| Name | Category | Theorems |
fst π | CompOp | 58 mathmath: ProbabilityTheory.condCDF_ae_eq, ProbabilityTheory.lintegral_condCDF, fst.instIsFiniteMeasure, ProbabilityTheory.setLIntegral_preCDF_fst, ProbabilityTheory.integrable_preCDF, ProbabilityTheory.setIntegral_condCDF, fst_prod, snd_map_swap, MeasureTheory.AEStronglyMeasurable.ae_integrable_condKernel_iff, setIntegral_condKernel, fst_compProd, ProbabilityTheory.integrable_condCDF, setIntegral_condKernel_univ_left, fst_map_swap, integral_condKernel, ProbabilityTheory.isRatCondKernelCDF_preCDF, ProbabilityTheory.ofReal_condCDF_ae_eq, MeasureTheory.Integrable.condKernel_ae, setIntegral_condKernel_univ_right, condKernel_apply_of_ne_zero, ProbabilityTheory.preCDF_le_one, MeasureTheory.Integrable.norm_integral_condKernel, lintegral_condKernel, ProbabilityTheory.monotone_preCDF, fst.instIsZeroOrProbabilityMeasure, fst_apply, fst_univ, ProbabilityTheory.withDensity_preCDF, setLIntegral_condKernel, fst_add, lintegral_condKernel_mem, fst_mono, ProbabilityTheory.setIntegral_preCDF_fst, IicSnd_le_fst, MeasureTheory.AEStronglyMeasurable.integral_condKernel, ProbabilityTheory.integral_condCDF, ProbabilityTheory.isRatCondKernelCDFAux_preCDF, IsCondKernel.disintegrate, setLIntegral_condKernel_univ_left, fst_map_prodMkβ, ProbabilityTheory.isCondKernelCDF_condCDF, tendsto_IicSnd_atTop, instSFiniteFstOfProd, disintegrate, ProbabilityTheory.lintegral_preCDF_fst, ProbabilityTheory.setLIntegral_condCDF, setLIntegral_condKernel_univ_right, fst_map_prodMk, IicSnd_ac_fst, fst_zero, fst_sum, ProbabilityTheory.condKernel_const, MeasureTheory.Integrable.integral_norm_condKernel, MeasureTheory.Integrable.integral_condKernel, setLIntegral_condKernel_eq_measure_prod, IsCondKernel.apply_of_ne_zero, ProbabilityTheory.integral_preCDF_fst, fst.instIsProbabilityMeasure
|
prod π | CompOp | 217 mathmath: MeasureTheory.quasiMeasurePreserving_add, prod_apply_symm, MeasureTheory.lintegral_prod_swap, MeasureTheory.quasiMeasurePreserving_add_swap, MeasureTheory.NullMeasurable.comp_snd, ProbabilityTheory.indepFun_prod, prod_eq_generateFrom, Measure.eq_prod_of_integral_prod_mul_prod_boundedContinuousFunction, MeasureTheory.measurePreserving_prod_mul_swap, MeasureTheory.quasiMeasurePreserving_inv_mul, Measure.eq_prod_of_integral_mul_boundedContinuousFunction, MeasureTheory.measurePreserving_prod_neg_add, prod.instNoAtoms_fst, MeasureTheory.MemLp.comp_snd, AbsolutelyContinuous.prod, MeasureTheory.quasiMeasurePreserving_div_of_right_invariant, prod.instSigmaFinite, MeasureTheory.Integrable.mul_prod, MeasureTheory.measurePreserving_prod_mul_swap_right, MeasureTheory.setIntegral_prod_swap, fst_prod, nullMeasurable_comp_snd, Real.integrable_prod_sub, map_fst_prod, MeasureTheory.measurePreserving_prod_div_swap, MeasureTheory.measurePreserving_prod_inv_mul_swap, prod.instIsOpenPosMeasure, MeasureTheory.MeasurePreserving.prod, nullMeasurableSet_region_between_co, MeasureTheory.setIntegral_prod_mul, MeasureTheory.ProbabilityMeasure.measurable_fun_prod, nullMeasurableSet_prod, MeasureTheory.measurePreserving_finTwoArrow_vec, prod_eq, nullMeasurableSet_regionBetween, prod.instIsAddLeftInvariant, MeasureTheory.measurePreserving_mul_prod_inv_right, MeasureTheory.Integrable.comp_snd, MeasureTheory.QuasiMeasurePreserving.prod_of_left, prod_prod_le, ProbabilityTheory.covariance_fst_snd_prod