Documentation Verification Report

OpenPos

πŸ“ Source: Mathlib/MeasureTheory/Measure/OpenPos.lean

Statistics

MetricCount
DefinitionsIsOpenPosMeasure
1
Theoremsae_eq_iff_eq, isOpenPosMeasure_map, measure_ball_pos, measure_closedBall_pos, ae_eq_univ_iff_eq, measure_eq_one_iff_eq_univ, measure_eq_univ_iff_eq, of_isSigmaCompact_null, of_isClosed_null, ae_eq_empty_iff_eq, eq_empty_of_measure_zero, measure_eq_zero_iff, measure_ne_zero, measure_pos, measure_pos_iff, measure_zero_iff_eq_empty, isOpenPosMeasure, isOpenPosMeasure, comap, open_pos, dense_of_ae, eqOn_Icc_of_ae_eq, eqOn_Ico_of_ae_eq, eqOn_Ioc_of_ae_eq, eqOn_Ioo_of_ae_eq, eqOn_of_ae_eq, eqOn_open_of_ae_eq, eq_of_ae_eq, instNeZeroOfNonempty, interior_eq_empty_of_null, isOpenPosMeasure_smul, measure_Iio_pos, measure_Ioi_pos, measure_Ioo_eq_zero, measure_Ioo_pos, measure_pos_of_mem_nhds, measure_pos_of_nonempty_interior, measure_ball_pos, measure_closedBall_pos, measure_closedBall_pos_iff, measure_closedEBall_pos, measure_eball_pos
42
Total43

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eq_iff_eq πŸ“–mathematicalContinuousFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.eq_of_ae_eq
Filter.EventuallyEq.rfl
isOpenPosMeasure_map πŸ“–mathematicalContinuousMeasureTheory.Measure.IsOpenPosMeasure
MeasureTheory.Measure.map
β€”MeasureTheory.Measure.map_apply
measurable
IsOpen.measurableSet
BorelSpace.opensMeasurable
IsOpen.measure_ne_zero
IsOpen.preimage
Function.Surjective.nonempty_preimage

EMetric

Theorems

NameKindAssumesProvesValidatesDepends On
measure_ball_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Metric.eball
β€”Metric.measure_eball_pos
measure_closedBall_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Metric.closedEBall
β€”Metric.measure_closedEBall_pos

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eq_univ_iff_eq πŸ“–mathematicalβ€”Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Set.univ
β€”MeasureTheory.Measure.instOuterMeasureClass
Set.compl_empty_iff
IsOpen.measure_eq_zero_iff
isOpen_compl
MeasureTheory.ae_eq_univ
Filter.EventuallyEq.refl
measure_eq_one_iff_eq_univ πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Set.univ
β€”MeasureTheory.IsProbabilityMeasure.measure_univ
measure_eq_univ_iff_eq
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
measure_eq_univ_iff_eq πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.univ
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_eq_univ_iff_measure_eq
MeasurableSet.nullMeasurableSet
measurableSet
ae_eq_univ_iff_eq

IsMeagre

Theorems

NameKindAssumesProvesValidatesDepends On
of_isSigmaCompact_null πŸ“–mathematicalIsSigmaCompact
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
IsMeagreβ€”MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
Set.subset_iUnion
IsNowhereDense.of_isClosed_null
IsCompact.isClosed
isMeagre_iff_countable_union_isNowhereDense
Set.countable_range
instCountableNat
Eq.subset
Set.instReflSubset

IsNowhereDense

Theorems

NameKindAssumesProvesValidatesDepends On
of_isClosed_null πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
IsNowhereDenseβ€”IsClosed.isNowhereDense_iff
MeasureTheory.Measure.interior_eq_empty_of_null

