Documentation Verification Report

Prod

πŸ“ Source: Mathlib/MeasureTheory/Measure/Prod.lean

Statistics

MetricCount
Definitionsprod, fst, prod, measureSpace, snd
5
Theoremscomp_fst, comp_snd, lintegral_prod_left, lintegral_prod_left', lintegral_prod_right, lintegral_prod_right', prod_swap, prod, lintegral_prod_left, lintegral_prod_left', lintegral_prod_right, lintegral_prod_right', map_prodMk_left, map_prodMk_right, prod, prod, volume_prod, add_prod, ae_ae_comm, ae_ae_eq_curry_of_prod, ae_ae_eq_of_ae_eq_uncurry, ae_ae_of_ae_prod, ae_measure_lt_top, ae_prod_iff_ae_ae, ae_prod_mem_iff_ae_ae_mem, dirac_prod, dirac_prod_dirac, ext_prod, ext_prod_iff, ext_prod₃, ext_prod₃', ext_prod₃_iff, ext_prod₃_iff', instIsFiniteMeasure, instIsProbabilityMeasure, instIsZeroOrProbabilityMeasure, fst_add, fst_apply, fst_map_prodMk, fst_map_prodMkβ‚€, fst_map_swap, fst_mono, fst_prod, fst_sum, fst_univ, fst_zero, instIsFiniteMeasureOnCompactsProdVolume, instIsFiniteMeasureProdVolume, instIsLocallyFiniteMeasureProdVolume, instIsOpenPosMeasureProdVolumeOfSFinite, instIsProbabilityMeasureProdVolume, instSFiniteFstOfProd, instSFiniteProdVolume, instSFiniteSndOfProd, instSigmaFiniteProdVolume, map_fst_prod, map_prod_map, map_snd_prod, measurePreserving_swap, measure_ae_null_of_prod_null, measure_prod_compl_eq_zero, measure_prod_null, measure_prod_null_of_ae_null, nullMeasurableSet_preimage_fst, nullMeasurableSet_preimage_snd, nullMeasurableSet_prod, nullMeasurableSet_prod_of_ne_zero, nullMeasurable_comp_fst, nullMeasurable_comp_snd, instIsFiniteMeasure, instIsFiniteMeasureOnCompacts, instIsLocallyFiniteMeasure, instIsOpenPosMeasure, instIsProbabilityMeasure, instNoAtoms_fst, instNoAtoms_snd, instSFinite, instSigmaFinite, prodAssoc_prod, prod_add, prod_apply, prod_apply_le, prod_apply_symm, prod_def, prod_dirac, prod_eq, prod_eq_generateFrom, prod_prod, prod_prod_le, prod_restrict, prod_smul_left, prod_sum, prod_sum_left, prod_sum_right, prod_swap, prod_zero, quasiMeasurePreserving_fst, quasiMeasurePreserving_snd, restrict_prod_eq_prod_univ, set_prod_ae_eq, instIsFiniteMeasure, instIsProbabilityMeasure, instIsZeroOrProbabilityMeasure, snd_add, snd_apply, snd_map_prodMk, snd_map_prodMkβ‚€, snd_map_swap, snd_mono, snd_prod, snd_sum, snd_univ, snd_zero, volume_eq_prod, zero_prod, prod, skew_product, comp_fst, comp_snd, left_of_prod, of_preimage_fst, of_preimage_snd, prod, right_of_prod, fst, prodMap, prod_of_left, prod_of_right, snd, lintegral_lintegral, lintegral_lintegral_swap, lintegral_lintegral_symm, lintegral_prod, lintegral_prod_le, lintegral_prod_mul, lintegral_prod_swap, lintegral_prod_symm, lintegral_prod_symm', measurePreserving_fst, measurePreserving_prodAssoc, measurePreserving_snd, measureReal_prod_prod, setLIntegral_prod, setLIntegral_prod_symm, volume_preserving_prodAssoc, measurable_measure_prodMk_left, measurable_measure_prodMk_left_finite, measurable_measure_prodMk_right
148
Total153

AEMeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
comp_fst πŸ“–mathematicalAEMeasurableProd.instMeasurableSpace
MeasureTheory.Measure.prod
β€”comp_quasiMeasurePreserving
MeasureTheory.Measure.quasiMeasurePreserving_fst
comp_snd πŸ“–mathematicalAEMeasurableProd.instMeasurableSpace
MeasureTheory.Measure.prod
β€”comp_quasiMeasurePreserving
MeasureTheory.Measure.quasiMeasurePreserving_snd
lintegral_prod_left πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
MeasureTheory.lintegralβ€”lintegral_prod_left'
lintegral_prod_left' πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
MeasureTheory.lintegralβ€”lintegral_prod_right'
prod_swap
lintegral_prod_right πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
MeasureTheory.lintegralβ€”lintegral_prod_right'
lintegral_prod_right' πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
MeasureTheory.lintegralβ€”MeasureTheory.Measure.instOuterMeasureClass
Measurable.lintegral_prod_left
Measurable.fun_comp
Measurable.prodMk
Measurable.snd
measurable_id'
Measurable.fst
Filter.Eventually.mono
MeasureTheory.Measure.ae_ae_of_ae_prod
MeasureTheory.lintegral_congr_ae
prod_swap πŸ“–β€”AEMeasurable
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”β€”comp_measurable
MeasureTheory.Measure.prod_swap
measurable_swap

IsUnifLocDoublingMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalβ€”IsUnifLocDoublingMeasure
Prod.pseudoMetricSpaceMax
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”Nat.instAtLeastTwoHAddOfNat
Filter.mp_mem
eventually_measure_le_doublingConstant_mul
Filter.univ_mem'
closedBall_prod_same
MeasureTheory.Measure.prod_prod
le_imp_le_of_le_of_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
le_refl
mul_le_mul_right
ENNReal.coe_mul
mul_mul_mul_comm

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
lintegral_prod_left πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegralβ€”lintegral_prod_left'
lintegral_prod_left' πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegralβ€”lintegral_prod_right'
measurable_swap_iff
lintegral_prod_right πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegralβ€”lintegral_prod_right'
lintegral_prod_right' πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegralβ€”measurable_prodMk_left
ennreal_induction
const_mul
MeasurableMulβ‚‚.toMeasurableMul
ENNReal.instMeasurableMulβ‚‚
measurable_measure_prodMk_left
MeasureTheory.lintegral_indicator
MeasureTheory.lintegral_const
MeasureTheory.Measure.restrict_apply
Set.univ_inter
MeasureTheory.lintegral_add_left
comp
add
ContinuousAdd.measurableMulβ‚‚
ENNReal.borelSpace
ENNReal.instSecondCountableTopology
ENNReal.instContinuousAdd
MeasureTheory.lintegral_iSup
iSup
ENNReal.instOrderTopology
instCountableNat
map_prodMk_left πŸ“–mathematicalβ€”Measurable
MeasureTheory.Measure
Prod.instMeasurableSpace
MeasureTheory.Measure.instMeasurableSpace
MeasureTheory.Measure.map
β€”MeasureTheory.Measure.measurable_of_measurable_coe
MeasureTheory.Measure.map_apply
measurable_prodMk_left
measurable_measure_prodMk_left
map_prodMk_right πŸ“–mathematicalβ€”Measurable
MeasureTheory.Measure
Prod.instMeasurableSpace
MeasureTheory.Measure.instMeasurableSpace
MeasureTheory.Measure.map
β€”MeasureTheory.Measure.measurable_of_measurable_coe
MeasureTheory.Measure.map_apply
measurable_prodMk_right
measurable_measure_prodMk_right