, MeasureTheory.ProbabilityMeasure.toMeasure_prod, MeasureTheory.prod_withDensityβ, lintegral_conv_eq_lintegral_sum, nullMeasurableSet_region_between_cc, nullMeasurableSet_preimage_fst, MeasureTheory.prod_withDensity_left, MeasureTheory.charFunDual_prod, Module.Basis.prod_addHaar, MeasureTheory.charFun_eq_prod_iff, AEMeasurable.comp_snd, MeasureTheory.quasiMeasurePreserving_neg_add_swap, ProbabilityTheory.Kernel.prod_apply, ae_prod_iff_ae_ae, prod_apply_le, Measure.eq_prod_of_integral_mul_prod_boundedContinuousFunction, pi_prod_map_IocProdIoc, MeasureTheory.charFunDual_eq_prod_iff, MeasureTheory.measurePreserving_prod_add_right, prod.instIsMulRightInvariant, prod_apply, ProbabilityTheory.Kernel.parallelComp_def, ae_prod_mem_iff_ae_ae_mem, MeasureTheory.measurePreserving_add_prod_neg_right, MeasureTheory.measurePreserving_arrowProdEquivProdArrow, FiniteAtFilter.prod, Measure.eq_prod_of_integral_prod_mul_prod_boundedContinuousFunction', volume_regionBetween_eq_lintegral', MeasureTheory.measurePreserving_prod_sub_swap, map_prod_map, MeasureTheory.measurePreserving_piFinTwo, MeasureTheory.quasiMeasurePreserving_neg_add, pi_prod_map_IicProdIoc, prod_swap, measure_prod_null_of_ae_null, MeasureTheory.measurePreserving_prod_div, prod_restrict, zero_prod, prod_prod, MeasureTheory.QuasiMeasurePreserving.prod_of_right, prod.instIsAddRightInvariant, prod.instIsProbabilityMeasure, quasiMeasurePreserving_fst, MeasureTheory.measurePreserving_prodAssoc, MeasureTheory.continuous_integral_integral, MeasureTheory.integral_prod_mul, MeasureTheory.quasiMeasurePreserving_sub_of_right_invariant, prod.instIsMulLeftInvariant, ProbabilityTheory.condDistrib_snd_prod, MeasureTheory.prod_withDensity_leftβ, MeasureTheory.measurePreserving_piFinSuccAbove, dirac_prod_dirac, MeasureTheory.prod_withDensity_rightβ, volume_eq_prod, quasiMeasurePreserving_snd, prod.instIsLocallyFiniteMeasure, MeasureTheory.integral_continuousLinearMap_prod, nullMeasurableSet_prod_of_ne_zero, Measure.eq_prod_of_integral_prod_mul_boundedContinuousFunction', ProbabilityTheory.variance_add_prod, ProbabilityTheory.IsGaussian.map_rotation_eq_self, measurePreserving_homeomorphUnitSphereProd, MeasureTheory.Integrable.convolution_integrand, MeasureTheory.integral_continuousLinearMap_prod', dirac_prod, MeasureTheory.pdf.indepFun_iff_pdf_prod_eq_pdf_mul_pdf, MeasureTheory.quasiMeasurePreserving_mul_swap, prod.instIsAddHaarMeasure, MeasureTheory.Integrable.comp_fst_iff, prod_dirac, MeasureTheory.Integrable.comp_fst, MeasureTheory.integrable_continuousLinearMap_prod', set_prod_ae_eq, MeasureTheory.measurePreserving_prod_sub, MeasureTheory.MemLp.comp_fst, MeasureTheory.integral_prod_swap, MeasureTheory.measurePreserving_prod_add, MeasureTheory.measurePreserving_mul_prod, prod_sum_right, prod_add, MeasureTheory.quasiMeasurePreserving_sub, MeasureTheory.measurePreserving_prod_add_swap_right, ProbabilityTheory.variance_dual_prod', prod_smul_right, MeasureTheory.measurePreserving_add_prod, MeasureTheory.charFunDual_prod', volume_regionBetween_eq_integral', MeasureTheory.integrable_swap_iff, prod_sum, MeasureTheory.Integrable.comp_snd_iff, prod.instIsHaarMeasure, MeasureTheory.measurePreserving_piFinsetUnion, MeasureTheory.integral_fun_fst, MeasureTheory.Integrable.op_fst_snd, prod_comp_left, MeasureTheory.AEStronglyMeasurable.comp_snd_iff, prod.instSFinite