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eq_empty_iff_eq πŸ“–mathematicalIsOpenFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Set
Set.instEmptyCollection
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_eq_empty
measure_zero_iff_eq_empty
eq_empty_of_measure_zero πŸ“–mathematicalIsOpen
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
Set.instEmptyCollectionβ€”measure_eq_zero_iff
measure_eq_zero_iff πŸ“–mathematicalIsOpenDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
Set.instEmptyCollection
β€”ENNReal.instCanonicallyOrderedAdd
measure_pos_iff
measure_ne_zero πŸ“–β€”IsOpen
Set.Nonempty
β€”β€”MeasureTheory.Measure.IsOpenPosMeasure.open_pos
measure_pos πŸ“–mathematicalIsOpen
Set.Nonempty
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
β€”Ne.bot_lt
measure_ne_zero
measure_pos_iff πŸ“–mathematicalIsOpenENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.Nonempty
β€”Set.nonempty_iff_ne_empty
LT.lt.ne'
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
measure_pos
measure_zero_iff_eq_empty πŸ“–mathematicalIsOpenDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
Set.instEmptyCollection
β€”measure_eq_zero_iff
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenPosMeasure πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.Measure.instPartialOrder
MeasureTheory.Measure.IsOpenPosMeasureβ€”MeasureTheory.Measure.AbsolutelyContinuous.isOpenPosMeasure
absolutelyContinuous

MeasureTheory.Measure

Definitions

NameCategoryTheorems
IsOpenPosMeasure πŸ“–CompData
18 mathmath: IsOpenPosMeasure.neg, prod.instIsOpenPosMeasure, MeasureTheory.isOpenPosMeasure_of_addLeftInvariant_of_regular, IsOpenPosMeasure.inv, MeasureTheory.isOpenPosMeasure_of_addLeftInvariant_of_innerRegular, AbsolutelyContinuous.isOpenPosMeasure, Continuous.isOpenPosMeasure_map, LE.le.isOpenPosMeasure, MeasureTheory.isOpenPosMeasure_of_mulLeftInvariant_of_innerRegular, IsHaarMeasure.toIsOpenPosMeasure, isOpenPosMeasure_smul, MeasureTheory.isOpenPosMeasure_of_addLeftInvariant_of_compact, MeasureTheory.isOpenPosMeasure_of_mulLeftInvariant_of_compact, IsOpenPosMeasure.comap, toSphere.instIsOpenPosMeasure, MeasureTheory.isOpenPosMeasure_of_mulLeftInvariant_of_regular, IsAddHaarMeasure.toIsOpenPosMeasure, instIsOpenPosMeasureProdVolumeOfSFinite

