure_sum_seq, compProd_sum_right, sum_of_isEmpty, MeasureTheory.sfinite_sum_of_countable, prod_sum_left, MeasureTheory.instIsFiniteMeasureSumOfFinite, absolutelyContinuous_sum_left, fst_sum, MutuallySingular.sum_left, absolutelyContinuous_sum_right, sum_restrict_le, MeasureTheory.SFinite.out', MeasureTheory.lintegral_sum_measure, ae_sum_iff', MeasureTheory.sum_restrict_disjointed_spanningSets, sum_coe_finset, restrict_iUnion_le, sum_extend_zero

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”β€”
add_toOuterMeasure πŸ“–mathematicalβ€”toOuterMeasure
MeasureTheory.Measure
instAdd
MeasureTheory.OuterMeasure
MeasureTheory.OuterMeasure.instAdd
β€”β€”
add_top πŸ“–mathematicalβ€”MeasureTheory.Measure
instAdd
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”top_unique
le_add_left
le_rfl
ae_ennreal_smul_measure_eq πŸ“–mathematicalβ€”MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
ENNReal
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”Filter.ext
instOuterMeasureClass
IsScalarTower.right
ae_ennreal_smul_measure_iff
ae_ennreal_smul_measure_iff πŸ“–mathematicalβ€”Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
ENNReal
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”instOuterMeasureClass
IsScalarTower.right
ENNReal.instNoZeroDivisors
ae_smul_measure πŸ“–mathematicalFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
instSMulβ€”instOuterMeasureClass
MeasureTheory.ae_iff
smul_apply
smul_one_smul
smul_zero
ae_smul_measure_eq πŸ“–mathematicalβ€”MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
instSMul
SMulZeroClass.toSMul
ENNReal
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ENNReal.instAddCommMonoid
β€”Filter.ext
instOuterMeasureClass
ae_smul_measure_iff
ae_smul_measure_iff πŸ“–mathematicalβ€”Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
instSMul
SMulZeroClass.toSMul
ENNReal
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ENNReal.instAddCommMonoid
β€”instOuterMeasureClass
IsDomain.toIsCancelMulZero
ae_smul_measure_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
instSMul
β€”instOuterMeasureClass
ae_smul_measure
ae_sum_eq πŸ“–mathematicalβ€”MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
sum
iSup
Filter
Filter.instSupSet
β€”Filter.ext
instOuterMeasureClass
ae_sum_iff
Filter.mem_iSup
ae_sum_iff πŸ“–mathematicalβ€”Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
sum
β€”sum_apply_eq_zero
ae_sum_iff' πŸ“–mathematicalMeasurableSet
setOf
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
sum
β€”sum_apply_eq_zero'
MeasurableSet.compl
apply_eq_zero_of_isEmpty πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instZeroENNReal
β€”Set.eq_empty_of_isEmpty
instIsEmptySubtype
MeasureTheory.measure_empty
instOuterMeasureClass
coeAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
MeasureTheory.Measure
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
Pi.addZeroClass
Set
ENNReal
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
AddMonoidHom.instFunLike
coeAddHom
instFunLike
β€”β€”
coe_add πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instAdd
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”β€”
coe_finset_sum πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Finset.sum
instAddCommMonoid
Pi.addCommMonoid
ENNReal.instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
coe_nnreal_smul_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
NNReal
instSMul
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
IsScalarTower.right
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.ofNNReal
β€”IsScalarTower.right
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instSMul
Function.hasSMul
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instZero
Pi.instZero
instZeroENNReal
β€”β€”
cofinite_le_ae πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
cofinite
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
β€”instOuterMeasureClass
compl_mem_cofinite πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
cofinite
Compl.compl
Set.instCompl
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
instFunLike
Top.top
instTopENNReal
β€”mem_cofinite
