Documentation Verification Report

Regular

πŸ“ Source: Mathlib/MeasureTheory/Measure/Regular.lean

Statistics

MetricCount
DefinitionsInnerRegular, InnerRegularCompactLTTop, InnerRegularWRT, OuterRegular, Regular, WeaklyRegular
6
Theoremsexists_isOpen_lt_add, exists_isOpen_lt_of_lt, measure_eq_iInf_isOpen, exists_lt_isClosed, exists_lt_isCompact, measure_eq_iSup_isClosed, measure_eq_iSup_isCompact, exists_isClosed_diff_lt, exists_isClosed_lt_add, exists_isCompact_diff_lt, exists_isCompact_isClosed_diff_lt, exists_isCompact_isClosed_lt_add, exists_isCompact_lt_add, exists_isOpen_diff_lt, exists_isOpen_symmDiff_lt, exists_lt_isClosed_of_ne_top, exists_lt_isCompact, exists_lt_isCompact_of_ne_top, measure_eq_iSup_isClosed_of_ne_top, measure_eq_iSup_isCompact, measure_eq_iSup_isCompact_of_ne_top, outerRegular, comap, comap', exists_isCompact_not_null, innerRegular, innerRegularWRT_isClosed_isOpen, instHAdd, instInnerRegularCompactLTTop, instSum, instSum_1, map, map_iff, map_of_continuous, smul, smul_nnreal, zero, innerRegular, instInnerRegularOfIsFiniteMeasure, instInnerRegularOfSigmaFinite, instRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure, instWeaklyRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure, map_of_continuous, restrict, smul, smul_nnreal, comap, eq_of_innerRegularWRT_of_forall_eq, exists_subset_lt_add, isCompact_isClosed, map, map', measurableSet_of_isOpen, measure_eq_iSup, mono, of_imp, of_pseudoMetrizableSpace, of_restrict, of_sigmaFinite, restrict, restrict_of_measure_ne_top, rfl, smul, trans, weaklyRegular_of_finite, comap, comap', ext_isOpen, map, measure_closure_eq_of_isCompact, of_restrict, outerRegular, smul, smul_nnreal, zero, comap, comap', domSMul, exists_isCompact_not_null, innerRegular, instInnerRegularCompactLTTop, map, map_iff, of_sigmaCompactSpace_of_isLocallyFiniteMeasure, restrict_of_measure_ne_top, smul, smul_nnreal, toIsFiniteMeasureOnCompacts, toOuterRegular, weaklyRegular, zero, innerRegular, innerRegular_measurable, of_pseudoMetrizableSpace_of_isFiniteMeasure, of_pseudoMetrizableSpace_secondCountable_of_locallyFinite, restrict_of_measure_ne_top, smul, smul_nnreal, toOuterRegular, zero, instInnerRegularOfPseudoMetrizableSpaceOfSigmaCompactSpaceOfBorelSpaceOfSigmaFinite, exists_isOpen_symmDiff_lt, exists_isOpen_le_add, exists_isOpen_lt_add, exists_isOpen_lt_of_lt, measure_eq_iInf_isOpen
106
Total112

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isOpen_lt_add πŸ“–mathematicalIsCompactSet
Set.instHasSubset
IsOpen
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”exists_isOpen_lt_of_lt
ENNReal.lt_add_right
LT.lt.ne
measure_lt_top
isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
exists_isOpen_lt_of_lt πŸ“–mathematicalIsCompact
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instHasSubset
IsOpen
β€”exists_open_superset_measure_lt_top
Set.exists_isOpen_lt_of_lt
MeasureTheory.Measure.WeaklyRegular.toOuterRegular
MeasureTheory.Measure.Regular.weaklyRegular
MeasureTheory.Measure.InnerRegularCompactLTTop.instRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure
MeasureTheory.Measure.InnerRegularCompactLTTop.restrict
MeasureTheory.Restrict.isFiniteMeasure
LE.le.trans_lt
MeasureTheory.Measure.restrict_apply_le
Set.subset_inter
IsOpen.inter
MeasureTheory.Measure.restrict_apply
IsOpen.measurableSet
BorelSpace.opensMeasurable
measure_eq_iInf_isOpen πŸ“–mathematicalIsCompactDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.instHasSubset
IsOpen
β€”le_antisymm
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
le_of_forall_gt
exists_isOpen_lt_of_lt

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lt_isClosed πŸ“–mathematicalIsOpen
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instHasSubset
IsClosed
β€”MeasureTheory.Measure.WeaklyRegular.innerRegular
exists_lt_isCompact πŸ“–mathematicalIsOpen
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instHasSubset
IsCompact
β€”MeasureTheory.Measure.Regular.innerRegular
measure_eq_iSup_isClosed πŸ“–mathematicalIsOpenDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.instHasSubset
IsClosed
β€”MeasureTheory.Measure.InnerRegularWRT.measure_eq_iSup
MeasureTheory.Measure.WeaklyRegular.innerRegular
measure_eq_iSup_isCompact πŸ“–mathematicalIsOpenDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.instHasSubset
IsCompact
β€”MeasureTheory.Measure.InnerRegularWRT.measure_eq_iSup
MeasureTheory.Measure.Regular.innerRegular