Theorems

NameKindAssumesProvesValidatesDepends On
dense_of_ae πŸ“–mathematicalFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
Dense
setOf
β€”instOuterMeasureClass
dense_iff_closure_eq
closure_eq_compl_interior_compl
Set.compl_univ_iff
interior_eq_empty_of_null
eqOn_Icc_of_ae_eq πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrict
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ContinuousOn
Set.EqOnβ€”instOuterMeasureClass
eqOn_of_ae_eq
Eq.subset
Set.instReflSubset
closure_interior_Icc
eqOn_Ico_of_ae_eq πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrict
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ContinuousOn
Set.EqOnβ€”instOuterMeasureClass
eqOn_of_ae_eq
Ico_subset_closure_interior
eqOn_Ioc_of_ae_eq πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrict
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ContinuousOn
Set.EqOnβ€”instOuterMeasureClass
eqOn_of_ae_eq
Ioc_subset_closure_interior
eqOn_Ioo_of_ae_eq πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrict
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ContinuousOn
Set.EqOnβ€”instOuterMeasureClass
eqOn_of_ae_eq
Ioo_subset_closure_interior
OrderTopology.to_orderClosedTopology
eqOn_of_ae_eq πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrict
ContinuousOn
Set
Set.instHasSubset
closure
interior
Set.EqOnβ€”instOuterMeasureClass
interior_subset
Set.EqOn.of_subset_closure
eqOn_open_of_ae_eq
MeasureTheory.ae_restrict_of_ae_restrict_of_subset
isOpen_interior
ContinuousOn.mono
eqOn_open_of_ae_eq πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrict
IsOpen
ContinuousOn
Set.EqOnβ€”instOuterMeasureClass
MeasureTheory.ae_imp_of_ae_restrict
isOpen_iff_mem_nhds
Filter.inter_mem
IsOpen.mem_nhds
Filter.Tendsto.prodMk_nhds
ContinuousOn.continuousAt
IsClosed.isOpen_compl
isClosed_diagonal
Eq.le
IsOpen.eq_empty_of_measure_zero
eq_of_ae_eq πŸ“–β€”Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
Continuous
β€”β€”instOuterMeasureClass
eqOn_open_of_ae_eq
MeasureTheory.ae_restrict_of_ae
isOpen_univ
Continuous.continuousOn
instNeZeroOfNonempty πŸ“–mathematicalβ€”MeasureTheory.Measure
instZero
β€”measure_univ_pos
IsOpen.measure_pos
isOpen_univ
Set.univ_nonempty
interior_eq_empty_of_null πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instZeroENNReal
interior
Set.instEmptyCollection
β€”IsOpen.eq_empty_of_measure_zero
isOpen_interior
MeasureTheory.measure_mono_null
instOuterMeasureClass
interior_subset
isOpenPosMeasure_smul πŸ“–mathematicalβ€”IsOpenPosMeasure
ENNReal
MeasureTheory.Measure
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
mul_ne_zero
ENNReal.instNoZeroDivisors
IsOpen.measure_ne_zero
measure_Iio_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.Iio
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”IsOpen.measure_pos
isOpen_Iio
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Set.nonempty_Iio
measure_Ioi_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.Ioi
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”IsOpen.measure_pos
isOpen_Ioi
instClosedIicTopology
OrderTopology.to_orderClosedTopology
Set.nonempty_Ioi
measure_Ioo_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instZeroENNReal
Preorder.toLE
β€”IsOpen.measure_eq_zero_iff
isOpen_Ioo
OrderTopology.to_orderClosedTopology
Set.Ioo_eq_empty_iff
not_lt
measure_Ioo_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.Ioo
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”IsOpen.measure_pos_iff
isOpen_Ioo
OrderTopology.to_orderClosedTopology
Set.nonempty_Ioo
measure_pos_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
instFunLike
β€”measure_pos_of_nonempty_interior
mem_interior_iff_mem_nhds
measure_pos_of_nonempty_interior πŸ“–mathematicalSet.Nonempty
interior
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
β€”LT.lt.trans_le
IsOpen.measure_pos
isOpen_interior
MeasureTheory.measure_mono
instOuterMeasureClass
interior_subset

MeasureTheory.Measure.AbsolutelyContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenPosMeasure πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Measure.IsOpenPosMeasureβ€”IsOpen.measure_ne_zero

MeasureTheory.Measure.IsOpenPosMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalTopology.IsOpenEmbeddingMeasureTheory.Measure.IsOpenPosMeasure
MeasureTheory.Measure.comap
β€”MeasurableEmbedding.comap_apply
Topology.IsOpenEmbedding.measurableEmbedding
open_pos
Topology.IsOpenEmbedding.isOpen_iff_image_isOpen
Set.Nonempty.image
open_pos πŸ“–β€”IsOpen
Set.Nonempty
β€”β€”β€”

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
measure_ball_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ball
β€”IsOpen.measure_pos
isOpen_ball
nonempty_ball
measure_closedBall_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
closedBall
β€”LT.lt.trans_le
measure_ball_pos
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
ball_subset_closedBall
measure_closedBall_pos_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
closedBall
MetricSpace.toPseudoMetricSpace
Real
Real.instLT
Real.instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
Set.Subsingleton.measure_zero
subsingleton_closedBall
le_refl
measure_closedBall_pos
measure_closedEBall_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
closedEBall
β€”LT.lt.trans_le
measure_eball_pos
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
eball_subset_closedEBall
measure_eball_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
eball
β€”IsOpen.measure_pos
isOpen_eball
mem_eball_self
Ne.bot_lt

---

← Back to Index