compl_compl
ennreal_smul_eq_zero πŸ“–mathematicalβ€”ENNReal
MeasureTheory.Measure
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
instZero
instZeroENNReal
β€”IsScalarTower.right
ENNReal.instNoZeroDivisors
eq_zero_of_isEmpty πŸ“–mathematicalβ€”MeasureTheory.Measure
instZero
β€”instSubsingleton
eventually_cofinite πŸ“–mathematicalβ€”Filter.Eventually
cofinite
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
setOf
Top.top
instTopENNReal
β€”β€”
finset_sum_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Finset.sum
instAddCommMonoid
ENNReal.instAddCommMonoid
β€”coe_finset_sum
Finset.sum_apply
inf_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
setOf
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set.instInter
Compl.compl
Set.instCompl
β€”sInf_pair
sInf_apply
MeasureTheory.OuterMeasure.sInf_apply
Set.image_nonempty
Set.insert_nonempty
le_antisymm
le_sInf
LE.le.trans
iInfβ‚‚_le
Set.mem_iUnion
iInf_image
iInf_congr_Prop
iInf_pair
ENNReal.tsum_eq_add_tsum_ite
zero_ne_one
Summable.tsum_eq_zero_iff
ENNReal.instIsOrderedAddMonoid
ENNReal.instCanonicallyOrderedAdd
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
ENNReal.summable
MeasureTheory.measure_empty
instOuterMeasureClass
inf_of_le_left
add_zero
add_le_add
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
inf_le_left
inf_le_right
le_iInfβ‚‚
MeasureTheory.measure_mono
Set.inter_subset_left
MeasureTheory.measure_biUnion_le
Set.to_countable
SetCoe.countable
instCountableNat
Set.compl_iUnion
Set.mem_iUnionβ‚‚
Set.mem_iInterβ‚‚
Set.ext
tsum_univ
Summable.tsum_union_disjoint
ENNReal.instT2Space
ENNReal.instContinuousAdd
Set.disjoint_iff
LT.lt.not_ge
Set.mem_setOf_eq
Eq.le
tsum_congr
inf_of_le_right
le_of_lt
le_trans
sInf_le
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
MeasureTheory.Measure
instSMul
MulOpposite
IsScalarTower.op_left
ENNReal
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”IsScalarTower.op_left
ext
IsCentralScalar.op_smul_eq_smul
instIsOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
MeasureTheory.Measure
instAddCommMonoid
instPartialOrder
β€”add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
MeasureTheory.Measure
instSMul
β€”ext
smul_assoc
instModuleIsTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
MeasureTheory.Measure
instAddCommMonoid
instModule
β€”Function.Injective.moduleIsTorsionFree
Pi.instModuleIsTorsionFree
DFunLike.coe_injective
instNeZeroENNRealCoeSetUniv πŸ“–mathematicalβ€”ENNReal
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.univ
β€”measure_univ_ne_zero
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
MeasureTheory.Measure
instSMul
β€”ext
SMulCommClass.smul_comm
instSubsingleton πŸ“–mathematicalβ€”MeasureTheory.Measureβ€”ext
apply_eq_zero_of_isEmpty
le_add_left πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instAddβ€”le_add_left
ENNReal.instCanonicallyOrderedAdd
le_add_right πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instAddβ€”le_add_right
ENNReal.instCanonicallyOrderedAdd
le_iff πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ENNReal
ENNReal.instPartialOrder
DFunLike.coe
Set
instFunLike
β€”outerMeasure_le_iff
le_iff' πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ENNReal
ENNReal.instPartialOrder
DFunLike.coe
Set
instFunLike
β€”β€”
le_intro πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
instPartialOrderβ€”le_iff
Set.eq_empty_or_nonempty
MeasureTheory.measure_empty
instOuterMeasureClass
le_sum πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
sum
β€”le_iff
sum_apply
ENNReal.le_tsum
le_sum_apply πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
SummationFilter.unconditional
sum
β€”MeasureTheory.le_toMeasure_apply
lt_iff πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Preorder.toLE
MeasurableSet
ENNReal
ENNReal.instPartialOrder
DFunLike.coe
Set
instFunLike
β€”lt_iff_le_not_ge
lt_iff' πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Preorder.toLE
ENNReal
ENNReal.instPartialOrder
DFunLike.coe
Set
instFunLike
β€”lt_iff_le_not_ge
measure_eq_left_of_subset_of_measure_add_eq πŸ“–β€”Set
Set.instHasSubset
