Documentation Verification Report

MutuallySingular

πŸ“ Source: Mathlib/MeasureTheory/Measure/MutuallySingular.lean

Statistics

MetricCount
DefinitionsMutuallySingular, nullSet, MutuallySingular, Β«term_βŸ‚β‚˜_Β»
4
TheoremsmutuallySingular_map, add_left, add_left_iff, add_right, add_right_iff, comm, congr_ac, disjoint, disjoint_ae, measurableSet_nullSet, measure_compl_nullSet, measure_nullSet, mk, mono, mono_ac, restrict, restrict_compl_nullSet, restrict_nullSet, self_iff, smul, smul_nnreal, sum_left, sum_right, zero_left, zero_right, absolutelyContinuous_of_add_of_mutuallySingular, disjoint_of_disjoint_ae, eq_zero_of_absolutelyContinuous_of_mutuallySingular, exists_null_set_measure_lt_of_disjoint, mutuallySingular_iff_disjoint, mutuallySingular_iff_disjoint_ae, mutuallySingular_of_disjoint, mutuallySingular_tfae
33
Total37

MeasurableEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
mutuallySingular_map πŸ“–mathematicalMeasurableEmbedding
MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure.mapβ€”measurableSet_image'
MeasureTheory.Measure.MutuallySingular.measurableSet_nullSet
map_apply
Function.Injective.preimage_image
injective
MeasureTheory.Measure.MutuallySingular.measure_nullSet
Set.preimage_compl
MeasureTheory.Measure.MutuallySingular.measure_compl_nullSet

MeasureTheory

Definitions

NameCategoryTheorems
Β«term_βŸ‚β‚˜_Β» πŸ“–CompOpβ€”

MeasureTheory.Measure

Definitions

NameCategoryTheorems
MutuallySingular πŸ“–MathDef
38 mathmath: MeasureTheory.mutuallySingular_dirac, singularPart_eq_self, mutuallySingular_tfae, MeasureTheory.SignedMeasure.totalVariation_mutuallySingular_iff, ProbabilityTheory.Kernel.mutuallySingular_singularPart, MeasureTheory.SignedMeasure.mutuallySingular_ennreal_iff, singularPart_def, mutually_singular_measure_sub, MutuallySingular.comm, mutuallySingular_compProd_right_iff, MeasureTheory.SignedMeasure.singularPart_mutuallySingular, MutuallySingular.mk, MeasureTheory.SignedMeasure.mutuallySingular_iff, withDensity_rnDeriv_eq_zero, mutuallySingular_iff_disjoint, mutuallySingular_compProd_iff, HaveLebesgueDecomposition.lebesgue_decomposition, ProbabilityTheory.Kernel.measurableSet_mutuallySingular, MutuallySingular.zero_left, MutuallySingular.congr_ac, mutuallySingular_iff_disjoint_ae, MutuallySingular.zero_right, rnDeriv_def, MeasureTheory.withDensity_ofReal_mutuallySingular, MutuallySingular.add_left_iff, MutuallySingular.sum_right, MeasureTheory.SignedMeasure.jordanDecomposition_add_withDensity_mutuallySingular, ProbabilityTheory.Kernel.withDensity_rnDeriv_eq_zero_iff_mutuallySingular, mutuallySingular_compProd_left_iff, MutuallySingular.self_iff, mutuallySingular_singularPart, MutuallySingular.sum_left, rnDeriv_eq_zero, AbsolutelyContinuous.mutuallySingular_compProd_iff, haveLebesgueDecomposition_spec, mutuallySingular_of_disjoint, MutuallySingular.add_right_iff, MeasureTheory.JordanDecomposition.mutuallySingular