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isClosed_diff_lt πŸ“–mathematicalMeasurableSetSet
Set.instHasSubset
IsClosed
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Set.instSDiff
β€”exists_isClosed_lt_add
MeasureTheory.measure_diff_lt_of_lt_add
IsClosed.nullMeasurableSet
ne_top_of_le_ne_top
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
exists_isClosed_lt_add πŸ“–mathematicalMeasurableSetSet
Set.instHasSubset
IsClosed
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”MeasureTheory.Measure.InnerRegularWRT.exists_subset_lt_add
MeasureTheory.Measure.WeaklyRegular.innerRegular_measurable
isClosed_empty
exists_isCompact_diff_lt πŸ“–mathematicalMeasurableSetSet
Set.instHasSubset
IsCompact
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Set.instSDiff
β€”exists_isCompact_lt_add
MeasureTheory.measure_diff_lt_of_lt_add
IsCompact.nullMeasurableSet
ne_top_of_le_ne_top
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
exists_isCompact_isClosed_diff_lt πŸ“–mathematicalMeasurableSetSet
Set.instHasSubset
IsCompact
IsClosed
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Set.instSDiff
β€”exists_isCompact_isClosed_lt_add
MeasureTheory.measure_diff_lt_of_lt_add
IsClosed.nullMeasurableSet
BorelSpace.opensMeasurable
ne_top_of_le_ne_top
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
exists_isCompact_isClosed_lt_add πŸ“–mathematicalMeasurableSetSet
Set.instHasSubset
IsCompact
IsClosed
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”exists_isCompact_lt_add
IsCompact.closure_subset_measurableSet
IsCompact.closure
isClosed_closure
IsCompact.measure_closure
exists_isCompact_lt_add πŸ“–mathematicalMeasurableSetSet
Set.instHasSubset
IsCompact
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”MeasureTheory.Measure.InnerRegularWRT.exists_subset_lt_add
MeasureTheory.Measure.InnerRegularCompactLTTop.innerRegular
isCompact_empty
exists_isOpen_diff_lt πŸ“–mathematicalMeasurableSetSet
Set.instHasSubset
IsOpen
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
Set.instSDiff
β€”Set.exists_isOpen_lt_add
LT.lt.trans_le
le_top
MeasureTheory.measure_diff_lt_of_lt_add
nullMeasurableSet
exists_isOpen_symmDiff_lt πŸ“–mathematicalMeasurableSetIsOpen
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instSDiff
β€”Nat.instAtLeastTwoHAddOfNat
LT.lt.ne'
ENNReal.half_pos
exists_isCompact_isClosed_diff_lt
IsCompact.exists_isOpen_lt_add
LT.lt.trans_le
le_top
ENNReal.add_halves
MeasureTheory.measure_symmDiff_eq
IsOpen.nullMeasurableSet
BorelSpace.opensMeasurable
nullMeasurableSet
WithTop.add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.addLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.diff_subset_diff
subset_refl
Set.instReflSubset
MeasureTheory.measure_diff_lt_of_lt_add
IsClosed.nullMeasurableSet
ne_top_of_le_ne_top
lt_of_le_of_lt
exists_lt_isClosed_of_ne_top πŸ“–mathematicalMeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instHasSubset
IsClosed
β€”MeasureTheory.Measure.WeaklyRegular.innerRegular_measurable
exists_lt_isCompact πŸ“–mathematicalMeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instHasSubset
IsCompact
β€”MeasureTheory.Measure.InnerRegular.innerRegular
exists_lt_isCompact_of_ne_top πŸ“–mathematicalMeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instHasSubset
IsCompact
β€”MeasureTheory.Measure.InnerRegularCompactLTTop.innerRegular
measure_eq_iSup_isClosed_of_ne_top πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.instHasSubset
IsClosed
β€”MeasureTheory.Measure.InnerRegularWRT.measure_eq_iSup
MeasureTheory.Measure.WeaklyRegular.innerRegular_measurable
measure_eq_iSup_isCompact πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.instHasSubset
IsCompact
β€”MeasureTheory.Measure.InnerRegularWRT.measure_eq_iSup
MeasureTheory.Measure.InnerRegular.innerRegular
measure_eq_iSup_isCompact_of_ne_top πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.instHasSubset
IsCompact
β€”MeasureTheory.Measure.InnerRegularWRT.measure_eq_iSup
MeasureTheory.Measure.InnerRegularCompactLTTop.innerRegular