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
instAdd
β€”β€”le_antisymm
MeasureTheory.measure_mono
instOuterMeasureClass
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
ENNReal.le_of_add_le_add_right
ne_top_of_le_ne_top
le_add_left
ENNReal.instCanonicallyOrderedAdd
le_rfl
measure_eq_right_of_subset_of_measure_add_eq πŸ“–β€”Set
Set.instHasSubset
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
instAdd
β€”β€”measure_eq_left_of_subset_of_measure_add_eq
add_comm
measure_inter_eq_of_ae πŸ“–mathematicalFilter.Eventually
Set
Set.instMembership
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
DFunLike.coe
ENNReal
Set.instInter
β€”instOuterMeasureClass
le_antisymm
MeasureTheory.measure_mono
Set.inter_subset_right
Filter.EventuallyLE.measure_le
Filter.mp_mem
Filter.univ_mem'
measure_inter_eq_of_measure_eq πŸ“–mathematicalMeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Set.instHasSubset
Set.instInterβ€”le_antisymm
MeasureTheory.measure_mono
instOuterMeasureClass
Set.inter_subset_inter
subset_refl
Set.instReflSubset
MeasureTheory.measure_inter_add_diff
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Set.diff_subset_diff
LT.lt.ne
lt_of_le_of_lt
Set.diff_subset
Ne.lt_top
ENNReal.le_of_add_le_add_right
measure_mono_both πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instHasSubset
ENNReal
ENNReal.instPartialOrder
DFunLike.coe
instFunLike
β€”LE.le.trans
MeasureTheory.measure_mono
instOuterMeasureClass
measure_mono_left πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ENNReal
ENNReal.instPartialOrder
DFunLike.coe
Set
instFunLike
β€”β€”
measure_support_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Function.support
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
instOuterMeasureClass
Pi.instZero
β€”β€”
measure_toMeasurable_add_inter_left πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Set.instInter
MeasureTheory.toMeasurable
instAdd
β€”measure_inter_eq_of_measure_eq
measure_eq_left_of_subset_of_measure_add_eq
MeasureTheory.measure_toMeasurable
MeasureTheory.subset_toMeasurable
measure_toMeasurable_add_inter_right πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Set.instInter
MeasureTheory.toMeasurable
instAdd
β€”add_comm
measure_toMeasurable_add_inter_left
measure_toMeasurable_inter πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Set.instInter
MeasureTheory.toMeasurable
β€”measure_inter_eq_of_measure_eq
MeasureTheory.measure_toMeasurable
MeasureTheory.subset_toMeasurable
measure_univ_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Set.univ
instZeroENNReal
instZero
β€”bot_unique
MeasureTheory.measure_mono
instOuterMeasureClass
Set.subset_univ
measure_univ_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
measure_univ_eq_zero
measure_univ_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.univ
β€”pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
measure_univ_ne_zero
mem_cofinite πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
cofinite
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
instFunLike
Compl.compl
Set.instCompl
Top.top
instTopENNReal
β€”β€”
nnreal_smul_coe_apply πŸ“–mathematicalβ€”NNReal
ENNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.ofNNReal
β€”β€”
nonempty_of_neZero πŸ“–β€”β€”β€”β€”isEmpty_or_nonempty
Set.eq_empty_of_isEmpty
instIsEmptySubtype
MeasureTheory.measure_empty
instOuterMeasureClass
instNeZeroENNRealCoeSetUniv
nonpos_iff_eq_zero' πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZero
β€”LE.le.ge_iff_eq'
zero_le
sInf_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
InfSet.sInf
instInfSet
MeasureTheory.OuterMeasure
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasureTheory.OuterMeasure.instCompleteLattice
Set.image
toOuterMeasure
β€”MeasureTheory.toMeasure_apply
sInf_caratheodory
sInf_caratheodory πŸ“–mathematicalMeasurableSetMeasureTheory.OuterMeasure.caratheodory
InfSet.sInf
MeasureTheory.OuterMeasure
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasureTheory.OuterMeasure.instCompleteLattice
Set.image
MeasureTheory.Measure
toOuterMeasure
β€”MeasureTheory.OuterMeasure.sInf_eq_boundedBy_sInfGen