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous_of_add_of_mutuallySingular πŸ“–β€”AbsolutelyContinuous
MeasureTheory.Measure
instAdd
MutuallySingular
β€”β€”MutuallySingular.measurableSet_nullSet
MutuallySingular.measure_nullSet
MutuallySingular.measure_compl_nullSet
Set.inter_union_compl
MeasureTheory.measure_union
Disjoint.inter_left'
Disjoint.inter_right'
disjoint_compl_right
MeasurableSet.inter
MeasurableSet.compl
MeasureTheory.measure_inter_null_of_null_right
zero_add
Unique.instSubsingleton
MeasureTheory.measure_inter_null_of_null_left
disjoint_of_disjoint_ae πŸ“–mathematicalDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
instPartialOrder
instCompleteLattice
β€”instOuterMeasureClass
disjoint_iff_inf_le
le_intro
inf_apply
ENNReal.instCanonicallyOrderedAdd
csInf_eq_bot_of_bot_mem
bot_eq_zero'
MeasureTheory.measure_mono_null
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_left
Disjoint.subset_compl_left
add_zero
eq_zero_of_absolutelyContinuous_of_mutuallySingular πŸ“–mathematicalAbsolutelyContinuous
MutuallySingular
MeasureTheory.Measure
instZero
β€”MutuallySingular.self_iff
MutuallySingular.mono_ac
AbsolutelyContinuous.rfl
exists_null_set_measure_lt_of_disjoint πŸ“–mathematicalDisjoint
MeasureTheory.Measure
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
NNReal
Preorder.toLT
instPartialOrderNNReal
instZeroNNReal
DFunLike.coe
Set
ENNReal
instFunLike
instZeroENNReal
ENNReal.instPartialOrder
Compl.compl
Set.instCompl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
ENNReal.ofNNReal
β€”le_bot_iff
inf_le_left
inf_le_right
Nat.instAtLeastTwoHAddOfNat
exists_lt_of_csInf_lt
MeasureTheory.measure_empty
instOuterMeasureClass
Set.compl_empty
zero_add
ENNReal.mul_pos
Nat.cast_zero
LT.lt.ne
one_div
isReduced_of_noZeroDivisors
ENNReal.instNoZeroDivisors
Set.inter_univ
inf_apply
MeasurableSet.univ
ENNReal.eq_zero_of_le_mul_pow
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
LE.le.trans
MeasureTheory.measure_mono
Set.iInter_subset_of_subset
le_add_right
ENNReal.instCanonicallyOrderedAdd
le_rfl
LT.lt.le
Set.compl_iInter
mul_comm
ENNReal.tsum_mul_left
ENNReal.tsum_geometric
ENNReal.one_sub_inv_two
inv_inv
MeasureTheory.measure_iUnion_le
instCountableNat
Summable.tsum_le_tsum
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
SummationFilter.instNeBotUnconditional
le_add_left
ENNReal.summable
mutuallySingular_iff_disjoint πŸ“–mathematicalβ€”MutuallySingular
Disjoint
MeasureTheory.Measure
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
β€”List.TFAE.out
instOuterMeasureClass
mutuallySingular_tfae
mutuallySingular_iff_disjoint_ae πŸ“–mathematicalβ€”MutuallySingular
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
β€”List.TFAE.out
instOuterMeasureClass
mutuallySingular_tfae
mutuallySingular_of_disjoint πŸ“–mathematicalDisjoint
MeasureTheory.Measure
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
MutuallySingularβ€”Nat.instAtLeastTwoHAddOfNat
pow_succ
mul_assoc
mul_comm
Nat.cast_one
div_mul_cancelβ‚€
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
one_mul
one_div
ENNReal.coe_inv
exists_null_set_measure_lt_of_disjoint
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
NNReal.instIsOrderedRing
MeasureTheory.measure_iUnion_null
instOuterMeasureClass
instCountableNat
Set.compl_iUnion
ENNReal.eq_zero_of_le_mul_pow
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
ENNReal.coe_one
LE.le.trans
MeasureTheory.measure_mono
Set.iInter_subset_of_subset
Set.union_compl_self
subset_refl
Set.instReflSubset
mutuallySingular_tfae πŸ“–mathematicalβ€”List.TFAE
MutuallySingular
Disjoint
MeasureTheory.Measure
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
Filter
Filter.instPartialOrder
Filter.instCompleteLatticeFilter
MeasureTheory.ae
instFunLike
instOuterMeasureClass
β€”MutuallySingular.disjoint
mutuallySingular_of_disjoint
instOuterMeasureClass
MutuallySingular.disjoint_ae
disjoint_of_disjoint_ae
List.tfae_of_cycle

MeasureTheory.Measure.MutuallySingular

Definitions

NameCategoryTheorems
nullSet πŸ“–CompOp
5 mathmath: restrict_nullSet, measurableSet_nullSet, measure_nullSet, measure_compl_nullSet, restrict_compl_nullSet