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
lintegral_lintegral πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
Measure.prod
lintegralβ€”lintegral_prod
lintegral_lintegral_swap πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
Measure.prod
lintegralβ€”lintegral_lintegral
lintegral_prod_symm
lintegral_lintegral_symm πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
Measure.prod
lintegralβ€”lintegral_prod_symm
AEMeasurable.prod_swap
lintegral_prod πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
Measure.prod
lintegralβ€”Measure.prod_def
Measure.lintegral_bind
Measurable.aemeasurable
Measurable.map_prodMk_left
lintegral_congr_ae
Filter.mp_mem
Measure.instOuterMeasureClass
AEMeasurable.ae_of_bind
Filter.univ_mem'
lintegral_map'
AEMeasurable.prodMk
aemeasurable_const
aemeasurable_id
lintegral_prod_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
lintegral
Prod.instMeasurableSpace
Measure.prod
β€”Measure.prod_def
LE.le.trans
Measure.lintegral_bind_le
lintegral_mono
lintegral_map_le
lintegral_prod_mul πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
lintegral
Prod.instMeasurableSpace
Measure.prod
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”lintegral_prod
AEMeasurable.mul
ENNReal.instMeasurableMulβ‚‚
AEMeasurable.comp_quasiMeasurePreserving
QuasiMeasurePreserving.fst
Measure.QuasiMeasurePreserving.id
QuasiMeasurePreserving.snd
lintegral_lintegral_mul
lintegral_prod_swap πŸ“–mathematicalβ€”lintegral
Prod.instMeasurableSpace
Measure.prod
β€”MeasurePreserving.lintegral_comp_emb
Measure.measurePreserving_swap
MeasurableEquiv.measurableEmbedding
lintegral_prod_symm πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
Measure.prod
lintegralβ€”lintegral_prod_swap
lintegral_prod
AEMeasurable.prod_swap
lintegral_prod_symm' πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
lintegral
Measure.prod
β€”lintegral_prod_symm
Measurable.aemeasurable
measurePreserving_fst πŸ“–mathematicalβ€”MeasurePreserving
Prod.instMeasurableSpace
Measure.prod
β€”measurable_fst
IsScalarTower.right
Measure.map_fst_prod
IsProbabilityMeasure.measure_univ
one_smul
measurePreserving_prodAssoc πŸ“–mathematicalβ€”MeasurePreserving
Prod.instMeasurableSpace
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.prodAssoc
Measure.prod
β€”MeasurableEquiv.measurable
Measure.ext
measurable_prodMk_left
Measure.map_apply
Measure.prod_apply
Measure.prod.instSFinite
lintegral_prod
Measurable.aemeasurable
measurable_measure_prodMk_left
measurePreserving_snd πŸ“–mathematicalβ€”MeasurePreserving
Prod.instMeasurableSpace
Measure.prod
β€”measurable_snd
IsScalarTower.right
Measure.map_snd_prod
IsProbabilityMeasure.measure_univ
one_smul
measureReal_prod_prod πŸ“–mathematicalβ€”Measure.real
Prod.instMeasurableSpace
Measure.prod
SProd.sprod
Set
Set.instSProd
Real
Real.instMul
β€”Measure.prod_prod
ENNReal.toReal_mul
setLIntegral_prod πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
Measure.restrict
Measure.prod
SProd.sprod
Set
Set.instSProd
lintegralβ€”Measure.prod_restrict
lintegral_prod
instSFiniteRestrict
setLIntegral_prod_symm πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
Measure.restrict
Measure.prod
SProd.sprod
Set
Set.instSProd
lintegralβ€”Measure.prod_restrict
lintegral_prod_swap
instSFiniteRestrict
setLIntegral_prod
AEMeasurable.comp_measurable
Measure.prod_swap
measurable_swap
volume_preserving_prodAssoc πŸ“–mathematicalβ€”MeasurePreserving
Prod.instMeasurableSpace
MeasureSpace.toMeasurableSpace
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.prodAssoc
MeasureSpace.volume
Measure.prod.measureSpace
β€”measurePreserving_prodAssoc