, MeasureTheory.lintegral_prod_le, MeasureTheory.hasFiniteIntegral_prod_iff, prod.instIsFiniteMeasure, prod.instNoAtoms_snd, prod.instIsFiniteMeasureOnCompacts, MeasureTheory.prod_withDensity, MeasureTheory.AEStronglyMeasurable.comp_fst, nullMeasurableSet_preimage_snd, MeasureTheory.measureReal_prod_prod, MeasureTheory.integrable_continuousLinearMap_prod, MeasureTheory.MeasurePreserving.skew_product, MeasureTheory.lintegral_prod_symm', prod_comp_right, measure_prod_null, ProbabilityTheory.condDistrib_fst_prod, MeasureTheory.lintegral_prod_mul, ProbabilityTheory.variance_dual_prod, volume_regionBetween_eq_integral, prod_sum_left, ProbabilityTheory.indepFun_iff_map_prod_eq_prod_map_map', MeasureTheory.QuasiMeasurePreserving.prodMap, MeasureTheory.measurePreserving_prod_add_swap, nullMeasurableSet_region_between_oc, MeasureTheory.measurePreserving_prod_mul, prodAssoc_prod, MeasureTheory.Integrable.smul_prod, MeasureTheory.prod_withDensity_right, tprod_cons, ProbabilityTheory.Kernel.parallelComp_apply, add_prod, MeasureTheory.measurePreserving_prod_inv_mul, MeasureTheory.measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.measurePreserving_snd, MeasureTheory.measurePreserving_mul_prod_inv, Measure.eq_prod_of_integral_mul_prod_boundedContinuousFunction', MeasureTheory.AEStronglyMeasurable.comp_fst_iff, ProbabilityTheory.Kernel.prod_const, MeasureTheory.measurePreserving_piEquivPiSubtypeProd, ProbabilityTheory.instIsGaussianProdProdOfSecondCountableTopologyEither, measurePreserving_swap, pi_map_piOptionEquivProd, prod_zero, nullMeasurable_comp_fst, prod_def, ProbabilityTheory.indepFun_iff_map_prod_eq_prod_map_map, ProbabilityTheory.indepFun_prodβ, MeasureTheory.integral_prod_smul, MeasureTheory.FiniteMeasure.measurable_fun_prod, ProbabilityTheory.rnDeriv_posterior_ae_prod, MeasureTheory.quasiMeasurePreserving_mul, MeasureTheory.measurePreserving_finTwoArrow, MeasureTheory.integral_fun_snd, MeasureTheory.AEStronglyMeasurable.convolution_integrand, MeasureTheory.NullMeasurableSet.prod, IsUnifLocDoublingMeasure.prod, lintegral_mconv_eq_lintegral_prod, MeasureTheory.measurePreserving_div_prod, MeasureTheory.charFun_prod, volume_regionBetween_eq_lintegral, MeasureTheory.charFunDual_eq_prod_iff', MeasureTheory.AEStronglyMeasurable.comp_snd, restrict_prod_eq_prod_univ, MeasureTheory.measurePreserving_prod_neg_add_swap, map_snd_prod, MeasureTheory.measurePreserving_add_prod_neg, MeasureTheory.measurePreserving_sumPiEquivProdPi, MeasureTheory.NullMeasurable.comp_fst, snd_prod, MeasureTheory.FiniteMeasure.toMeasure_prod, MeasureTheory.quasiMeasurePreserving_div, AEMeasurable.comp_fst, MeasureTheory.measurePreserving_sub_prod, MeasureTheory.measurePreserving_prod_mul_right, ProbabilityTheory.IsGaussian.map_rotation_eq_self_of_forall_strongDual_eq_zero, prod_smul_left, compProd_const, measure_prod_compl_eq_zero, Measure.eq_prod_of_integral_prod_mul_boundedContinuousFunction, MeasureTheory.quasiMeasurePreserving_inv_mul_swap, MeasureTheory.measurePreserving_fst
|
snd π | CompOp | 18 mathmath: comp_compProd_comm, snd_map_swap, snd_zero, snd_compProd, snd_map_prodMkβ, fst_map_swap, snd_sum, snd_mono, snd.instIsZeroOrProbabilityMeasure, snd_univ, snd_map_prodMk, snd_dirac_unit_compProd_const, snd_add, snd.instIsProbabilityMeasure, snd_apply, snd.instIsFiniteMeasure, instSFiniteSndOfProd, snd_prod
|