Theorems

NameKindAssumesProvesValidatesDepends On
add_left πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularMeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”add_left_iff
add_left_iff πŸ“–mathematicalβ€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”MeasureTheory.Measure.sum_cond
sum_left
Bool.countable
add_right πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularMeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”add_right_iff
add_right_iff πŸ“–mathematicalβ€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”comm
add_left_iff
comm πŸ“–mathematicalβ€”MeasureTheory.Measure.MutuallySingularβ€”symm
congr_ac πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Measure.MutuallySingularβ€”mono_ac
disjoint πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularDisjoint
MeasureTheory.Measure
MeasureTheory.Measure.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
MeasureTheory.Measure.instCompleteLattice
β€”le_bot_iff
MeasureTheory.Measure.ext
Set.inter_union_compl
MeasureTheory.measure_union
Disjoint.mono
Set.inter_subset_right
disjoint_compl_right
MeasurableSet.inter
MeasurableSet.compl
measurableSet_nullSet
add_eq_zero
Unique.instSubsingleton
MeasureTheory.measure_inter_null_of_null_right
MeasureTheory.Measure.absolutelyContinuous_of_le
measure_nullSet
measure_compl_nullSet
disjoint_ae πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
disjoint_iff_inf_le
MeasureTheory.mem_ae_iff
Set.compl_union
compl_compl
MeasureTheory.measure_inter_null_of_null_right
measure_nullSet
measure_compl_nullSet
Set.union_eq_compl_compl_inter_compl
Set.inter_union_compl
measurableSet_nullSet πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularMeasurableSet
nullSet
β€”β€”
measure_compl_nullSet πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Compl.compl
Set.instCompl
nullSet
instZeroENNReal
β€”β€”
measure_nullSet πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
nullSet
instZeroENNReal
β€”β€”
mk πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
Set.instHasSubset
Set.univ
Set.instUnion
MeasureTheory.Measure.MutuallySingularβ€”MeasureTheory.measurableSet_toMeasurable
MeasureTheory.measure_toMeasurable
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.subset_toMeasurable
mono πŸ“–β€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.Measure.instPartialOrder
β€”β€”mono_ac
LE.le.absolutelyContinuous
mono_ac πŸ“–β€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure.AbsolutelyContinuous
β€”β€”β€”
restrict πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularMeasureTheory.Measure.restrictβ€”measurableSet_nullSet
MeasureTheory.Measure.restrict_apply
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
Set.inter_subset_left
measure_nullSet
measure_compl_nullSet
restrict_compl_nullSet πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularMeasureTheory.Measure.restrict
Compl.compl
Set
Set.instCompl
nullSet
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”measure_compl_nullSet
restrict_nullSet πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularMeasureTheory.Measure.restrict
nullSet
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”measure_nullSet
self_iff πŸ“–mathematicalβ€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”Set.union_compl_self
MeasureTheory.measure_union
disjoint_compl_right
MeasurableSet.compl
add_zero
MeasureTheory.Measure.measure_univ_eq_zero
zero_left
smul πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularENNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”mono_ac
IsScalarTower.right
MeasureTheory.Measure.AbsolutelyContinuous.smul_left
MeasureTheory.Measure.AbsolutelyContinuous.rfl
smul_nnreal πŸ“–mathematicalMeasureTheory.Measure.MutuallySingularNNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
IsScalarTower.right
β€”smul
sum_left πŸ“–mathematicalβ€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure.sum
β€”mono
MeasureTheory.Measure.le_sum
le_rfl
MeasurableSet.iInter
MeasureTheory.Measure.sum_apply
ENNReal.tsum_eq_zero
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
Set.iInter_subset
Set.compl_iInter
MeasureTheory.measure_iUnion_null_iff
sum_right πŸ“–mathematicalβ€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure.sum
β€”comm
sum_left
zero_left πŸ“–mathematicalβ€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”symm
zero_right
zero_right πŸ“–mathematicalβ€”MeasureTheory.Measure.MutuallySingular
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasurableSet.empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass

MeasureTheory.VectorMeasure

Definitions

NameCategoryTheorems
MutuallySingular πŸ“–MathDef
8 mathmath: MutuallySingular.neg_right_iff, MutuallySingular.mk, MutuallySingular.neg_left_iff, MeasureTheory.SignedMeasure.mutuallySingular_ennreal_iff, MeasureTheory.SignedMeasure.mutuallySingular_singularPart, MutuallySingular.zero_left, MutuallySingular.zero_right, MeasureTheory.SignedMeasure.mutuallySingular_iff

---

← Back to Index