MeasureTheory.Measure

Definitions

NameCategoryTheorems
fst πŸ“–CompOp
58 mathmath: ProbabilityTheory.condCDF_ae_eq, ProbabilityTheory.lintegral_condCDF, fst.instIsFiniteMeasure, ProbabilityTheory.setLIntegral_preCDF_fst, ProbabilityTheory.integrable_preCDF, ProbabilityTheory.setIntegral_condCDF, fst_prod, snd_map_swap, MeasureTheory.AEStronglyMeasurable.ae_integrable_condKernel_iff, setIntegral_condKernel, fst_compProd, ProbabilityTheory.integrable_condCDF, setIntegral_condKernel_univ_left, fst_map_swap, integral_condKernel, ProbabilityTheory.isRatCondKernelCDF_preCDF, ProbabilityTheory.ofReal_condCDF_ae_eq, MeasureTheory.Integrable.condKernel_ae, setIntegral_condKernel_univ_right, condKernel_apply_of_ne_zero, ProbabilityTheory.preCDF_le_one, MeasureTheory.Integrable.norm_integral_condKernel, lintegral_condKernel, ProbabilityTheory.monotone_preCDF, fst.instIsZeroOrProbabilityMeasure, fst_apply, fst_univ, ProbabilityTheory.withDensity_preCDF, setLIntegral_condKernel, fst_add, lintegral_condKernel_mem, fst_mono, ProbabilityTheory.setIntegral_preCDF_fst, IicSnd_le_fst, MeasureTheory.AEStronglyMeasurable.integral_condKernel, ProbabilityTheory.integral_condCDF, ProbabilityTheory.isRatCondKernelCDFAux_preCDF, IsCondKernel.disintegrate, setLIntegral_condKernel_univ_left, fst_map_prodMkβ‚€, ProbabilityTheory.isCondKernelCDF_condCDF, tendsto_IicSnd_atTop, instSFiniteFstOfProd, disintegrate, ProbabilityTheory.lintegral_preCDF_fst, ProbabilityTheory.setLIntegral_condCDF, setLIntegral_condKernel_univ_right, fst_map_prodMk, IicSnd_ac_fst, fst_zero, fst_sum, ProbabilityTheory.condKernel_const, MeasureTheory.Integrable.integral_norm_condKernel, MeasureTheory.Integrable.integral_condKernel, setLIntegral_condKernel_eq_measure_prod, IsCondKernel.apply_of_ne_zero, ProbabilityTheory.integral_preCDF_fst, fst.instIsProbabilityMeasure
prod πŸ“–CompOp
217 mathmath: MeasureTheory.quasiMeasurePreserving_add, prod_apply_symm, MeasureTheory.lintegral_prod_swap, MeasureTheory.quasiMeasurePreserving_add_swap, MeasureTheory.NullMeasurable.comp_snd, ProbabilityTheory.indepFun_prod, prod_eq_generateFrom, Measure.eq_prod_of_integral_prod_mul_prod_boundedContinuousFunction, MeasureTheory.measurePreserving_prod_mul_swap, MeasureTheory.quasiMeasurePreserving_inv_mul, Measure.eq_prod_of_integral_mul_boundedContinuousFunction, MeasureTheory.measurePreserving_prod_neg_add, prod.instNoAtoms_fst, MeasureTheory.MemLp.comp_snd, AbsolutelyContinuous.prod, MeasureTheory.quasiMeasurePreserving_div_of_right_invariant, prod.instSigmaFinite, MeasureTheory.Integrable.mul_prod, MeasureTheory.measurePreserving_prod_mul_swap_right, MeasureTheory.setIntegral_prod_swap, fst_prod, nullMeasurable_comp_snd, Real.integrable_prod_sub, map_fst_prod, MeasureTheory.measurePreserving_prod_div_swap, MeasureTheory.measurePreserving_prod_inv_mul_swap, prod.instIsOpenPosMeasure, MeasureTheory.MeasurePreserving.prod, nullMeasurableSet_region_between_co, MeasureTheory.setIntegral_prod_mul, MeasureTheory.ProbabilityMeasure.measurable_fun_prod, nullMeasurableSet_prod, MeasureTheory.measurePreserving_finTwoArrow_vec, prod_eq, nullMeasurableSet_regionBetween, prod.instIsAddLeftInvariant, MeasureTheory.measurePreserving_mul_prod_inv_right, MeasureTheory.Integrable.comp_snd, MeasureTheory.QuasiMeasurePreserving.prod_of_left, prod_prod_le, ProbabilityTheory.covariance_fst_snd_prod, MeasureTheory.ProbabilityMeasure.toMeasure_prod, MeasureTheory.prod_withDensityβ‚€, lintegral_conv_eq_lintegral_sum, nullMeasurableSet_region_between_cc, nullMeasurableSet_preimage_fst, MeasureTheory.prod_withDensity_left, MeasureTheory.charFunDual_prod, Module.Basis.prod_addHaar, MeasureTheory.charFun_eq_prod_iff, AEMeasurable.comp_snd, MeasureTheory.quasiMeasurePreserving_neg_add_swap, ProbabilityTheory.Kernel.prod_apply, ae_prod_iff_ae_ae, prod_apply_le, Measure.eq_prod_of_integral_mul_prod_boundedContinuousFunction, pi_prod_map_IocProdIoc, MeasureTheory.charFunDual_eq_prod_iff, MeasureTheory.measurePreserving_prod_add_right, prod.instIsMulRightInvariant, prod_apply, ProbabilityTheory.Kernel.parallelComp_def, ae_prod_mem_iff_ae_ae_mem, MeasureTheory.measurePreserving_add_prod_neg_right, MeasureTheory.measurePreserving_arrowProdEquivProdArrow, FiniteAtFilter.prod, Measure.eq_prod_of_integral_prod_mul_prod_boundedContinuousFunction', volume_regionBetween_eq_lintegral', MeasureTheory.measurePreserving_prod_sub_swap, map_prod_map, MeasureTheory.measurePreserving_piFinTwo, MeasureTheory.quasiMeasurePreserving_neg_add, pi_prod_map_IicProdIoc, prod_swap, measure_prod_null_of_ae_null, MeasureTheory.measurePreserving_prod_div, prod_restrict, zero_prod, prod_prod, MeasureTheory.QuasiMeasurePreserving.prod_of_right, prod.instIsAddRightInvariant, prod.instIsProbabilityMeasure, quasiMeasurePreserving_fst, MeasureTheory.measurePreserving_prodAssoc, MeasureTheory.continuous_integral_integral, MeasureTheory.integral_prod_mul, MeasureTheory.quasiMeasurePreserving_sub_of_right_invariant, prod.instIsMulLeftInvariant, ProbabilityTheory.condDistrib_snd_prod, MeasureTheory.prod_withDensity_leftβ‚€, MeasureTheory.measurePreserving_piFinSuccAbove, dirac_prod_dirac, MeasureTheory.prod_withDensity_rightβ‚€, volume_eq_prod, quasiMeasurePreserving_snd, prod.instIsLocallyFiniteMeasure, MeasureTheory.integral_continuousLinearMap_prod, nullMeasurableSet_prod_of_ne_zero, Measure.eq_prod_of_integral_prod_mul_boundedContinuousFunction', ProbabilityTheory.variance_add_prod, ProbabilityTheory.IsGaussian.map_rotation_eq_self, measurePreserving_homeomorphUnitSphereProd, MeasureTheory.Integrable.convolution_integrand, MeasureTheory.integral_continuousLinearMap_prod', dirac_prod, MeasureTheory.pdf.indepFun_iff_pdf_prod_eq_pdf_mul_pdf, MeasureTheory.quasiMeasurePreserving_mul_swap, prod.instIsAddHaarMeasure, MeasureTheory.Integrable.comp_fst_iff, prod_dirac, MeasureTheory.Integrable.comp_fst, MeasureTheory.integrable_continuousLinearMap_prod', set_prod_ae_eq, MeasureTheory.measurePreserving_prod_sub, MeasureTheory.MemLp.comp_fst, MeasureTheory.integral_prod_swap, MeasureTheory.measurePreserving_prod_add, MeasureTheory.measurePreserving_mul_prod, prod_sum_right, prod_add, MeasureTheory.quasiMeasurePreserving_sub, MeasureTheory.measurePreserving_prod_add_swap_right, ProbabilityTheory.variance_dual_prod', prod_smul_right, MeasureTheory.measurePreserving_add_prod, MeasureTheory.charFunDual_prod', volume_regionBetween_eq_integral', MeasureTheory.integrable_swap_iff, prod_sum, MeasureTheory.Integrable.comp_snd_iff, prod.instIsHaarMeasure, MeasureTheory.measurePreserving_piFinsetUnion, MeasureTheory.integral_fun_fst, MeasureTheory.Integrable.op_fst_snd, prod_comp_left, MeasureTheory.AEStronglyMeasurable.comp_snd_iff, prod.instSFinite, MeasureTheory.lintegral_prod_le, MeasureTheory.hasFiniteIntegral_prod_iff, prod.instIsFiniteMeasure, prod.instNoAtoms_snd, prod.instIsFiniteMeasureOnCompacts, MeasureTheory.prod_withDensity, MeasureTheory.AEStronglyMeasurable.comp_fst, nullMeasurableSet_preimage_snd, MeasureTheory.measureReal_prod_prod, MeasureTheory.integrable_continuousLinearMap_prod, MeasureTheory.MeasurePreserving.skew_product, MeasureTheory.lintegral_prod_symm', prod_comp_right, measure_prod_null, ProbabilityTheory.condDistrib_fst_prod, MeasureTheory.lintegral_prod_mul, ProbabilityTheory.variance_dual_prod, volume_regionBetween_eq_integral, prod_sum_left, ProbabilityTheory.indepFun_iff_map_prod_eq_prod_map_map', MeasureTheory.QuasiMeasurePreserving.prodMap, MeasureTheory.measurePreserving_prod_add_swap, nullMeasurableSet_region_between_oc, MeasureTheory.measurePreserving_prod_mul, prodAssoc_prod, MeasureTheory.Integrable.smul_prod, MeasureTheory.prod_withDensity_right, tprod_cons, ProbabilityTheory.Kernel.parallelComp_apply, add_prod, MeasureTheory.measurePreserving_prod_inv_mul, MeasureTheory.measurePreserving_sumPiEquivProdPi_symm, MeasureTheory.measurePreserving_snd, MeasureTheory.measurePreserving_mul_prod_inv, Measure.eq_prod_of_integral_mul_prod_boundedContinuousFunction', MeasureTheory.AEStronglyMeasurable.comp_fst_iff, ProbabilityTheory.Kernel.prod_const, MeasureTheory.measurePreserving_piEquivPiSubtypeProd, ProbabilityTheory.instIsGaussianProdProdOfSecondCountableTopologyEither, measurePreserving_swap, pi_map_piOptionEquivProd, prod_zero, nullMeasurable_comp_fst, prod_def, ProbabilityTheory.indepFun_iff_map_prod_eq_prod_map_map, ProbabilityTheory.indepFun_prodβ‚€, MeasureTheory.integral_prod_smul, MeasureTheory.FiniteMeasure.measurable_fun_prod, ProbabilityTheory.rnDeriv_posterior_ae_prod, MeasureTheory.quasiMeasurePreserving_mul, MeasureTheory.measurePreserving_finTwoArrow, MeasureTheory.integral_fun_snd, MeasureTheory.AEStronglyMeasurable.convolution_integrand, MeasureTheory.NullMeasurableSet.prod, IsUnifLocDoublingMeasure.prod, lintegral_mconv_eq_lintegral_prod, MeasureTheory.measurePreserving_div_prod, MeasureTheory.charFun_prod, volume_regionBetween_eq_lintegral, MeasureTheory.charFunDual_eq_prod_iff', MeasureTheory.AEStronglyMeasurable.comp_snd, restrict_prod_eq_prod_univ, MeasureTheory.measurePreserving_prod_neg_add_swap, map_snd_prod, MeasureTheory.measurePreserving_add_prod_neg, MeasureTheory.measurePreserving_sumPiEquivProdPi, MeasureTheory.NullMeasurable.comp_fst, snd_prod, MeasureTheory.FiniteMeasure.toMeasure_prod, MeasureTheory.quasiMeasurePreserving_div, AEMeasurable.comp_fst, MeasureTheory.measurePreserving_sub_prod, MeasureTheory.measurePreserving_prod_mul_right, ProbabilityTheory.IsGaussian.map_rotation_eq_self_of_forall_strongDual_eq_zero, prod_smul_left, compProd_const, measure_prod_compl_eq_zero, Measure.eq_prod_of_integral_prod_mul_boundedContinuousFunction, MeasureTheory.quasiMeasurePreserving_inv_mul_swap, MeasureTheory.measurePreserving_fst
snd πŸ“–CompOp
18 mathmath: comp_compProd_comm, snd_map_swap, snd_zero, snd_compProd, snd_map_prodMkβ‚€, fst_map_swap, snd_sum, snd_mono, snd.instIsZeroOrProbabilityMeasure, snd_univ, snd_map_prodMk, snd_dirac_unit_compProd_const, snd_add, snd.instIsProbabilityMeasure, snd_apply, snd.instIsFiniteMeasure, instSFiniteSndOfProd, snd_prod