MeasureTheory.OuterMeasure.boundedBy_caratheodory
MeasureTheory.measure_eq_iInf
MeasureTheory.OuterMeasure.sInfGen_def
iInf_image
iInfβ‚‚_le_of_le
MeasureTheory.measure_mono
MeasureTheory.OuterMeasure.instOuterMeasureClass
MeasureTheory.measure_inter_add_diff
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Set.inter_subset_inter_left
Set.diff_subset_diff_left
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instSMul
β€”β€”
smul_toOuterMeasure πŸ“–mathematicalβ€”toOuterMeasure
MeasureTheory.Measure
instSMul
MeasureTheory.OuterMeasure
MeasureTheory.OuterMeasure.instSMul
β€”β€”
sum_add_sum πŸ“–mathematicalβ€”MeasureTheory.Measure
instAdd
sum
β€”ext
sum_apply
Summable.tsum_add
ENNReal.instT2Space
ENNReal.instContinuousAdd
SummationFilter.instNeBotUnconditional
ENNReal.summable
sum_add_sum_compl πŸ“–mathematicalβ€”MeasureTheory.Measure
instAdd
sum
Set.Elem
Set
Set.instMembership
Compl.compl
Set.instCompl
β€”ext
sum_apply
Summable.tsum_add_tsum_compl
ENNReal.instT2Space
ENNReal.instContinuousAdd
ENNReal.summable
sum_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
sum
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”MeasureTheory.toMeasure_apply
sum_apply_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
sum
instZeroENNReal
β€”sum_apply_of_countable
sum_apply_eq_zero' πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
sum
instZeroENNReal
β€”sum_apply
sum_apply_of_countable πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
sum
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”le_antisymm
MeasureTheory.exists_measurable_superset_forall_eq
MeasureTheory.measure_mono
instOuterMeasureClass
sum_apply
le_sum_apply
sum_applyβ‚€ πŸ“–mathematicalMeasureTheory.NullMeasurableSet
sum
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”le_antisymm
instOuterMeasureClass
MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq
MeasureTheory.measure_congr
Filter.EventuallyEq.symm
sum_apply
ENNReal.tsum_le_tsum
MeasureTheory.measure_mono
le_sum_apply
sum_bool πŸ“–mathematicalβ€”sum
MeasureTheory.Measure
instAdd
β€”sum_fintype
Fintype.sum_bool
sum_coe_finset πŸ“–mathematicalβ€”sum
Finset
SetLike.instMembership
Finset.instSetLike
Finset.sum
MeasureTheory.Measure
instAddCommMonoid
β€”sum_fintype
Finset.sum_coe_sort
sum_comm πŸ“–mathematicalβ€”sumβ€”ext
sum_apply
ENNReal.tsum_comm
sum_comp_equiv πŸ“–mathematicalβ€”sum
MeasureTheory.Measure
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”ext
sum_apply
Equiv.tsum_eq
sum_cond πŸ“–mathematicalβ€”sum
MeasureTheory.Measure
instAdd
β€”sum_bool
sum_congr πŸ“–mathematicalβ€”sumβ€”β€”
sum_eq_zero πŸ“–mathematicalβ€”sum
MeasureTheory.Measure
instZero
β€”sum_apply
forall_swap
sum_extend_zero πŸ“–mathematicalβ€”sum
Function.extend
MeasureTheory.Measure
Pi.instZero
instZero
β€”ext
sum_apply
Function.apply_extend
tsum_extend_zero
sum_fintype πŸ“–mathematicalβ€”sum
Finset.sum
MeasureTheory.Measure
instAddCommMonoid
Finset.univ
β€”ext
sum_apply
tsum_fintype
SummationFilter.instLeAtTopUnconditional
finset_sum_apply
sum_of_isEmpty πŸ“–mathematicalβ€”sum
MeasureTheory.Measure
instZero
β€”measure_univ_eq_zero
sum_apply
MeasurableSet.univ
tsum_empty
sum_sum πŸ“–mathematicalβ€”sumβ€”ext
sum_apply
ENNReal.tsum_prod'
sum_zero πŸ“–mathematicalβ€”sum
MeasureTheory.Measure
instZero
β€”ext
sum_apply
tsum_zero
toOuterMeasure_le πŸ“–mathematicalβ€”MeasureTheory.OuterMeasure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.OuterMeasure.instPartialOrder
toOuterMeasure
MeasureTheory.Measure
instPartialOrder
β€”β€”
toOuterMeasure_top πŸ“–mathematicalβ€”toOuterMeasure
Top.top
MeasureTheory.Measure
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
MeasureTheory.OuterMeasure
MeasureTheory.OuterMeasure.instCompleteLattice
β€”β€”
top_add πŸ“–mathematicalβ€”MeasureTheory.Measure
instAdd
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”top_unique
le_add_right
le_rfl
zero_le πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZero
β€”bot_le
zero_toOuterMeasure πŸ“–mathematicalβ€”toOuterMeasure
MeasureTheory.Measure
instZero
MeasureTheory.OuterMeasure
MeasureTheory.OuterMeasure.instZero
β€”β€”