MeasureTheory.Measure

Definitions

NameCategoryTheorems
InnerRegular πŸ“–CompData
26 mathmath: exists_innerRegular_eq_of_isCompact, InnerRegular.instHAdd, instInnerRegularOfPseudoMetrizableSpaceOfSigmaCompactSpaceOfBorelSpaceOfSigmaFinite, InnerRegular.map, InnerRegular.map_iff, InnerRegular.neg, InnerRegular.smul, InnerRegular.comap', InnerRegular.map_of_continuous, MeasureTheory.innerRegular_map_mul_right, InnerRegular.comap, InnerRegular.inv, MeasureTheory.innerRegular_map_smul, MeasureTheory.innerRegular_inv_iff, MeasureTheory.innerRegular_map_mul_left, instInnerRegularOfIsAddHaarMeasureOfCompactSpace, MeasureTheory.instInnerRegularOfIsCompletelyPseudoMetrizableSpace, MeasureTheory.innerRegular_map_add_left, MeasureTheory.innerRegular_map_add_right, InnerRegularCompactLTTop.instInnerRegularOfIsFiniteMeasure, InnerRegular.smul_nnreal, InnerRegularCompactLTTop.instInnerRegularOfSigmaFinite, instInnerRegularOfIsHaarMeasureOfCompactSpace, MeasureTheory.innerRegular_map_vadd, MeasureTheory.innerRegular_neg_iff, InnerRegular.zero
InnerRegularCompactLTTop πŸ“–CompData
7 mathmath: MeasureTheory.instInnerRegularCompactLTTopOfIsCompletelyPseudoMetrizableSpace, InnerRegularCompactLTTop.restrict, Regular.instInnerRegularCompactLTTop, InnerRegular.instInnerRegularCompactLTTop, InnerRegularCompactLTTop.map_of_continuous, InnerRegularCompactLTTop.smul_nnreal, InnerRegularCompactLTTop.smul
InnerRegularWRT πŸ“–MathDef
27 mathmath: Regular.innerRegular, MeasureTheory.innerRegularWRT_of_exists_compl_lt, MeasureTheory.innerRegularWRT_isCompact_isOpen, innerRegularWRT_preimage_one_hasCompactSupport_measure_ne_top_of_group, InnerRegularWRT.of_sigmaFinite, WeaklyRegular.innerRegular_measurable, InnerRegular.innerRegularWRT_isClosed_isOpen, InnerRegularWRT.rfl, MeasureTheory.innerRegularWRT_isCompact_isClosed_iff_innerRegularWRT_isCompact_closure, InnerRegularCompactLTTop.innerRegular, MeasureTheory.innerRegularWRT_isCompact_isClosed_isOpen, MeasureTheory.innerRegularWRT_isCompact_closure_iff, MeasureTheory.innerRegularWRT_isCompact_isClosed_iff, MeasureTheory.innerRegularWRT_isCompact_isClosed_measure_ne_top_of_group, MeasureTheory.innerRegular_isCompact_isClosed_measurableSet_of_finite, InnerRegularWRT.of_imp, MeasureTheory.innerRegularWRT_isCompact_closure_of_univ, MeasureTheory.innerRegularWRT_isCompact_isClosed, MeasureTheory.innerRegularWRT_isCompact, MeasureTheory.innerRegularWRT_isCompact_isClosed_measure_ne_top_of_addGroup, innerRegularWRT_preimage_one_hasCompactSupport_measure_ne_top_of_addGroup, MeasureTheory.PolishSpace.innerRegular_isCompact_isClosed_measurableSet, InnerRegularWRT.of_pseudoMetrizableSpace, InnerRegular.innerRegular, WeaklyRegular.innerRegular, MeasureTheory.innerRegularWRT_isCompact_closure, InnerRegularWRT.isCompact_isClosed
OuterRegular πŸ“–CompData
10 mathmath: OuterRegular.comap, WeaklyRegular.toOuterRegular, OuterRegular.smul_nnreal, OuterRegular.zero, MeasureTheory.Content.outerRegular, OuterRegular.map, OuterRegular.comap', OuterRegular.smul, FiniteSpanningSetsIn.outerRegular, Regular.toOuterRegular
Regular πŸ“–CompData
25 mathmath: RealRMK.regular_rieszMeasure, regular_of_isMulLeftInvariant, Regular.inv, MeasureTheory.Content.regular, regular_addHaarMeasure, MeasureTheory.regular_neg_iff, Regular.smul, Regular.restrict_of_measure_ne_top, Regular.comap', Regular.neg, Regular.domSMul, Regular.of_sigmaCompactSpace_of_isLocallyFiniteMeasure, InnerRegularCompactLTTop.instRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure, exists_regular_eq_of_compactSpace, Regular.comap, regular_of_isAddLeftInvariant, NNRealRMK.rieszMeasure_regular, Regular.map, regular_haarMeasure, Regular.smul_nnreal, MeasureTheory.regular_inv_iff, instRegularOfIsHaarMeasureOfCompactSpace, Regular.map_iff, instRegularOfIsAddHaarMeasureOfCompactSpace, Regular.zero
WeaklyRegular πŸ“–CompData
9 mathmath: WeaklyRegular.smul_nnreal, WeaklyRegular.zero, InnerRegularCompactLTTop.instWeaklyRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure, Regular.weaklyRegular, InnerRegularWRT.weaklyRegular_of_finite, WeaklyRegular.of_pseudoMetrizableSpace_of_isFiniteMeasure, WeaklyRegular.smul, WeaklyRegular.restrict_of_measure_ne_top, WeaklyRegular.of_pseudoMetrizableSpace_secondCountable_of_locallyFinite

Theorems

NameKindAssumesProvesValidatesDepends On
instInnerRegularOfPseudoMetrizableSpaceOfSigmaCompactSpaceOfBorelSpaceOfSigmaFinite πŸ“–mathematicalβ€”InnerRegularβ€”InnerRegularWRT.trans
InnerRegularWRT.isCompact_isClosed
InnerRegularWRT.of_restrict
MeasureTheory.measure_spanningSets_lt_top
WeaklyRegular.innerRegular_measurable
WeaklyRegular.of_pseudoMetrizableSpace_secondCountable_of_locallyFinite
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
instLindelofSpaceOfSigmaCompactSpace
MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
MeasureTheory.Restrict.isFiniteMeasure
InnerRegularWRT.of_sigmaFinite
MeasureTheory.Restrict.sigmaFinite
Eq.superset
Set.instReflSubset
MeasureTheory.iUnion_spanningSets
MeasureTheory.monotone_spanningSets

