Documentation Verification Report

PreVariation

πŸ“ Source: Mathlib/MeasureTheory/Measure/PreVariation.lean

Statistics

MetricCount
DefinitionsIsSigmaSubadditiveSetFun, ennrealPreVariation, preVariation, preVariationFun
4
Theoremssup_measurableSetSubtype_eq_biUnion, empty, exists_Finpartition_sum_ge, exists_Finpartition_sum_gt, iUnion, mono, sum_le, sum_le_preVariationFun_iUnion, sum_le_preVariationFun_iUnion', sum_le_preVariationFun_of_subset
10
Total14

MeasureTheory

Definitions

NameCategoryTheorems
IsSigmaSubadditiveSetFun πŸ“–MathDef
1 mathmath: VectorMeasure.isSigmaSubadditiveSetFun_enorm
ennrealPreVariation πŸ“–CompOpβ€”
preVariation πŸ“–CompOpβ€”
preVariationFun πŸ“–CompOp
8 mathmath: preVariation.iUnion, preVariation.sum_le, preVariation.sum_le_preVariationFun_iUnion', preVariation.empty, preVariation.exists_Finpartition_sum_ge, preVariation.sum_le_preVariationFun_iUnion, preVariation.sum_le_preVariationFun_of_subset, preVariation.mono

MeasureTheory.preVariation

Theorems

NameKindAssumesProvesValidatesDepends On
empty πŸ“–mathematicalβ€”MeasureTheory.preVariationFun
Set
Set.instEmptyCollection
ENNReal
instZeroENNReal
β€”ciSup_unique
exists_Finpartition_sum_ge πŸ“–mathematicalMeasurableSet
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
MeasureTheory.preVariationFun
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Finset.sum
Set
ENNReal.instAddCommMonoid
Finpartition.parts
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
MeasurableSet.Subtype.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
ENNReal.ofNNReal
β€”ENNReal.coe_toNNReal
ne_or_eq
ENNReal.toNNReal_pos
ENNReal.sub_lt_self
ne_of_gt
ENNReal.coe_pos
exists_Finpartition_sum_gt
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
ENNReal.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
ENNReal.instOrderedSub
ENNReal.add_le_add_iff_right
ENNReal.coe_ne_top
le_of_lt
add_le_add_right
ENNReal.coe_le_coe_of_le
Finpartition.instNonempty
exists_Finpartition_sum_gt πŸ“–mathematicalMeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.preVariationFun
Finset.sum
Set
ENNReal.instAddCommMonoid
Finpartition.parts
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
MeasurableSet.Subtype.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
β€”β€”
iUnion πŸ“–mathematicalMeasureTheory.IsSigmaSubadditiveSetFun
Set
Set.instEmptyCollection
ENNReal
instZeroENNReal
MeasurableSet
Pairwise
Function.onFun
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
HasSum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
MeasureTheory.preVariationFun
Set.iUnion
SummationFilter.unconditional
β€”Summable.hasSum_iff
ENNReal.instT2Space
SummationFilter.instNeBotUnconditional
ENNReal.summable
le_antisymm
sum_le_preVariationFun_iUnion
ENNReal.le_tsum_of_forall_lt_exists_sum
MeasurableSet.iUnion
instCountableNat
Set.subset_iUnion
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Set.inter_iUnion
Set.inter_eq_left
Finpartition.le
MeasurableSet.inter
Disjoint.mono
Set.inter_subset_right
Summable.tsum_finsetSum
ENNReal.instContinuousAdd
Finpartition.sum_restrict
lt_iSup_iff
lt_of_lt_of_le
ENNReal.tsum_eq_iSup_nat
sum_le
mono πŸ“–mathematicalMeasurableSet
Set
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.preVariationFun
β€”sum_le_preVariationFun_of_subset
ENNReal.instCanonicallyOrderedAdd
sum_le πŸ“–mathematicalMeasurableSetENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Finset.sum
Set
ENNReal.instAddCommMonoid
Finpartition.parts
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
MeasurableSet.Subtype.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
MeasureTheory.preVariationFun
β€”β€”
sum_le_preVariationFun_iUnion πŸ“–mathematicalMeasurableSet
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
MeasureTheory.preVariationFun
SummationFilter.unconditional
Set.iUnion
β€”ENNReal.tsum_le_of_sum_range_le
Finset.sum_congr
ENNReal.instCanonicallyOrderedAdd
ENNReal.le_of_forall_pos_le_add
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.cast_pos'
NNReal.addLeftMono
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
lt_top_iff_ne_top
LE.le.trans_lt
mono
MeasurableSet.iUnion
instCountableNat
Set.subset_iUnion
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Finset.sum_add_distrib
Finset.sum_const
Finset.card_range
nsmul_eq_mul
mul_div_cancelβ‚€
ne_of_gt
add_le_add_left
covariant_swap_add_of_covariant_add
sum_le_preVariationFun_iUnion'
exists_Finpartition_sum_ge
sum_le_preVariationFun_iUnion' πŸ“–mathematicalMeasurableSet
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Finset.sum
ENNReal.instAddCommMonoid
Finset.range
Finpartition.parts
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
MeasurableSet.Subtype.instBooleanAlgebra
BiheytingAlgebra.toHeytingAlgebra
MeasureTheory.preVariationFun
Set.iUnion
β€”Set.disjoint_iff_inter_eq_empty
DistribLattice.instIsModularLattice
Set.PairwiseDisjoint.supIndep
MeasurableSet.iUnion
instCountableNat
Subtype.coe_le_coe
Finset.sup_measurableSetSubtype_eq_biUnion
Set.iUnionβ‚‚_subset
Set.subset_iUnion
Finpartition.sum_combine
Finset.sum_le_sum_of_subset
ENNReal.instCanonicallyOrderedAdd
Finpartition.parts_subset_extendOfLE
sum_le
sum_le_preVariationFun_of_subset πŸ“–mathematicalMeasurableSet
Set
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Finset.sum
ENNReal.instAddCommMonoid
Finpartition.parts
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
MeasurableSet.Subtype.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
MeasureTheory.preVariationFun
β€”sum_le
MeasurableSet.diff
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.diff_eq_empty
Set.inter_diff_self
Set.union_diff_cancel
DistribLattice.instIsModularLattice
Finset.sum_le_sum_of_subset
ENNReal.instCanonicallyOrderedAdd
Finset.mem_insert_of_mem

MeasureTheory.preVariation.Finset

Theorems

NameKindAssumesProvesValidatesDepends On
sup_measurableSetSubtype_eq_biUnion πŸ“–mathematicalβ€”Set
MeasurableSet
Finset.sup
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
MeasurableSet.Subtype.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set.iUnion
Finset
Finset.instMembership
β€”Finset.induction_on
Finset.sup_empty
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Finset.sup_insert
Set.iUnion_iUnion_eq_or_left

---

← Back to Index