MeasureTheory.Measure.ae

Theorems

NameKindAssumesProvesValidatesDepends On
neBot πŸ“–mathematicalβ€”Filter.NeBot
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_neBot

MeasureTheory.Measure.cofinite

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMeasurablyGenerated πŸ“–mathematicalβ€”Filter.IsMeasurablyGenerated
MeasureTheory.Measure.cofinite
β€”MeasureTheory.Measure.compl_mem_cofinite
MeasureTheory.measure_toMeasurable
MeasurableSet.compl
MeasureTheory.measurableSet_toMeasurable
Set.compl_subset_comm
MeasureTheory.subset_toMeasurable

MeasureTheory.OuterMeasure

Definitions

NameCategoryTheorems
toMeasure πŸ“–CompOp
8 mathmath: MeasureTheory.toOuterMeasure_toMeasure, MeasureTheory.toMeasure_toOuterMeasure, MeasureTheory.le_toMeasure_apply, MeasureTheory.Measure.pi_def, MeasureTheory.toMeasure_apply, toMeasure_zero, toMeasure_eq_zero, toMeasure_top

Theorems

NameKindAssumesProvesValidatesDepends On
toMeasure_eq_zero πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
caratheodory
toMeasure
MeasureTheory.Measure
MeasureTheory.Measure.instZero
MeasureTheory.OuterMeasure
instZero
β€”ext
le_bot_iff
LE.le.trans_eq
MeasureTheory.le_toMeasure_apply
toMeasure_zero
toMeasure_top πŸ“–mathematicalβ€”toMeasure
Top.top
MeasureTheory.OuterMeasure
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
MeasureTheory.Measure
MeasureTheory.Measure.instCompleteLattice
β€”MeasureTheory.toOuterMeasure_toMeasure
toMeasure_zero πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
caratheodory
MeasureTheory.OuterMeasure
instZero
toMeasure
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasureTheory.Measure.ext
MeasureTheory.toMeasure_apply

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
measure_iInter πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
MeasureTheory.NullMeasurableSet
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.iInter
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”le_antisymm
le_iInf
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.iInter_subset
Filter.exists_seq_antitone_tendsto_atTop_atBot
le_iInf_comp
Directed.measure_iInter
instCountableNat
Antitone.directed_ge
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
comp_antitone
Filter.Eventually.exists
Filter.atTop_neBot
Filter.Tendsto.eventually_le_atBot
ne_top_of_le_ne_top
Set.iInter_mono'
measure_iUnion πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”isEmpty_or_nonempty
Set.iUnion_of_empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
ciSup_of_empty
bot_eq_zero'
ENNReal.instCanonicallyOrderedAdd
Filter.exists_seq_monotone_tendsto_atTop_atTop
iUnion_comp_tendsto_atTop
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
iSup_comp_tendsto_atTop
MeasureTheory.measure_mono
Directed.measure_iUnion
instCountableNat
directed_le
comp

---

← Back to Index