Documentation Verification Report

Portmanteau

πŸ“ Source: Mathlib/MeasureTheory/Measure/Portmanteau.lean

Statistics

MetricCount
Definitions0
Theoremstendsto_measureReal_biUnion, tendsto_probabilityMeasure_biUnion, tendsto_probabilityMeasure_of_tendsto_of_mem, limsup_measure_closed_le_of_tendsto, exists_lt_measure_biUnion_of_isOpen, le_liminf_measure_open_of_tendsto, limsup_measure_closed_le_of_tendsto, tendsto_measure_of_isClopen_of_tendsto, tendsto_measure_of_null_frontier_of_tendsto, tendsto_measure_of_null_frontier_of_tendsto', exists_null_frontier_thickening, exists_null_frontiers_thickening, integral_le_liminf_integral_of_forall_isOpen_measure_le_liminf_measure, le_liminf_measure_open_of_forall_tendsto_measure, le_measure_compl_liminf_of_limsup_measure_le, le_measure_liminf_of_limsup_measure_compl_le, limsup_measure_closed_le_iff_liminf_measure_open_ge, limsup_measure_closed_le_of_forall_tendsto_measure, limsup_measure_compl_le_of_le_liminf_measure, limsup_measure_le_of_le_liminf_measure_compl, lintegral_le_liminf_lintegral_of_forall_isOpen_measure_le_liminf_measure, tendsto_iff_forall_lipschitz_integral_tendsto, tendsto_measure_of_le_liminf_measure_of_limsup_measure_le, tendsto_measure_of_null_frontier, tendsto_of_forall_isClosed_limsup_le, tendsto_of_forall_isClosed_limsup_le', tendsto_of_forall_isClosed_limsup_le_nat, tendsto_of_forall_isClosed_limsup_real_le', tendsto_of_forall_isOpen_le_liminf, tendsto_of_forall_isOpen_le_liminf', tendsto_of_forall_isOpen_le_liminf_nat, tendsto_of_forall_isOpen_le_liminf_nat'
32
Total32

IsPiSystem

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_measureReal_biUnion πŸ“–mathematicalIsPiSystem
Set
Set.instMembership
MeasurableSet
Filter.Tendsto
Real
MeasureTheory.Measure.real
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.iUnion
Finset
Finset.instMembership
β€”MeasureTheory.measureReal_biUnion_eq_sum_powerset
tendsto_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
Set.eq_empty_or_nonempty
MeasureTheory.measureReal_empty
tendsto_const_nhds
biInter_mem
tendsto_probabilityMeasure_biUnion πŸ“–mathematicalIsPiSystem
Set
Set.instMembership
MeasurableSet
Filter.Tendsto
NNReal
DFunLike.coe
MeasureTheory.ProbabilityMeasure
MeasureTheory.ProbabilityMeasure.instFunLike
nhds
NNReal.instTopologicalSpace
Set.iUnion
Finset
Finset.instMembership
β€”tendsto_measureReal_biUnion
MeasureTheory.measure_ne_top
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
MeasureTheory.ProbabilityMeasure.instIsProbabilityMeasureToMeasure
MeasureTheory.ProbabilityMeasure.measureReal_eq_coe_coeFn
tendsto_probabilityMeasure_of_tendsto_of_mem πŸ“–mathematicalIsPiSystem
MeasurableSet
Set
Set.instMembership
Filter
Filter.instMembership
nhds
Set.instHasSubset
Filter.Tendsto
NNReal
DFunLike.coe
MeasureTheory.ProbabilityMeasure
MeasureTheory.ProbabilityMeasure.instFunLike
NNReal.instTopologicalSpace
MeasureTheory.ProbabilityMeasure.instTopologicalSpaceβ€”Filter.eq_or_neBot
MeasureTheory.tendsto_of_forall_isOpen_le_liminf
Filter.le_liminf_iff
Filter.isCoboundedUnder_ge_of_le
Filter.isBounded_ge_of_bot
MeasureTheory.ProbabilityMeasure.exists_lt_measure_biUnion_of_isOpen
tendsto_probabilityMeasure_biUnion
Filter.mp_mem
tendsto_order
NNReal.instOrderTopology
Filter.univ_mem'
LT.lt.trans_le
MeasureTheory.ProbabilityMeasure.apply_mono