Theorems

NameKindAssumesProvesValidatesDepends On
add_prod πŸ“–mathematicalβ€”prod
MeasureTheory.Measure
instAdd
Prod.instMeasurableSpace
β€”MeasureTheory.sum_sfiniteSeq
sum_add_sum
prod_sum
instCountableNat
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
prod_eq
MeasureTheory.Add.sigmaFinite
prod_prod
right_distrib
Distrib.rightDistribClass
ae_ae_comm πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
setOf
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
β€”instOuterMeasureClass
ae_prod_iff_ae_ae
prod_swap
MeasureTheory.ae_map_iff
Measurable.aemeasurable
measurable_swap
ae_ae_eq_curry_of_prod πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
Prod.instMeasurableSpace
instFunLike
instOuterMeasureClass
prod
Filter.Eventuallyβ€”instOuterMeasureClass
ae_ae_of_ae_prod
ae_ae_eq_of_ae_eq_uncurry πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
Prod.instMeasurableSpace
instFunLike
instOuterMeasureClass
prod
Filter.Eventuallyβ€”instOuterMeasureClass
ae_ae_eq_curry_of_prod
ae_ae_of_ae_prod πŸ“–β€”Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
Prod.instMeasurableSpace
instFunLike
instOuterMeasureClass
prod
β€”β€”instOuterMeasureClass
measure_ae_null_of_prod_null
ae_measure_lt_top πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
Filter.Eventually
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.preimage
Top.top
instTopENNReal
MeasureTheory.ae
instOuterMeasureClass
β€”MeasureTheory.ae_lt_top
measurable_measure_prodMk_left
prod_apply
ae_prod_iff_ae_ae πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
setOf
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
prod
β€”measure_prod_null
MeasurableSet.compl
ae_prod_mem_iff_ae_ae_mem πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
Filter.Eventually
Set
Set.instMembership
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
prod
β€”measure_prod_null
MeasurableSet.compl
dirac_prod πŸ“–mathematicalβ€”prod
dirac
map
Prod.instMeasurableSpace
β€”MeasureTheory.sum_sfiniteSeq
prod_sum_right
instCountableNat
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
map_sum
Measurable.aemeasurable
measurable_prodMk_left
prod_eq
dirac.instSigmaFinite
map_apply
MeasurableSet.prod
Set.mk_preimage_prod_right_eq_if
MeasureTheory.measure_if
dirac_apply'
Set.indicator_mul_left
one_mul
dirac_prod_dirac πŸ“–mathematicalβ€”prod
dirac
Prod.instMeasurableSpace
β€”prod_dirac
MeasureTheory.instSFiniteOfSigmaFinite
dirac.instSigmaFinite
map_dirac
measurable_prodMk_right
ext_prod πŸ“–β€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
SProd.sprod
Set.instSProd
β€”β€”ext
Set.univ_prod_univ
MeasurableSet.univ
MeasurableSpace.induction_on_inter
generateFrom_prod
isPiSystem_prod
MeasureTheory.measure_empty
instOuterMeasureClass
MeasureTheory.measure_compl
MeasureTheory.measure_ne_top
MeasureTheory.measure_iUnion
instCountableNat
ext_prod_iff πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
SProd.sprod
Set.instSProd
β€”ext_prod
ext_prod₃ πŸ“–β€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
SProd.sprod
Set.instSProd
β€”β€”ext
MeasurableSet.univ
MeasurableSpace.induction_on_inter
generateFrom_eq_prod
MeasurableSpace.generateFrom_measurableSet
generateFrom_prod
isCountablySpanning_measurableSet
IsCountablySpanning.prod
IsPiSystem.prod
MeasurableSpace.isPiSystem_measurableSet
isPiSystem_prod
MeasureTheory.measure_empty
instOuterMeasureClass
MeasureTheory.measure_compl
MeasureTheory.measure_ne_top
MeasureTheory.measure_iUnion
instCountableNat
ext_prod₃' πŸ“–β€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
SProd.sprod
Set.instSProd
β€”β€”ext_prod₃_iff'
ext_prod₃_iff πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
SProd.sprod
Set.instSProd
β€”ext_prod₃
ext_prod₃_iff' πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
SProd.sprod
Set.instSProd
β€”MeasurableEquiv.map_measurableEquiv_injective
ext_prod₃_iff
isFiniteMeasure_map
map_apply
MeasurableEquiv.measurable
MeasurableSet.prod
Set.ext
Equiv.prod_assoc_preimage
fst_add πŸ“–mathematicalβ€”fst
MeasureTheory.Measure
Prod.instMeasurableSpace
instAdd
β€”map_add
measurable_fst
fst_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
fst
Prod.instMeasurableSpace
Set.preimage
β€”fst.eq_1
map_apply
measurable_fst
fst_map_prodMk πŸ“–mathematicalMeasurablefst
map
Prod.instMeasurableSpace
β€”fst_map_prodMkβ‚€
Measurable.aemeasurable
fst_map_prodMkβ‚€ πŸ“–mathematicalAEMeasurablefst
map
Prod.instMeasurableSpace
β€”ext
fst_apply
map_apply_of_aemeasurable
AEMeasurable.prodMk
measurable_fst
Set.prod_univ
Set.mk_preimage_prod
Set.preimage_univ
Set.inter_univ
Mathlib.Tactic.Contrapose.contraposeβ‚„
Measurable.comp_aemeasurable
map_of_not_aemeasurable
fst_zero
fst_map_swap πŸ“–mathematicalβ€”fst
map
Prod.instMeasurableSpace
snd
β€”fst.eq_1
map_map
measurable_fst
measurable_swap
fst_mono πŸ“–mathematicalMeasureTheory.Measure
Prod.instMeasurableSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
fstβ€”map_mono
measurable_fst
fst_prod πŸ“–mathematicalβ€”fst
prod
β€”ext
fst_apply
Set.prod_univ
prod_prod
MeasureTheory.IsProbabilityMeasure.measure_univ
mul_one
fst_sum πŸ“–mathematicalβ€”fst
sum
Prod.instMeasurableSpace
β€”map_sum
Measurable.aemeasurable
measurable_fst
fst_univ πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
fst
Set.univ
Prod.instMeasurableSpace
β€”fst_apply
MeasurableSet.univ
Set.preimage_univ
fst_zero πŸ“–mathematicalβ€”fst
MeasureTheory.Measure
Prod.instMeasurableSpace
instZero
β€”map_zero
instIsFiniteMeasureOnCompactsProdVolume πŸ“–mathematicalβ€”MeasureTheory.IsFiniteMeasureOnCompacts
MeasureTheory.MeasureSpace.toMeasurableSpace
prod.measureSpace
instTopologicalSpaceProd
MeasureTheory.MeasureSpace.volume
β€”prod.instIsFiniteMeasureOnCompacts
instIsFiniteMeasureProdVolume πŸ“–mathematicalβ€”MeasureTheory.IsFiniteMeasure
MeasureTheory.MeasureSpace.toMeasurableSpace
prod.measureSpace
MeasureTheory.MeasureSpace.volume
β€”prod.instIsFiniteMeasure
instIsLocallyFiniteMeasureProdVolume πŸ“–mathematicalβ€”MeasureTheory.IsLocallyFiniteMeasure
MeasureTheory.MeasureSpace.toMeasurableSpace
prod.measureSpace
instTopologicalSpaceProd
MeasureTheory.MeasureSpace.volume
β€”prod.instIsLocallyFiniteMeasure
instIsOpenPosMeasureProdVolumeOfSFinite πŸ“–mathematicalβ€”IsOpenPosMeasure
instTopologicalSpaceProd
MeasureTheory.MeasureSpace.toMeasurableSpace