MeasureTheory.Measure.FiniteSpanningSetsIn

Theorems

NameKindAssumesProvesValidatesDepends On
outerRegular πŸ“–mathematicalβ€”MeasureTheory.Measure.OuterRegularβ€”MeasureTheory.Measure.OuterRegular.of_restrict
set_mem
Eq.subset
Set.instReflSubset
spanning

MeasureTheory.Measure.InnerRegular

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegular
MeasureTheory.Measure.comap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”comap'
Homeomorph.isOpenEmbedding
comap' πŸ“–mathematicalTopology.IsOpenEmbeddingMeasureTheory.Measure.InnerRegular
MeasureTheory.Measure.comap
β€”MeasureTheory.Measure.InnerRegularWRT.comap
innerRegular
Topology.IsOpenEmbedding.measurableEmbedding
MeasurableEmbedding.measurableSet_image'
Topology.IsInducing.isCompact_preimage'
Topology.IsOpenEmbedding.isInducing
exists_isCompact_not_null πŸ“–mathematicalβ€”IsCompactβ€”MeasurableSet.measure_eq_iSup_isCompact
MeasurableSet.univ
innerRegular πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
IsCompact
MeasurableSet
β€”β€”
innerRegularWRT_isClosed_isOpen πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
IsClosed
IsOpen
β€”innerRegular
IsOpen.measurableSet
IsCompact.closure_subset_of_isOpen
isClosed_closure
LT.lt.trans_le
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
subset_closure
instHAdd πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegular
MeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”eq_or_ne
MeasurableSet.exists_lt_isCompact
zero_add
LT.lt.trans_le
ENNReal.instCanonicallyOrderedAdd
add_zero
ENNReal.exists_lt_add_of_lt_add
Set.union_subset
IsCompact.union
LE.le.trans
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.le
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
instInnerRegularCompactLTTop πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularCompactLTTopβ€”innerRegular
instSum πŸ“–mathematicalMeasureTheory.Measure.InnerRegularFinset.sum
MeasureTheory.Measure
MeasureTheory.Measure.instAddCommMonoid
β€”Finset.induction
zero
Finset.sum_insert
instHAdd
instSum_1 πŸ“–mathematicalMeasureTheory.Measure.InnerRegularMeasureTheory.Measure.sumβ€”MeasureTheory.Measure.sum_apply
Summable.hasSum
ENNReal.summable
MeasureTheory.Measure.coe_finset_sum
Finset.sum_apply
Filter.Eventually.exists
Filter.atTop_neBot
Finset.isDirected_le
tendsto_order
ENNReal.instOrderTopology
MeasurableSet.exists_lt_isCompact
instSum
LT.lt.trans_le
LE.le.trans
ENNReal.sum_le_tsum
MeasureTheory.Measure.le_sum_apply
map πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegular
MeasureTheory.Measure.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”map_of_continuous
Homeomorph.continuous
map_iff πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegular
MeasureTheory.Measure.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”MeasureTheory.Measure.map_map
Continuous.measurable
BorelSpace.opensMeasurable
Homeomorph.continuous
Homeomorph.symm_comp_self
MeasureTheory.Measure.map_id
map
map_of_continuous πŸ“–mathematicalContinuousMeasureTheory.Measure.InnerRegular
MeasureTheory.Measure.map
β€”MeasureTheory.Measure.InnerRegularWRT.map
innerRegular
Continuous.aemeasurable
BorelSpace.opensMeasurable
Continuous.measurable
IsCompact.image
smul πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegular
ENNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
MeasureTheory.Measure.InnerRegularWRT.smul
innerRegular
smul_nnreal πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegular
NNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
IsScalarTower.right
β€”smul
zero πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegular
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”Set.empty_subset
isCompact_empty

MeasureTheory.Measure.InnerRegularCompactLTTop

Theorems

NameKindAssumesProvesValidatesDepends On
innerRegular πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
IsCompact
MeasurableSet
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
β€”β€”
instInnerRegularOfIsFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularβ€”MeasureTheory.measure_ne_top
innerRegular
instInnerRegularOfSigmaFinite πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularβ€”MeasureTheory.Measure.InnerRegularWRT.trans
innerRegular
MeasureTheory.Measure.InnerRegularWRT.of_sigmaFinite
instRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.Measure.Regularβ€”isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
MeasureTheory.Measure.WeaklyRegular.toOuterRegular
instWeaklyRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure
MeasureTheory.Measure.InnerRegularWRT.trans
innerRegular
MeasureTheory.Measure.InnerRegularWRT.of_imp
IsOpen.measurableSet
BorelSpace.opensMeasurable
MeasureTheory.measure_ne_top
instWeaklyRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.Measure.WeaklyRegularβ€”MeasureTheory.Measure.InnerRegularWRT.weaklyRegular_of_finite
MeasureTheory.Measure.InnerRegular.innerRegularWRT_isClosed_isOpen
BorelSpace.opensMeasurable
instInnerRegularOfIsFiniteMeasure
map_of_continuous πŸ“–mathematicalContinuousMeasureTheory.Measure.InnerRegularCompactLTTop
MeasureTheory.Measure.map
β€”MeasureTheory.Measure.InnerRegularWRT.map
innerRegular
Continuous.aemeasurable
BorelSpace.opensMeasurable
Continuous.measurable
MeasureTheory.Measure.map_apply
IsCompact.image
restrict πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularCompactLTTop
MeasureTheory.Measure.restrict
β€”MeasureTheory.Measure.InnerRegularWRT.restrict
innerRegular
smul πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularCompactLTTop
ENNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
zero_smul
MeasureTheory.Measure.InnerRegular.instInnerRegularCompactLTTop
MeasureTheory.Measure.InnerRegular.zero
MulZeroClass.mul_zero
ENNReal.instCanonicallyOrderedAdd
ENNReal.top_mul
MeasureTheory.Measure.InnerRegularWRT.smul
innerRegular
smul_nnreal πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularCompactLTTop
NNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
smul