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
exists_null_frontier_thickening πŸ“–mathematicalReal
Real.instLT
Set
Set.instMembership
Set.Ioo
Real.instPreorder
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.thickening
PseudoMetricSpace.toPseudoEMetricSpace
instZeroENNReal
β€”IsClosed.measurableSet
isClosed_frontier
Metric.frontier_thickening_disjoint
Measure.countable_meas_pos_of_disjoint_iUnion
measure_diff_null
Measure.instOuterMeasureClass
Set.Countable.measure_zero
Real.noAtoms_volume
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ENNReal.instCanonicallyOrderedAdd
nonempty_of_measure_ne_zero
LT.lt.ne'
Real.volume_Ioo
exists_null_frontiers_thickening πŸ“–mathematicalβ€”Filter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Real.instLT
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
frontier
Metric.thickening
PseudoMetricSpace.toPseudoEMetricSpace
instZeroENNReal
β€”exists_seq_strictAnti_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
exists_null_frontier_thickening
tendsto_of_tendsto_of_tendsto_of_le_of_le
tendsto_const_nhds
LT.lt.le
integral_le_liminf_integral_of_forall_isOpen_measure_le_liminf_measure πŸ“–mathematicalIsProbabilityMeasure
BoundedContinuousFunction
Real
Real.pseudoMetricSpace
Preorder.toLE
PartialOrder.toPreorder
BoundedContinuousFunction.instPartialOrder
Real.normedAddCommGroup
Real.lattice
BoundedContinuousFunction.instZero
Real.instZero
ENNReal
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Filter.atTop
Nat.instPreorder
Real.instLE
integral
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
BoundedContinuousFunction.instFunLike
Real.instConditionallyCompleteLinearOrder
β€”lintegral_le_liminf_lintegral_of_forall_isOpen_measure_le_liminf_measure
BoundedContinuousFunction.continuous
integral_eq_lintegral_of_nonneg_ae
Filter.Eventually.of_forall
Measure.instOuterMeasureClass
Measurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
Continuous.measurable
Real.lipschitzWith_toNNReal
coe_nnreal_ennreal_nndist
IsProbabilityMeasure.measure_univ
mul_one
BoundedContinuousFunction.lintegral_le_edist_mul
ENNReal.liminf_toReal_eq
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
ENNReal.coe_ne_top
ENNReal.toReal_mono
ne_of_lt
BoundedContinuousFunction.lintegral_nnnorm_le
lt_of_le_of_lt
Filter.liminf_le_of_le
ENNReal.instCanonicallyOrderedAdd
Filter.Eventually.exists
le_trans
ENNReal.ofReal_eq_coe_nnreal
Real.norm_of_nonneg
ENNReal.coe_lt_top
le_liminf_measure_open_of_forall_tendsto_measure πŸ“–mathematicalIsProbabilityMeasure
Filter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
nhds
ENNReal.instTopologicalSpace
IsOpen
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”le_measure_liminf_of_limsup_measure_compl_le
IsOpen.measurableSet
limsup_measure_closed_le_of_forall_tendsto_measure
IsZeroOrProbabilityMeasure.toIsFiniteMeasure
instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
isClosed_compl_iff
le_measure_compl_liminf_of_limsup_measure_le πŸ“–mathematicalIsProbabilityMeasure
MeasurableSet
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Compl.compl
Set.instCompl
Filter.liminf
β€”Filter.eq_or_neBot
Filter.liminf_bot
IsProbabilityMeasure.measure_univ
measure_compl
LT.lt.ne
measure_lt_top
IsZeroOrProbabilityMeasure.toIsFiniteMeasure
instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
Antitone.map_limsup_of_continuousAt
ENNReal.instOrderTopology