prod.measureSpace
MeasureTheory.MeasureSpace.volume
β€”prod.instIsOpenPosMeasure
instIsProbabilityMeasureProdVolume πŸ“–mathematicalβ€”MeasureTheory.IsProbabilityMeasure
MeasureTheory.MeasureSpace.toMeasurableSpace
prod.measureSpace
MeasureTheory.MeasureSpace.volume
β€”prod.instIsProbabilityMeasure
instSFiniteFstOfProd πŸ“–mathematicalβ€”MeasureTheory.SFinite
fst
β€”fst.eq_1
instSFiniteMap
instSFiniteProdVolume πŸ“–mathematicalβ€”MeasureTheory.SFinite
MeasureTheory.MeasureSpace.toMeasurableSpace
prod.measureSpace
MeasureTheory.MeasureSpace.volume
β€”prod.instSFinite
instSFiniteSndOfProd πŸ“–mathematicalβ€”MeasureTheory.SFinite
snd
β€”snd.eq_1
instSFiniteMap
instSigmaFiniteProdVolume πŸ“–mathematicalβ€”MeasureTheory.SigmaFinite
MeasureTheory.MeasureSpace.toMeasurableSpace
prod.measureSpace
MeasureTheory.MeasureSpace.volume
β€”prod.instSigmaFinite
map_fst_prod πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prod
ENNReal
MeasureTheory.Measure
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
DFunLike.coe
Set
instFunLike
Set.univ
β€”ext
IsScalarTower.right
map_apply
measurable_fst
prod_prod
mul_comm
map_prod_map πŸ“–mathematicalMeasurableprod
map
Prod.instMeasurableSpace
β€”MeasureTheory.sum_sfiniteSeq
map_sum
Measurable.aemeasurable
prod_sum
instCountableNat
instSFiniteMap
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
Measurable.prodMap
prod_eq
isFiniteMeasure_map
map_apply
MeasurableSet.prod
prod_prod
map_snd_prod πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prod
ENNReal
MeasureTheory.Measure
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
DFunLike.coe
Set
instFunLike
Set.univ
β€”ext
IsScalarTower.right
map_apply
measurable_snd
prod_prod
measurePreserving_swap πŸ“–mathematicalβ€”MeasureTheory.MeasurePreserving
Prod.instMeasurableSpace
prod
β€”measurable_swap
prod_swap
measure_ae_null_of_prod_null πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
prod
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
instOuterMeasureClass
Set.preimage
Pi.instZero
β€”instOuterMeasureClass
MeasureTheory.exists_measurable_superset_of_null
Filter.eventuallyLE_antisymm_iff
Filter.EventuallyLE.trans_eq
Filter.Eventually.of_forall
MeasureTheory.measure_mono
Set.preimage_mono
measure_prod_null
zero_le
ENNReal.instCanonicallyOrderedAdd
measure_prod_compl_eq_zero πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Compl.compl
Set.instCompl
instZeroENNReal
Prod.instMeasurableSpace
prod
SProd.sprod
Set.instSProd
β€”Set.compl_prod_eq_union
MeasureTheory.measure_union_null_iff
instOuterMeasureClass
prod_prod
MulZeroClass.zero_mul
MulZeroClass.mul_zero
measure_prod_null πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
prod
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
instOuterMeasureClass
Set.preimage
Pi.instZero
β€”instOuterMeasureClass
prod_apply
MeasureTheory.lintegral_eq_zero_iff
measurable_measure_prodMk_left
measure_prod_null_of_ae_null πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
Filter.EventuallyEq
ENNReal
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
DFunLike.coe
Set
Set.preimage
Pi.instZero
instZeroENNReal
prodβ€”instOuterMeasureClass
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
prod_apply_le
MeasureTheory.lintegral_congr_ae
MeasureTheory.lintegral_const
MulZeroClass.zero_mul
nullMeasurableSet_preimage_fst πŸ“–mathematicalβ€”MeasureTheory.NullMeasurableSet
Prod.instMeasurableSpace
Set.preimage
prod
β€”MeasureTheory.NullMeasurableSet.of_preimage_fst
MeasureTheory.NullMeasurableSet.preimage
quasiMeasurePreserving_fst
nullMeasurableSet_preimage_snd πŸ“–mathematicalβ€”MeasureTheory.NullMeasurableSet
Prod.instMeasurableSpace
Set.preimage
prod
β€”MeasureTheory.NullMeasurableSet.of_preimage_snd
MeasureTheory.NullMeasurableSet.preimage
quasiMeasurePreserving_snd
nullMeasurableSet_prod πŸ“–mathematicalβ€”MeasureTheory.NullMeasurableSet
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
prod
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
instZeroENNReal
β€”eq_or_ne
prod_prod
MulZeroClass.zero_mul
MulZeroClass.mul_zero
nullMeasurableSet_prod_of_ne_zero πŸ“–mathematicalβ€”MeasureTheory.NullMeasurableSet
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
prod
β€”MeasureTheory.NullMeasurableSet.left_of_prod
MeasureTheory.NullMeasurableSet.right_of_prod
MeasureTheory.NullMeasurableSet.prod
nullMeasurable_comp_fst πŸ“–mathematicalβ€”MeasureTheory.NullMeasurable
Prod.instMeasurableSpace
prod
β€”nullMeasurableSet_preimage_fst
nullMeasurable_comp_snd πŸ“–mathematicalβ€”MeasureTheory.NullMeasurable
Prod.instMeasurableSpace
prod
β€”nullMeasurableSet_preimage_snd
prodAssoc_prod πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.prodAssoc
prod
β€”ext
sum_apply
Equiv.tsum_eq
MeasureTheory.sum_sfiniteSeq
prod_sum
instCountableNat
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
map_sum
Measurable.aemeasurable
MeasurableEquiv.measurable
instCountableProd
prod.instSFinite
prod_eq_generateFrom
MeasurableSpace.generateFrom_measurableSet
generateFrom_prod
MeasurableSpace.isPiSystem_measurableSet
isPiSystem_prod
map_apply
MeasurableSet.prod
Set.mem_setOf_eq
Equiv.prod_assoc_preimage
prod_prod
mul_assoc
prod_add πŸ“–mathematicalβ€”prod
MeasureTheory.Measure
instAdd
Prod.instMeasurableSpace
β€”MeasureTheory.sum_sfiniteSeq
sum_add_sum
prod_sum
instCountableNat
MeasureTheory.instSFiniteHAddMeasure
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
prod_eq
MeasureTheory.Add.sigmaFinite
prod_prod
left_distrib
Distrib.leftDistribClass
prod_apply πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
prod
MeasureTheory.lintegral
Set.preimage
β€”prod_def
bind_apply
Measurable.aemeasurable
Measurable.map_prodMk_left
map_apply
measurable_prodMk_left
prod_apply_le πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
prod
MeasureTheory.lintegral
Set.preimage
β€”prod_def
map_apply
measurable_prodMk_left
bind_apply_le
prod_apply_symm πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
prod
MeasureTheory.lintegral
Set.preimage
β€”prod_swap
map_apply
measurable_swap
prod_apply
prod_def πŸ“–mathematicalβ€”prod
bind
Prod.instMeasurableSpace
map
β€”β€”
prod_dirac πŸ“–mathematicalβ€”prod
dirac
map
Prod.instMeasurableSpace
β€”MeasureTheory.sum_sfiniteSeq
prod_sum_left
MeasureTheory.instSFiniteOfSigmaFinite
dirac.instSigmaFinite
map_sum