MeasureTheory.Measure.InnerRegularWRT

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRT
MeasurableEmbedding
Set.image
Set.preimage
MeasureTheory.Measure.comapβ€”MeasurableEmbedding.comap_apply
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_subset_range
Function.Injective.preimage_image
MeasurableEmbedding.injective
Set.preimage_mono
Set.image_preimage_eq_iff
eq_of_innerRegularWRT_of_forall_eq πŸ“–β€”MeasureTheory.Measure.InnerRegularWRT
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
β€”β€”measure_eq_iSup
iSup_congr_Prop
exists_subset_lt_add πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRT
Set
Set.instEmptyCollection
Set.instHasSubset
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”eq_or_ne
Set.empty_subset
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
zero_add
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
ENNReal.sub_lt_self
ENNReal.lt_add_of_sub_lt_right
isCompact_isClosed πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
IsCompact
IsClosed
β€”IsCompact.inter_left
isCompact_compactCovering
Set.inter_iUnion
iUnion_compactCovering
Set.inter_univ
Monotone.measure_iUnion
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
Monotone.inter
monotone_const
Set.monotone_accumulate
SigmaCompactSpace.exists_compact_covering
lt_iSup_iff
Set.inter_subset_left
map πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRT
AEMeasurable
Set.preimage
Set.image
MeasurableSet
MeasureTheory.Measure.mapβ€”MeasureTheory.Measure.map_apply_of_aemeasurable
Set.image_subset_iff
LT.lt.trans_le
MeasureTheory.Measure.le_map_apply_image
map' πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRT
Set.preimage
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
Set.image
MeasureTheory.Measure.mapβ€”MeasurableEquiv.map_apply
Set.image_subset_iff
MeasurableEquiv.preimage_image
measurableSet_of_isOpen πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRT
IsOpen
Set
Set.instSDiff
MeasurableSet
ENNReal
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
β€”LT.lt.trans_le
LE.le.trans_lt
bot_le
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.subset_univ
isOpen_univ
Set.diff_univ
Nat.instAtLeastTwoHAddOfNat
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
ENNReal.add_halves
ENNReal.sub_sub_cancel
LT.lt.le
MeasurableSet.exists_isOpen_diff_lt
Set.exists_isOpen_lt_of_lt
Set.diff_subset_comm
exists_subset_lt_add
LT.lt.ne
ENNReal.sub_lt_of_lt_add
MeasureTheory.OuterMeasure.mono
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
tsub_le_iff_right
MeasureTheory.le_measure_diff
le_refl
add_le_add_right
le_of_lt
add_assoc
measure_eq_iSup πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRTDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set.instHasSubset
β€”le_antisymm
le_of_forall_lt
iSupβ‚‚_le
iSup_le
MeasureTheory.OuterMeasure.mono
mono πŸ“–β€”MeasureTheory.Measure.InnerRegularWRTβ€”β€”trans
of_imp
of_imp πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRTβ€”Set.Subset.rfl
of_pseudoMetrizableSpace πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
IsClosed
IsOpen
β€”IsOpen.exists_iUnion_isClosed
lt_iSup_iff
Monotone.measure_iUnion
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
Set.subset_iUnion
of_restrict πŸ“–β€”MeasureTheory.Measure.InnerRegularWRT
MeasureTheory.Measure.restrict
MeasurableSet
Set
Set.instHasSubset
Set.univ
Set.iUnion
Monotone
Nat.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”β€”Set.inter_iUnion
Set.univ_subset_iff
Set.inter_univ
Monotone.measure_iUnion
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
Monotone.inter
monotone_const
lt_iSup_iff
MeasureTheory.Measure.restrict_apply
LT.lt.trans_le
MeasureTheory.Measure.restrict_apply_le
of_sigmaFinite πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
MeasurableSet
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
β€”Set.inter_iUnion
MeasureTheory.iUnion_spanningSets
Set.inter_univ
Monotone.measure_iUnion
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
Monotone.inter
monotone_const
MeasureTheory.monotone_spanningSets
lt_iSup_iff
Set.inter_subset_left
MeasurableSet.inter
MeasureTheory.measurableSet_spanningSets
LT.lt.ne
LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.inter_subset_right
MeasureTheory.measure_spanningSets_lt_top
restrict πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRT
MeasurableSet
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
MeasureTheory.Measure.restrictβ€”LT.lt.trans_le
MeasureTheory.Measure.restrict_apply
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.subset_inter
MeasureTheory.subset_toMeasurable
Set.inter_subset_left
MeasurableSet.inter
MeasureTheory.measurableSet_toMeasurable
LT.lt.ne
lt_of_le_of_lt
MeasureTheory.measure_toMeasurable
Ne.lt_top
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_right
MeasureTheory.Measure.restrict_apply'
Set.inter_eq_left
MeasureTheory.Measure.restrict_toMeasurable
MeasureTheory.Measure.le_iff'
MeasureTheory.Measure.restrict_mono
le_rfl
restrict_of_measure_ne_top πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRT
MeasurableSet
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
MeasureTheory.Measure.restrictβ€”Ne.lt_top
trans
restrict
of_imp
MeasureTheory.measure_ne_top
MeasureTheory.Restrict.isFiniteMeasure
rfl πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRTβ€”Set.Subset.rfl
smul πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRTENNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
ENNReal.mul_iSup
iSup_congr_Prop
smul_eq_mul
measure_eq_iSup
MeasureTheory.Measure.smul_apply
trans πŸ“–β€”MeasureTheory.Measure.InnerRegularWRTβ€”β€”HasSubset.Subset.trans
Set.instIsTransSubset
weaklyRegular_of_finite πŸ“–mathematicalMeasureTheory.Measure.InnerRegularWRT
IsClosed
IsOpen
MeasureTheory.Measure.WeaklyRegularβ€”MeasureTheory.measure_ne_top
MeasurableSet.induction_on_open
exists_subset_lt_add
isClosed_empty
Set.Subset.rfl
LT.lt.le
le_self_add
ENNReal.instCanonicallyOrderedAdd
Set.compl_subset_compl
IsOpen.isClosed_compl
IsClosed.isOpen_compl
IsOpen.measurableSet
BorelSpace.opensMeasurable
IsClosed.measurableSet
Nat.instAtLeastTwoHAddOfNat
LT.lt.ne'
ENNReal.half_pos
ENNReal.exists_pos_sum_of_countable'
instCountableNat
MeasureTheory.measure_iUnion
Filter.Tendsto.add
ENNReal.instContinuousAdd
Summable.hasSum
ENNReal.summable
tendsto_const_nhds
Filter.Eventually.exists
Filter.atTop_neBot
Finset.isDirected_le
Filter.Tendsto.eventually
lt_mem_nhds
ENNReal.instOrderTopology
ENNReal.lt_add_right
Set.iUnion_mono
Set.iUnion_subset
isClosed_biUnion_finset
isOpen_iUnion
LE.le.trans
Finset.sum_add_distrib
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Finset.sum_le_sum
add_le_add_right
ENNReal.sum_le_tsum
MeasureTheory.measure_biUnion_finset
Disjoint.mono
add_assoc
ENNReal.add_halves
MeasureTheory.measure_iUnion_le
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.tsum_le_tsum
ENNReal.tsum_add
le_imp_le_of_le_of_le
le_of_lt
le_refl
ENNReal.half_le_self
exists_between
ENNReal.instDenselyOrdered
tsub_pos_iff_lt
ENNReal.instOrderedSub
LE.le.trans_lt
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE

MeasureTheory.Measure.OuterRegular

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalβ€”MeasureTheory.Measure.OuterRegular
MeasureTheory.Measure.comap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”comap'
Homeomorph.continuous
Homeomorph.measurableEmbedding
comap' πŸ“–mathematicalContinuous
MeasurableEmbedding
MeasureTheory.Measure.OuterRegular
MeasureTheory.Measure.comap
β€”outerRegular
MeasurableEmbedding.measurableSet_image'
MeasurableEmbedding.comap_apply
Superset.eq_1
Set.image_subset_iff
IsOpen.preimage
LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.image_preimage_subset
ext_isOpen πŸ“–β€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
β€”β€”MeasureTheory.Measure.ext
Set.measure_eq_iInf_isOpen
iInf_congr_Prop
map πŸ“–mathematicalβ€”MeasureTheory.Measure.OuterRegular
MeasureTheory.Measure.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”Set.exists_isOpen_lt_of_lt
Homeomorph.image_symm
MeasureTheory.Measure.map_apply
Homeomorph.measurable
IsOpen.preimage
Homeomorph.continuous
Set.image_subset_iff
IsOpen.measurableSet
BorelSpace.opensMeasurable
Homeomorph.preimage_symm
Homeomorph.preimage_image
measure_closure_eq_of_isCompact πŸ“–mathematicalIsCompactDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
closure
β€”le_antisymm
Set.measure_eq_iInf_isOpen
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
IsCompact.closure_subset_of_isOpen
subset_closure
of_restrict πŸ“–β€”MeasureTheory.Measure.OuterRegular
MeasureTheory.Measure.restrict
IsOpen
Set
Set.instHasSubset
Set.univ
Set.iUnion
β€”β€”lt_of_lt_of_le
le_top
IsOpen.measurableSet
MeasurableSet.inter
MeasurableSet.disjointed
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_right
disjointed_subset
Pairwise.mono
disjoint_disjointed
Disjoint.mono
inf_le_right
Set.inter_iUnion
iUnion_disjointed
Set.univ_subset_iff
Set.inter_univ
ENNReal.exists_pos_sum_of_countable'
LT.lt.ne'
tsub_pos_iff_lt
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
instCountableNat
MeasureTheory.Measure.restrict_apply'
LT.lt.ne
LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.inter_subset_left
Set.subset_iUnion
Set.exists_isOpen_lt_add
Set.subset_inter
IsOpen.inter
Set.inter_eq_self_of_subset_left
Set.iUnion_mono
isOpen_iUnion
MeasureTheory.measure_iUnion_le
ENNReal.tsum_le_tsum
LT.lt.le
ENNReal.tsum_add
MeasureTheory.measure_iUnion
add_comm
lt_tsub_iff_right
outerRegular πŸ“–mathematicalMeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instHasSubset
IsOpen
β€”β€”
smul πŸ“–mathematicalβ€”MeasureTheory.Measure.OuterRegular
ENNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
eq_or_ne
zero_smul
zero
ENNReal.mul_iInf_of_ne
iInf_congr_Prop
smul_eq_mul
Set.measure_eq_iInf_isOpen
MeasureTheory.Measure.smul_apply
smul_nnreal πŸ“–mathematicalβ€”MeasureTheory.Measure.OuterRegular
NNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
IsScalarTower.right
β€”smul
ENNReal.coe_ne_top
zero πŸ“–mathematicalβ€”MeasureTheory.Measure.OuterRegular
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”Set.subset_univ
isOpen_univ