antitone_const_tsub
ENNReal.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Continuous.continuousAt
ENNReal.continuous_sub_left
ENNReal.one_ne_top
Filter.isBounded_le_of_top
Filter.isCobounded_le_of_bot
le_measure_liminf_of_limsup_measure_compl_le πŸ“–mathematicalIsProbabilityMeasure
MeasurableSet
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Compl.compl
Set.instCompl
Filter.liminfβ€”le_measure_compl_liminf_of_limsup_measure_le
MeasurableSet.compl
compl_compl
limsup_measure_closed_le_iff_liminf_measure_open_ge πŸ“–mathematicalIsProbabilityMeasureENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Filter.liminf
β€”le_measure_liminf_of_limsup_measure_compl_le
IsOpen.measurableSet
isClosed_compl_iff
limsup_measure_le_of_le_liminf_measure_compl
IsClosed.measurableSet
isOpen_compl_iff
limsup_measure_closed_le_of_forall_tendsto_measure πŸ“–mathematicalFilter.Tendsto
ENNReal
DFunLike.coe
Measure
Set
Measure.instFunLike
nhds
ENNReal.instTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Filter.eq_or_neBot
Filter.limsup_bot
bot_eq_zero'
ENNReal.instCanonicallyOrderedAdd
exists_null_frontiers_thickening
instSFiniteOfSigmaFinite
IsFiniteMeasure.toSigmaFinite
Metric.isOpen_thickening
IsOpen.measurableSet
ENNReal.le_of_forall_pos_le_add
tendsto_measure_cthickening_of_isClosed
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
measure_ne_top
Iio_mem_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
ENNReal.lt_add_right
LT.lt.ne
LT.lt.ne'
ENNReal.coe_pos
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Eventually.of_forall
measure_mono
Measure.instOuterMeasureClass
Metric.self_subset_thickening
LE.le.trans
Filter.limsup_le_limsup
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
Filter.Tendsto.limsup_eq
Metric.thickening_subset_cthickening
LT.lt.le
Eq.le
limsup_measure_compl_le_of_le_liminf_measure πŸ“–mathematicalIsProbabilityMeasure
MeasurableSet
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Filter.limsup
Compl.compl
Set.instCompl
β€”Filter.eq_or_neBot
Filter.limsup_bot
IsProbabilityMeasure.measure_univ
measure_compl
LT.lt.ne
measure_lt_top
IsZeroOrProbabilityMeasure.toIsFiniteMeasure
instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
Antitone.map_liminf_of_continuousAt
ENNReal.instOrderTopology
antitone_const_tsub
ENNReal.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Continuous.continuousAt
ENNReal.continuous_sub_left
ENNReal.one_ne_top
Filter.isCobounded_ge_of_top
Filter.isBounded_ge_of_bot
limsup_measure_le_of_le_liminf_measure_compl πŸ“–mathematicalIsProbabilityMeasure
MeasurableSet
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Compl.compl
Set.instCompl
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Filter.limsupβ€”limsup_measure_compl_le_of_le_liminf_measure
MeasurableSet.compl
compl_compl
lintegral_le_liminf_lintegral_of_forall_isOpen_measure_le_liminf_measure πŸ“–mathematicalContinuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Pi.hasLe
Real.instLE
Pi.instZero
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Filter.atTop
Nat.instPreorder
lintegral
ENNReal.ofReal
β€”lintegral_eq_lintegral_meas_lt
Filter.Eventually.of_forall
Measure.instOuterMeasureClass
Continuous.aemeasurable
Real.borelSpace
LE.le.trans
lintegral_mono
continuous_def
isOpen_Ioi
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
le_refl
lintegral_liminf_le
Antitone.measurable
ENNReal.borelSpace