Measurable.aemeasurable
measurable_prodMk_right
prod_eq
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
map_apply
MeasurableSet.prod
Set.mk_preimage_prod_left_eq_if
MeasureTheory.measure_if
dirac_apply'
Set.indicator_mul_right
mul_one
prod_eq πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
SProd.sprod
Set.instSProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
prodβ€”prod_eq_generateFrom
MeasurableSpace.generateFrom_measurableSet
MeasurableSpace.isPiSystem_measurableSet
prod_eq_generateFrom πŸ“–mathematicalMeasurableSpace.generateFrom
IsPiSystem
DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
SProd.sprod
Set.instSProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
prodβ€”FiniteSpanningSetsIn.ext
generateFrom_eq_prod
FiniteSpanningSetsIn.isCountablySpanning
IsPiSystem.prod
prod_prod
MeasureTheory.instSFiniteOfSigmaFinite
FiniteSpanningSetsIn.sigmaFinite
prod_prod πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
instFunLike
prod
SProd.sprod
Set.instSProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”LE.le.antisymm
prod_prod_le
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.subset_toMeasurable
measurable_measure_prodMk_left
MeasureTheory.measure_mono
instOuterMeasureClass
Set.mk_mem_prod
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
MeasureTheory.setLIntegral_const
mul_comm
MeasureTheory.setLIntegral_mono
MeasureTheory.lintegral_mono'
restrict_le_self
le_rfl
prod_apply
MeasureTheory.measure_toMeasurable
prod_prod_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
instFunLike
prod
SProd.sprod
Set.instSProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”MeasureTheory.measure_mono
instOuterMeasureClass
Set.prod_mono
MeasureTheory.subset_toMeasurable
prod_apply_le
MeasurableSet.prod
Set.mk_preimage_prod_right_eq_if
MeasureTheory.measure_if
MeasureTheory.lintegral_indicator
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.lintegral_const
restrict_apply_univ
mul_comm
MeasureTheory.measure_toMeasurable
prod_restrict πŸ“–mathematicalβ€”prod
restrict
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
β€”MeasureTheory.sum_sfiniteSeq
restrict_sum_of_countable
instCountableNat
prod_sum
MeasureTheory.instSFiniteRestrict
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
instCountableProd
prod_eq
MeasureTheory.Restrict.sigmaFinite
restrict_apply
MeasurableSet.prod
Set.prod_inter_prod
prod_prod
prod_smul_left πŸ“–mathematicalβ€”prod
ENNReal
MeasureTheory.Measure
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
Prod.instMeasurableSpace
β€”ext
IsScalarTower.right
prod_apply
smul_apply
MeasureTheory.lintegral_smul_measure
prod_sum πŸ“–mathematicalMeasureTheory.SFiniteprod
sum
Prod.instMeasurableSpace
β€”prod_sum_left
MeasureTheory.instSFiniteSumOfCountable
prod_sum_right
sum_sum
prod_sum_left πŸ“–mathematicalβ€”prod
sum
Prod.instMeasurableSpace
β€”ext
prod_apply
MeasureTheory.lintegral_sum_measure
sum_apply
prod_sum_right πŸ“–mathematicalMeasureTheory.SFiniteprod
sum
Prod.instMeasurableSpace
β€”ext
prod_apply
MeasureTheory.instSFiniteSumOfCountable
sum_apply
measurable_prodMk_left
MeasureTheory.lintegral_tsum
Measurable.aemeasurable
measurable_measure_prodMk_left
prod_swap πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prod
β€”ext
sum_apply
Equiv.tsum_eq
MeasureTheory.sum_sfiniteSeq
prod_sum
instCountableNat
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
map_sum
Measurable.aemeasurable
measurable_swap
prod_eq
map_apply
MeasurableSet.prod
Set.preimage_swap_prod
prod_prod
mul_comm
prod_zero πŸ“–mathematicalβ€”prod
MeasureTheory.Measure
instZero
Prod.instMeasurableSpace
β€”prod_def
IsScalarTower.right
map_zero
bind_const
smul_zero
quasiMeasurePreserving_fst πŸ“–mathematicalβ€”QuasiMeasurePreserving
Prod.instMeasurableSpace
prod
β€”measurable_fst
map_apply
Set.prod_univ
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
LE.le.trans_eq
prod_prod_le
MulZeroClass.zero_mul
quasiMeasurePreserving_snd πŸ“–mathematicalβ€”QuasiMeasurePreserving
Prod.instMeasurableSpace
prod
β€”measurable_snd
map_apply
Set.univ_prod
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
LE.le.trans_eq
prod_prod_le
MulZeroClass.mul_zero
restrict_prod_eq_prod_univ πŸ“–mathematicalβ€”prod
restrict
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
Set.univ
β€”restrict_univ
prod_restrict
set_prod_ae_eq πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
Prod.instMeasurableSpace
prod
SProd.sprod
Set
Set.instSProd
β€”instOuterMeasureClass
Filter.EventuallyEq.inter
QuasiMeasurePreserving.preimage_ae_eq
quasiMeasurePreserving_fst
quasiMeasurePreserving_snd
snd_add πŸ“–mathematicalβ€”snd
MeasureTheory.Measure
Prod.instMeasurableSpace
instAdd
β€”map_add
measurable_snd
snd_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
snd
Prod.instMeasurableSpace
Set.preimage
β€”snd.eq_1
map_apply
measurable_snd
snd_map_prodMk πŸ“–mathematicalMeasurablesnd
map
Prod.instMeasurableSpace
β€”snd_map_prodMkβ‚€
Measurable.aemeasurable
snd_map_prodMkβ‚€ πŸ“–mathematicalAEMeasurablesnd
map
Prod.instMeasurableSpace
β€”ext
snd_apply
map_apply_of_aemeasurable
AEMeasurable.prodMk
measurable_snd
Set.univ_prod
Set.mk_preimage_prod
Set.preimage_univ
Set.univ_inter
Mathlib.Tactic.Contrapose.contraposeβ‚„
Measurable.comp_aemeasurable
map_of_not_aemeasurable
snd_zero
snd_map_swap πŸ“–mathematicalβ€”snd
map
Prod.instMeasurableSpace
fst
β€”snd.eq_1
map_map
measurable_snd
measurable_swap
snd_mono πŸ“–mathematicalMeasureTheory.Measure
Prod.instMeasurableSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
sndβ€”map_mono
measurable_snd
snd_prod πŸ“–mathematicalβ€”snd
prod
β€”ext
snd_apply
Set.univ_prod
prod_prod
MeasureTheory.IsProbabilityMeasure.measure_univ
one_mul
snd_sum πŸ“–mathematicalβ€”snd
sum
Prod.instMeasurableSpace
β€”map_sum
Measurable.aemeasurable
measurable_snd
snd_univ πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
snd
Set.univ
Prod.instMeasurableSpace
β€”snd_apply
MeasurableSet.univ
Set.preimage_univ
snd_zero πŸ“–mathematicalβ€”snd
MeasureTheory.Measure
Prod.instMeasurableSpace
instZero
β€”map_zero
volume_eq_prod πŸ“–mathematicalβ€”MeasureTheory.MeasureSpace.volume
prod.measureSpace
prod
MeasureTheory.MeasureSpace.toMeasurableSpace
β€”β€”
zero_prod πŸ“–mathematicalβ€”prod
MeasureTheory.Measure
instZero
Prod.instMeasurableSpace
β€”prod_def
bind_zero_left