MeasureTheory.Measure.Regular

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalβ€”MeasureTheory.Measure.Regular
MeasureTheory.Measure.comap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”comap'
Homeomorph.isOpenEmbedding
comap' πŸ“–mathematicalTopology.IsOpenEmbeddingMeasureTheory.Measure.Regular
MeasureTheory.Measure.comap
β€”MeasureTheory.IsFiniteMeasureOnCompacts.comap'
toIsFiniteMeasureOnCompacts
Topology.IsOpenEmbedding.continuous
Topology.IsOpenEmbedding.measurableEmbedding
MeasureTheory.Measure.OuterRegular.comap'
toOuterRegular
MeasureTheory.Measure.InnerRegularWRT.comap
innerRegular
Topology.IsOpenEmbedding.isOpen_iff_image_isOpen
Topology.IsInducing.isCompact_preimage'
Topology.IsOpenEmbedding.isInducing
domSMul πŸ“–mathematicalβ€”MeasureTheory.Measure.Regular
DomMulAct
MeasureTheory.Measure
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MeasureTheory.Measure.instAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DomMulAct.instMonoidOfMulOpposite
MulOpposite.instMonoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MeasureTheory.Measure.instDistribMulActionDomMulAct
DistribMulAction.toMulAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ContinuousConstSMul.toMeasurableConstSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”map
exists_isCompact_not_null πŸ“–mathematicalβ€”IsCompactβ€”IsOpen.measure_eq_iSup_isCompact
isOpen_univ
innerRegular πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
IsCompact
IsOpen
β€”β€”
instInnerRegularCompactLTTop πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularCompactLTTopβ€”MeasureTheory.Measure.InnerRegularWRT.measurableSet_of_isOpen
toOuterRegular
innerRegular
IsCompact.diff
map πŸ“–mathematicalβ€”MeasureTheory.Measure.Regular
MeasureTheory.Measure.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”MeasureTheory.Measure.IsFiniteMeasureOnCompacts.map
toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.OuterRegular.map
BorelSpace.opensMeasurable
toOuterRegular
MeasureTheory.Measure.InnerRegularWRT.map'
innerRegular
IsOpen.preimage
Homeomorph.continuous
IsCompact.image
map_iff πŸ“–mathematicalβ€”MeasureTheory.Measure.Regular
MeasureTheory.Measure.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
β€”MeasureTheory.Measure.map_map
Continuous.measurable
BorelSpace.opensMeasurable
Homeomorph.continuous
Homeomorph.symm_comp_self
MeasureTheory.Measure.map_id
map
of_sigmaCompactSpace_of_isLocallyFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.Measure.Regularβ€”isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
MeasureTheory.Measure.WeaklyRegular.toOuterRegular
MeasureTheory.Measure.WeaklyRegular.of_pseudoMetrizableSpace_secondCountable_of_locallyFinite
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
instLindelofSpaceOfSigmaCompactSpace
MeasureTheory.Measure.InnerRegularWRT.trans
MeasureTheory.Measure.InnerRegularWRT.isCompact_isClosed
MeasureTheory.Measure.InnerRegularWRT.of_pseudoMetrizableSpace
restrict_of_measure_ne_top πŸ“–mathematicalβ€”MeasureTheory.Measure.Regular
MeasureTheory.Measure.restrict
β€”MeasureTheory.Measure.WeaklyRegular.restrict_of_measure_ne_top
weaklyRegular
MeasureTheory.instIsFiniteMeasureOnCompactsRestrict
toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.WeaklyRegular.toOuterRegular
MeasureTheory.Measure.restrict_apply
IsOpen.measurableSet
BorelSpace.opensMeasurable
LT.lt.ne
LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.inter_subset_right
Ne.lt_top
MeasurableSet.exists_lt_isCompact_of_ne_top
MeasureTheory.Measure.InnerRegularCompactLTTop.restrict
instInnerRegularCompactLTTop
smul πŸ“–mathematicalβ€”MeasureTheory.Measure.Regular
ENNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
MeasureTheory.IsFiniteMeasureOnCompacts.smul
toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.OuterRegular.smul
toOuterRegular
MeasureTheory.Measure.InnerRegularWRT.smul
innerRegular
smul_nnreal πŸ“–mathematicalβ€”MeasureTheory.Measure.Regular
NNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
IsScalarTower.right
β€”smul
ENNReal.coe_ne_top
toIsFiniteMeasureOnCompacts πŸ“–mathematicalβ€”MeasureTheory.IsFiniteMeasureOnCompactsβ€”β€”
toOuterRegular πŸ“–mathematicalβ€”MeasureTheory.Measure.OuterRegularβ€”β€”
weaklyRegular πŸ“–mathematicalβ€”MeasureTheory.Measure.WeaklyRegularβ€”toOuterRegular
innerRegular
IsCompact.closure_subset_of_isOpen
isClosed_closure
LT.lt.trans_le
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
subset_closure
zero πŸ“–mathematicalβ€”MeasureTheory.Measure.Regular
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
MeasureTheory.isFiniteMeasureZero
MeasureTheory.Measure.OuterRegular.zero
Set.empty_subset
isCompact_empty