ENNReal.instOrderTopology
ENNReal.instSecondCountableTopology
measure_mono
lt_of_le_of_lt
tendsto_iff_forall_lipschitz_integral_tendsto πŸ“–mathematicalβ€”Filter.Tendsto
ProbabilityMeasure
nhds
ProbabilityMeasure.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Real
integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
ProbabilityMeasure.toMeasure
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”LipschitzWith.continuous
Filter.eq_or_neBot
tendsto_of_forall_isClosed_limsup_real_le'
le_of_forall_pos_le_add
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.cast_nonneg'
Real.instZeroLEOneClass
tendsto_integral_thickenedIndicator_of_isClosed
IsZeroOrProbabilityMeasure.toIsFiniteMeasure
instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
ProbabilityMeasure.instIsProbabilityMeasureToMeasure
tendsto_one_div_add_atTop_nhds_zero_nat
RCLike.charZero_rclike
NNRat.instContinuousSMulOfIsScalarTowerOfRat
IsScalarTower.nnrat
Rat.instCharZero
NNRat.instContinuousSMulRatReal
Nat.instAtLeastTwoHAddOfNat
ProbabilityMeasure.measureReal_eq_coe_coeFn
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.eventually_lt_const
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
thickenedIndicator_le_one
one_div
thickenedIndicator.congr_simp
lipschitzWith_thickenedIndicator
Filter.Eventually.mono
Filter.Tendsto.eventually_le_const
le_trans
integral_indicator_one
IsClosed.measurableSet
integral_mono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
integrable_indicator_iff
Integrable.integrableOn
integrable_const
integrable_thickenedIndicator
indicator_le_thickenedIndicator
NNReal.coe_indicator
LE.le.trans
Filter.limsup_le_of_le
Filter.isCoboundedUnder_le_of_le
LE.le.trans_eq
add_le_add
LT.lt.le
Eq.le
le_refl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
tendsto_measure_of_le_liminf_measure_of_limsup_measure_le πŸ“–mathematicalSet
Set.instHasSubset
DFunLike.coe
Measure
ENNReal
Measure.instFunLike
Set.instSDiff
instZeroENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Filter.limsup
Filter.Tendsto
nhds
ENNReal.instTopologicalSpace
β€”tendsto_of_le_liminf_of_limsup_le
ENNReal.instOrderTopology
Measure.instOuterMeasureClass
Filter.EventuallyLE.antisymm
HasSubset.Subset.eventuallyLE
Filter.EventuallyLE.trans
ae_le_set
measure_congr
Filter.EventuallyEq.symm
Filter.liminf_le_liminf
Filter.Eventually.of_forall
measure_mono
Filter.isBounded_ge_of_bot
Filter.isCobounded_ge_of_top
Filter.limsup_le_limsup
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
tendsto_measure_of_null_frontier πŸ“–mathematicalIsProbabilityMeasure
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
frontier
instZeroENNReal
Filter.Tendsto
nhds
ENNReal.instTopologicalSpace
β€”tendsto_measure_of_le_liminf_measure_of_limsup_measure_le
interior_subset
subset_closure
isOpen_interior
limsup_measure_closed_le_iff_liminf_measure_open_ge
isClosed_closure
tendsto_of_forall_isClosed_limsup_le πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
DFunLike.coe
ProbabilityMeasure
Set
ProbabilityMeasure.instFunLike
Filter.Tendsto
nhds
ProbabilityMeasure.instTopologicalSpace
β€”Filter.tendsto_of_seq_tendsto
tendsto_of_forall_isClosed_limsup_le_nat
le_trans
Eq.trans_le
Filter.limsup_comp
Filter.limsup_le_limsup_of_le
Filter.isCobounded_le_of_bot
tendsto_of_forall_isClosed_limsup_le' πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
ProbabilityMeasure.toMeasure
Filter.Tendsto