MeasureTheory.Measure.AbsolutelyContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousProd.instMeasurableSpace
MeasureTheory.Measure.prod
β€”MeasureTheory.Measure.measure_prod_null_of_ae_null
Filter.Eventually.mono
MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyEq.filter_mono
MeasureTheory.Measure.measure_prod_null
ae_le

MeasureTheory.Measure.FiniteAtFilter

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalMeasureTheory.Measure.FiniteAtFilterProd.instMeasurableSpace
MeasureTheory.Measure.prod
SProd.sprod
Filter
Filter.instSProd
β€”Filter.prod_mem_prod
lt_imp_lt_of_le_of_le
MeasureTheory.Measure.prod_prod_le
le_refl
ENNReal.mul_lt_top

MeasureTheory.Measure.FiniteSpanningSetsIn

Definitions

NameCategoryTheorems
prod πŸ“–CompOpβ€”

MeasureTheory.Measure.IsUnifLocDoublingMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
volume_prod πŸ“–mathematicalβ€”IsUnifLocDoublingMeasure
Prod.pseudoMetricSpaceMax
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.volume
β€”IsUnifLocDoublingMeasure.prod

MeasureTheory.Measure.fst

Theorems

NameKindAssumesProvesValidatesDepends On
instIsFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.IsFiniteMeasure
MeasureTheory.Measure.fst
β€”eq_1
MeasureTheory.Measure.isFiniteMeasure_map
instIsProbabilityMeasure πŸ“–mathematicalβ€”MeasureTheory.IsProbabilityMeasure
MeasureTheory.Measure.fst
β€”MeasureTheory.Measure.fst_univ
MeasureTheory.IsProbabilityMeasure.measure_univ
instIsZeroOrProbabilityMeasure πŸ“–mathematicalβ€”MeasureTheory.IsZeroOrProbabilityMeasure
MeasureTheory.Measure.fst
β€”MeasureTheory.eq_zero_or_isProbabilityMeasure
MeasureTheory.Measure.fst_zero
MeasureTheory.instIsZeroOrProbabilityMeasureOfNatMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
instIsProbabilityMeasure

MeasureTheory.Measure.prod

Definitions

NameCategoryTheorems
measureSpace πŸ“–CompOp
66 mathmath: NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, MeasureTheory.Measure.IsUnifLocDoublingMeasure.volume_prod, Complex.integral_comp_pi_polarCoord_symm, MeasureTheory.Measure.instIsFiniteMeasureOnCompactsProdVolume, MeasureTheory.Measure.instIsLocallyFiniteMeasureProdVolume, NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, NumberField.mixedEmbedding.instNoAtomsMixedSpaceVolume, NumberField.mixedEmbedding.convexBodyLT_volume, MeasureTheory.volume_preserving_piFinsetUnion, NumberField.mixedEmbedding.fundamentalCone.volume_frontier_normLeOne, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, MeasureTheory.Measure.instSFiniteProdVolume, NumberField.mixedEmbedding.fundamentalCone.volume_interior_eq_volume_closure, Complex.integral_comp_polarCoord_symm, NumberField.mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero, MeasureTheory.volume_preserving_prodAssoc, lintegral_comp_pi_polarCoord_symm, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, MeasureTheory.Measure.instIsFiniteMeasureProdVolume, MeasureTheory.volume_preserving_piFinSuccAbove, integral_comp_polarCoord_symm, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.mixedEmbedding.volume_preserving_negAt, MeasureTheory.hausdorffMeasure_prod_real, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, MeasureTheory.Measure.volume_eq_prod, Complex.lintegral_comp_polarCoord_symm, Complex.volume_preserving_equiv_real_prod, NumberField.mixedEmbedding.covolume_integerLattice, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.volume_negAt_plusPart, NumberField.mixedEmbedding.convexBodyLT'_volume, MeasureTheory.Measure.instSigmaFiniteProdVolume, MeasureTheory.volume_preserving_piFinTwo, NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, NumberField.mixedEmbedding.volume_eq_zero, NumberField.mixedEmbedding.lintegral_comp_polarCoordReal_symm, MeasureTheory.volume_measurePreserving_arrowProdEquivProdArrow, instIsAddHaarMeasureProdRealVolume, lintegral_comp_polarCoord_symm, NumberField.mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, polarCoord_source_ae_eq_univ, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, Complex.lintegral_comp_pi_polarCoord_symm, NumberField.mixedEmbedding.instIsAddHaarMeasureRealMixedSpaceVolume, pi_polarCoord_symm_target_ae_eq_univ, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne, MeasureTheory.volume_preserving_finTwoArrow, MeasureTheory.Measure.instIsProbabilityMeasureProdVolume, NumberField.mixedEmbedding.volume_eq_two_pi_pow_mul_integral, NumberField.mixedEmbedding.convexBodySum_volume, NumberField.mixedEmbedding.integral_comp_polarCoord_symm, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi, MeasureTheory.volume_preserving_piEquivPiSubtypeProd, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi_symm, NumberField.mixedEmbedding.integral_comp_polarCoordReal_symm, integral_comp_pi_polarCoord_symm, NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis, NumberField.mixedEmbedding.volume_eq_two_pow_mul_volume_plusPart, MeasureTheory.Measure.instIsOpenPosMeasureProdVolumeOfSFinite, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm

Theorems

NameKindAssumesProvesValidatesDepends On
instIsFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.IsFiniteMeasure
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”Set.univ_prod_univ
MeasureTheory.Measure.prod_prod
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
Ne.lt_top
ENNReal.mul_ne_top
MeasureTheory.measure_ne_top
instIsFiniteMeasureOnCompacts πŸ“–mathematicalβ€”MeasureTheory.IsFiniteMeasureOnCompacts
Prod.instMeasurableSpace
instTopologicalSpaceProd
MeasureTheory.Measure.prod
β€”MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.subset_prod
MeasureTheory.Measure.prod_prod_le
ENNReal.mul_lt_top
IsCompact.measure_lt_top
IsCompact.image
continuous_fst
continuous_snd
instIsLocallyFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.IsLocallyFiniteMeasure
Prod.instMeasurableSpace
instTopologicalSpaceProd
MeasureTheory.Measure.prod
β€”nhds_prod_eq
MeasureTheory.Measure.FiniteAtFilter.prod
MeasureTheory.Measure.finiteAt_nhds
instIsOpenPosMeasure πŸ“–mathematicalβ€”MeasureTheory.Measure.IsOpenPosMeasure
instTopologicalSpaceProd
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”isOpen_prod_iff
ne_of_gt
lt_of_lt_of_le
MeasureTheory.Measure.prod_prod
ENNReal.instCanonicallyOrderedAdd
ENNReal.instNoZeroDivisors
IsOpen.measure_pos
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
instIsProbabilityMeasure πŸ“–mathematicalβ€”MeasureTheory.IsProbabilityMeasure
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”Set.univ_prod_univ
MeasureTheory.Measure.prod_prod
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
MeasureTheory.IsProbabilityMeasure.measure_univ
mul_one
instNoAtoms_fst πŸ“–mathematicalβ€”MeasureTheory.NoAtoms
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
Set.singleton_prod_singleton
MeasureTheory.Measure.prod_prod_le
MeasureTheory.NoAtoms.measure_singleton
MulZeroClass.zero_mul
instNoAtoms_snd πŸ“–mathematicalβ€”MeasureTheory.NoAtoms
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
Set.singleton_prod_singleton
MeasureTheory.Measure.prod_prod_le
MeasureTheory.NoAtoms.measure_singleton
MulZeroClass.mul_zero
instSFinite πŸ“–mathematicalβ€”MeasureTheory.SFinite
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”MeasureTheory.sum_sfiniteSeq
MeasureTheory.Measure.prod_sum
instCountableNat
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.isFiniteMeasure_sfiniteSeq
MeasureTheory.instSFiniteSumOfCountable
instCountableProd
instSigmaFinite
instSigmaFinite πŸ“–mathematicalβ€”MeasureTheory.SigmaFinite
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”MeasureTheory.Measure.FiniteSpanningSetsIn.sigmaFinite