MeasureTheory.Measure.WeaklyRegular

Theorems

NameKindAssumesProvesValidatesDepends On
innerRegular πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
IsClosed
IsOpen
β€”β€”
innerRegular_measurable πŸ“–mathematicalβ€”MeasureTheory.Measure.InnerRegularWRT
IsClosed
MeasurableSet
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
β€”MeasureTheory.Measure.InnerRegularWRT.measurableSet_of_isOpen
toOuterRegular
innerRegular
IsClosed.inter
IsOpen.isClosed_compl
of_pseudoMetrizableSpace_of_isFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.Measure.WeaklyRegularβ€”MeasureTheory.Measure.InnerRegularWRT.weaklyRegular_of_finite
MeasureTheory.Measure.InnerRegularWRT.of_pseudoMetrizableSpace
of_pseudoMetrizableSpace_secondCountable_of_locallyFinite πŸ“–mathematicalβ€”MeasureTheory.Measure.WeaklyRegularβ€”MeasureTheory.Measure.FiniteSpanningSetsIn.outerRegular
BorelSpace.opensMeasurable
toOuterRegular
of_pseudoMetrizableSpace_of_isFiniteMeasure
MeasureTheory.Restrict.isFiniteMeasure
MeasureTheory.Measure.InnerRegularWRT.of_pseudoMetrizableSpace
restrict_of_measure_ne_top πŸ“–mathematicalβ€”MeasureTheory.Measure.WeaklyRegular
MeasureTheory.Measure.restrict
β€”MeasureTheory.Measure.InnerRegularWRT.weaklyRegular_of_finite
MeasureTheory.Restrict.isFiniteMeasure
Ne.lt_top
MeasureTheory.Measure.InnerRegularWRT.restrict_of_measure_ne_top
innerRegular_measurable
IsOpen.measurableSet
BorelSpace.opensMeasurable
smul πŸ“–mathematicalβ€”MeasureTheory.Measure.WeaklyRegular
ENNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
MeasureTheory.Measure.OuterRegular.smul
toOuterRegular
MeasureTheory.Measure.InnerRegularWRT.smul
innerRegular
smul_nnreal πŸ“–mathematicalβ€”MeasureTheory.Measure.WeaklyRegular
NNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
IsScalarTower.right
β€”smul
ENNReal.coe_ne_top
toOuterRegular πŸ“–mathematicalβ€”MeasureTheory.Measure.OuterRegularβ€”β€”
zero πŸ“–mathematicalβ€”MeasureTheory.Measure.WeaklyRegular
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasureTheory.Measure.OuterRegular.zero
Set.empty_subset
isClosed_empty

MeasureTheory.NullMeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isOpen_symmDiff_lt πŸ“–mathematicalMeasureTheory.NullMeasurableSetIsOpen
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instSDiff
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasurableSet.exists_isOpen_symmDiff_lt
MeasureTheory.measure_congr
Filter.EventuallyEq.symmDiff
MeasureTheory.ae_eq_refl

Set

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isOpen_le_add πŸ“–mathematicalβ€”Set
instHasSubset
IsOpen
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”eq_or_ne
subset_univ
isOpen_univ
top_add
exists_isOpen_lt_add
LT.lt.le
exists_isOpen_lt_add πŸ“–mathematicalβ€”Set
instHasSubset
IsOpen
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”exists_isOpen_lt_of_lt
ENNReal.lt_add_right
exists_isOpen_lt_of_lt πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
instHasSubset
IsOpen
β€”MeasureTheory.Measure.OuterRegular.outerRegular
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.measure_toMeasurable
HasSubset.Subset.trans
instIsTransSubset
MeasureTheory.subset_toMeasurable
measure_eq_iInf_isOpen πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
instHasSubset
IsOpen
β€”le_antisymm
le_iInfβ‚‚
le_iInf
MeasureTheory.OuterMeasure.mono
le_of_forall_gt
exists_isOpen_lt_of_lt

---

← Back to Index