ProbabilityMeasure
nhds
ProbabilityMeasure.instTopologicalSpace
β€”tendsto_of_forall_isOpen_le_liminf'
limsup_measure_closed_le_iff_liminf_measure_open_ge
ProbabilityMeasure.instIsProbabilityMeasureToMeasure
tendsto_of_forall_isClosed_limsup_le_nat πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
DFunLike.coe
ProbabilityMeasure
Set
ProbabilityMeasure.instFunLike
Filter.atTop
Nat.instPreorder
Filter.Tendsto
nhds
ProbabilityMeasure.instTopologicalSpace
β€”tendsto_of_forall_isClosed_limsup_le'
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
Monotone.map_limsup_of_continuousAt
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
NNReal.instOrderTopology
ENNReal.instOrderTopology
ENNReal.coe_mono
Continuous.continuousAt
ENNReal.continuous_coe
NNReal.instCanonicallyOrderedAdd
ProbabilityMeasure.ennreal_coeFn_eq_coeFn_toMeasure
tendsto_of_forall_isClosed_limsup_real_le' πŸ“–mathematicalReal
Real.instLE
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
Measure.real
ProbabilityMeasure.toMeasure
Filter.Tendsto
ProbabilityMeasure
nhds
ProbabilityMeasure.instTopologicalSpace
β€”tendsto_of_forall_isClosed_limsup_le
ProbabilityMeasure.measureReal_eq_coe_coeFn
NNReal.toReal_limsup
tendsto_of_forall_isOpen_le_liminf πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
ProbabilityMeasure
Set
ProbabilityMeasure.instFunLike
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
Filter.Tendsto
nhds
ProbabilityMeasure.instTopologicalSpace
β€”Filter.tendsto_of_seq_tendsto
tendsto_of_forall_isOpen_le_liminf_nat
LE.le.trans
Filter.liminf_comp
Filter.liminf_le_liminf_of_le
Filter.isBounded_ge_of_bot
Filter.IsBoundedUnder.isCoboundedUnder_ge
Filter.map_neBot
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.isBoundedUnder_of
tendsto_of_forall_isOpen_le_liminf' πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
ProbabilityMeasure.toMeasure
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Filter.Tendsto
ProbabilityMeasure
nhds
ProbabilityMeasure.instTopologicalSpace
β€”Filter.tendsto_of_seq_tendsto
tendsto_of_forall_isOpen_le_liminf_nat'
LE.le.trans
Filter.liminf_le_liminf_of_le
Filter.isBounded_ge_of_bot
Filter.isCobounded_ge_of_top
tendsto_of_forall_isOpen_le_liminf_nat πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
ProbabilityMeasure
Set
ProbabilityMeasure.instFunLike
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
Filter.atTop
Nat.instPreorder
Filter.Tendsto
nhds
ProbabilityMeasure.instTopologicalSpace
β€”tendsto_of_forall_isOpen_le_liminf_nat'
Monotone.map_liminf_of_continuousAt
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
NNReal.instOrderTopology
ENNReal.instOrderTopology
ENNReal.coe_mono
Continuous.continuousAt
ENNReal.continuous_coe
Filter.IsBoundedUnder.isCoboundedUnder_ge
NNReal.instCanonicallyOrderedAdd
ProbabilityMeasure.ennreal_coeFn_eq_coeFn_toMeasure
tendsto_of_forall_isOpen_le_liminf_nat' πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
ProbabilityMeasure.toMeasure
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Filter.atTop
Nat.instPreorder
Filter.Tendsto
ProbabilityMeasure
nhds
ProbabilityMeasure.instTopologicalSpace
β€”ProbabilityMeasure.tendsto_iff_forall_integral_tendsto
BoundedContinuousFunction.tendsto_integral_of_forall_integral_le_liminf_integral
ProbabilityMeasure.instIsProbabilityMeasureToMeasure
integral_le_liminf_integral_of_forall_isOpen_measure_le_liminf_measure