MeasureTheory.Measure.snd

Theorems

NameKindAssumesProvesValidatesDepends On
instIsFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.IsFiniteMeasure
MeasureTheory.Measure.snd
β€”eq_1
MeasureTheory.Measure.isFiniteMeasure_map
instIsProbabilityMeasure πŸ“–mathematicalβ€”MeasureTheory.IsProbabilityMeasure
MeasureTheory.Measure.snd
β€”MeasureTheory.Measure.snd_univ
MeasureTheory.IsProbabilityMeasure.measure_univ
instIsZeroOrProbabilityMeasure πŸ“–mathematicalβ€”MeasureTheory.IsZeroOrProbabilityMeasure
MeasureTheory.Measure.snd
β€”MeasureTheory.eq_zero_or_isProbabilityMeasure
MeasureTheory.Measure.snd_zero
MeasureTheory.instIsZeroOrProbabilityMeasureOfNatMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
instIsProbabilityMeasure

MeasureTheory.MeasurePreserving

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalMeasureTheory.MeasurePreservingProd.instMeasurableSpace
MeasureTheory.Measure.prod
β€”Measurable.comp
measurable
measurable_snd
skew_product
MeasureTheory.ae_of_all
MeasureTheory.Measure.instOuterMeasureClass
map_eq
skew_product πŸ“–mathematicalMeasureTheory.MeasurePreserving
Measurable
Prod.instMeasurableSpace
Filter.Eventually
MeasureTheory.Measure
MeasureTheory.Measure.map
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.prodβ€”MeasureTheory.Measure.instOuterMeasureClass
Measurable.prodMk
Measurable.comp
measurable
measurable_fst
eq_zero_or_neZero
MeasureTheory.Measure.zero_prod
MeasureTheory.Measure.map_zero
map_eq
Filter.Eventually.exists
MeasureTheory.Measure.ae.neBot
MeasureTheory.Measure.instSFiniteMap
MeasureTheory.Measure.ext
MeasureTheory.Measure.map_apply
MeasureTheory.Measure.prod_apply
lintegral_comp
measurable_measure_prodMk_left
MeasureTheory.lintegral_congr_ae
Filter.mp_mem
Filter.univ_mem'
Measurable.of_uncurry_left
measurable_prodMk_left
Set.preimage_preimage

MeasureTheory.NullMeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
comp_fst πŸ“–mathematicalMeasureTheory.NullMeasurableProd.instMeasurableSpace
MeasureTheory.Measure.prod
β€”comp_quasiMeasurePreserving
MeasureTheory.Measure.quasiMeasurePreserving_fst
comp_snd πŸ“–mathematicalMeasureTheory.NullMeasurableProd.instMeasurableSpace
MeasureTheory.Measure.prod
β€”comp_quasiMeasurePreserving
MeasureTheory.Measure.quasiMeasurePreserving_snd

MeasureTheory.NullMeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
left_of_prod πŸ“–β€”MeasureTheory.NullMeasurableSet
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
MeasureTheory.Measure.prod
β€”β€”right_of_prod
Set.preimage_swap_prod
preimage
MeasureTheory.MeasurePreserving.quasiMeasurePreserving
MeasureTheory.Measure.measurePreserving_swap
of_preimage_fst πŸ“–β€”MeasureTheory.NullMeasurableSet
Prod.instMeasurableSpace
Set.preimage
MeasureTheory.Measure.prod
β€”β€”left_of_prod
Set.prod_univ
MeasureTheory.Measure.instNeZeroENNRealCoeSetUniv
of_preimage_snd πŸ“–β€”MeasureTheory.NullMeasurableSet
Prod.instMeasurableSpace
Set.preimage
MeasureTheory.Measure.prod
β€”β€”right_of_prod
Set.univ_prod
MeasureTheory.Measure.instNeZeroENNRealCoeSetUniv
prod πŸ“–mathematicalMeasureTheory.NullMeasurableSetProd.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
MeasureTheory.Measure.prod
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasurableSet.prod
MeasureTheory.Measure.set_prod_ae_eq
right_of_prod πŸ“–β€”MeasureTheory.NullMeasurableSet
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
MeasureTheory.Measure.prod
β€”β€”MeasureTheory.Measure.instOuterMeasureClass
Filter.Frequently.exists
Filter.Frequently.and_eventually
MeasureTheory.frequently_ae_iff
MeasureTheory.Measure.ae_ae_eq_curry_of_prod
measurable_prodMk_left
Set.mk_preimage_prod_right

MeasureTheory.QuasiMeasurePreserving

Theorems

NameKindAssumesProvesValidatesDepends On
fst πŸ“–β€”MeasureTheory.Measure.QuasiMeasurePreserving
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”β€”MeasureTheory.Measure.QuasiMeasurePreserving.comp
MeasureTheory.Measure.quasiMeasurePreserving_fst
prodMap πŸ“–mathematicalMeasureTheory.Measure.QuasiMeasurePreservingProd.instMeasurableSpace
MeasureTheory.Measure.prod
β€”Measurable.prodMap
MeasureTheory.Measure.QuasiMeasurePreserving.measurable
MeasureTheory.Measure.map_prod_map
MeasureTheory.Measure.AbsolutelyContinuous.prod
MeasureTheory.Measure.QuasiMeasurePreserving.absolutelyContinuous
prod_of_left πŸ“–mathematicalMeasurable
Prod.instMeasurableSpace
Filter.Eventually
MeasureTheory.Measure.QuasiMeasurePreserving
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.prodβ€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.prod_swap
MeasureTheory.Measure.QuasiMeasurePreserving.comp
prod_of_right
Measurable.comp
measurable_swap
MeasureTheory.MeasurePreserving.quasiMeasurePreserving
MeasureTheory.MeasurePreserving.symm
Measurable.measurePreserving
prod_of_right πŸ“–mathematicalMeasurable
Prod.instMeasurableSpace
Filter.Eventually
MeasureTheory.Measure.QuasiMeasurePreserving
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.prodβ€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.map_apply
MeasureTheory.Measure.prod_apply
Set.preimage_preimage
MeasureTheory.lintegral_congr_ae
Filter.Eventually.mono
MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null
MeasureTheory.lintegral_zero
snd πŸ“–β€”MeasureTheory.Measure.QuasiMeasurePreserving
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”β€”MeasureTheory.Measure.QuasiMeasurePreserving.comp
MeasureTheory.Measure.quasiMeasurePreserving_snd

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
measurable_measure_prodMk_left πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
Measurable
ENNReal
ENNReal.measurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
β€”MeasureTheory.sum_sfiniteSeq
MeasureTheory.Measure.sum_apply_of_countable
instCountableNat
Measurable.ennreal_tsum
measurable_measure_prodMk_left_finite
MeasureTheory.isFiniteMeasure_sfiniteSeq
measurable_measure_prodMk_left_finite πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
Measurable
ENNReal
ENNReal.measurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
β€”MeasurableSpace.induction_on_inter
generateFrom_prod
isPiSystem_prod
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
Set.mk_preimage_prod_right_eq_if
MeasureTheory.measure_if
Measurable.indicator
measurable_const
MeasureTheory.measure_compl
measurable_prodMk_left
MeasureTheory.measure_ne_top
Measurable.const_sub
MeasurableSubβ‚‚.toMeasurableSub
ENNReal.instMeasurableSubβ‚‚
Set.preimage_iUnion
MeasureTheory.measure_iUnion
instCountableNat
Pairwise.mono
Disjoint.preimage
Measurable.ennreal_tsum
measurable_measure_prodMk_right πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
Measurable
ENNReal
ENNReal.measurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
β€”measurable_measure_prodMk_left
measurableSet_swap_iff

---

← Back to Index