MeasureTheory.FiniteMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
limsup_measure_closed_le_of_tendsto πŸ“–mathematicalFilter.Tendsto
MeasureTheory.FiniteMeasure
nhds
instTopologicalSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
toMeasure
β€”Filter.eq_or_neBot
Filter.limsup_bot
ENNReal.le_of_forall_pos_le_add
Nat.instAtLeastTwoHAddOfNat
LT.lt.ne
ENNReal.half_pos
ENNReal.coe_ne_zero
HasOuterApproxClosed.tendsto_lintegral_apprSeq
isFiniteMeasure
ENNReal.lt_add_right
MeasureTheory.measure_lt_top
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.eventually_lt_const
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
tendsto_iff_forall_lintegral_tendsto
ne_of_lt
BoundedContinuousFunction.lintegral_lt_top_of_nnreal
Filter.Tendsto.eventually_le_const
Filter.Eventually.mono
le_trans
HasOuterApproxClosed.measure_le_lintegral
LE.le.trans
Filter.limsup_le_limsup
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
Filter.limsup_const
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.le
Eq.le
le_refl
add_assoc
ENNReal.add_halves

MeasureTheory.ProbabilityMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lt_measure_biUnion_of_isOpen πŸ“–mathematicalSet
Set.instMembership
Filter
Filter.instMembership
nhds
Set.instHasSubset
IsOpen
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
MeasureTheory.ProbabilityMeasure
instFunLike
Set.iUnion
Finset
Finset.instMembership
β€”TopologicalSpace.isOpen_iUnion_countable
isOpen_interior
Set.Countable.image
Set.Subset.antisymm
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_coe_set
mem_interior_iff_mem_nhds
HasSubset.Subset.trans
Set.instIsTransSubset
Set.biUnion_image
Set.iUnionβ‚‚_mono
interior_subset
Mathlib.Tactic.Contrapose.contrapose₁
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
coeFn_empty
NNReal.instCanonicallyOrderedAdd
Set.Countable.exists_eq_range
Set.iUnion_iUnion_eq'
ENNReal.tendsto_toNNReal_iff
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
instIsProbabilityMeasureToMeasure
MeasureTheory.tendsto_measure_iUnion_accumulate
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_order
NNReal.instOrderTopology
Nat.instNoMaxOrder
Set.biUnion_and'
Set.iUnion_iUnion_eq_right
Set.subset_iUnion
le_liminf_measure_open_of_tendsto πŸ“–mathematicalFilter.Tendsto
MeasureTheory.ProbabilityMeasure
nhds
instTopologicalSpace
IsOpen
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
toMeasure
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”MeasureTheory.le_measure_liminf_of_limsup_measure_compl_le
instIsProbabilityMeasureToMeasure
IsOpen.measurableSet
limsup_measure_closed_le_of_tendsto
isClosed_compl_iff
limsup_measure_closed_le_of_tendsto πŸ“–mathematicalFilter.Tendsto
MeasureTheory.ProbabilityMeasure
nhds
instTopologicalSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
toMeasure
β€”MeasureTheory.FiniteMeasure.limsup_measure_closed_le_of_tendsto
tendsto_nhds_iff_toFiniteMeasure_tendsto_nhds
tendsto_measure_of_isClopen_of_tendsto πŸ“–mathematicalFilter.Tendsto
MeasureTheory.ProbabilityMeasure
nhds
instTopologicalSpace
IsClopen
NNReal
DFunLike.coe
Set
instFunLike
NNReal.instTopologicalSpace
β€”tendsto_measure_of_null_frontier_of_tendsto
IsClopen.frontier_eq
coeFn_empty
tendsto_measure_of_null_frontier_of_tendsto πŸ“–mathematicalFilter.Tendsto
MeasureTheory.ProbabilityMeasure
nhds
instTopologicalSpace
DFunLike.coe
Set
NNReal
instFunLike
frontier
instZeroNNReal
NNReal.instTopologicalSpaceβ€”tendsto_measure_of_null_frontier_of_tendsto'
Filter.Tendsto.comp
ENNReal.tendsto_toNNReal
MeasureTheory.measure_ne_top
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
instIsProbabilityMeasureToMeasure
tendsto_measure_of_null_frontier_of_tendsto' πŸ“–mathematicalFilter.Tendsto
MeasureTheory.ProbabilityMeasure
nhds
instTopologicalSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
toMeasure
frontier
instZeroENNReal
ENNReal.instTopologicalSpaceβ€”MeasureTheory.tendsto_measure_of_null_frontier
instIsProbabilityMeasureToMeasure
le_liminf_measure_open_of_tendsto

---

← Back to Index