Documentation Verification Report

RegularityCompacts

📁 Source: Mathlib/MeasureTheory/Measure/RegularityCompacts.lean

Statistics

MetricCount
Definitions0
TheoremsinnerRegular_isCompact_isClosed_measurableSet, exists_isCompact_closure_measure_compl_lt, innerRegularWRT_isCompact, innerRegularWRT_isCompact_closure, innerRegularWRT_isCompact_closure_iff, innerRegularWRT_isCompact_closure_of_univ, innerRegularWRT_isCompact_isClosed, innerRegularWRT_isCompact_isClosed_iff, innerRegularWRT_isCompact_isClosed_iff_innerRegularWRT_isCompact_closure, innerRegularWRT_isCompact_isClosed_isOpen, innerRegularWRT_isCompact_isOpen, innerRegularWRT_of_exists_compl_lt, innerRegular_isCompact_isClosed_measurableSet_of_finite, instInnerRegularCompactLTTopOfIsCompletelyPseudoMetrizableSpace, instInnerRegularOfIsCompletelyPseudoMetrizableSpace
15
Total15

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isCompact_closure_measure_compl_lt 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
IsCompact
closure
DFunLike.coe
Measure
Set
Measure.instFunLike
Compl.compl
Set.instCompl
isEmpty_or_nonempty
IsClosed.closure_eq
Finite.instDiscreteTopology
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.MetrizableSpace
PolishSpace.toIsCompletelyMetrizableSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
TopologicalSpace.UpgradedIsCompletelyPseudoMetrizableSpace.toCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
TopologicalSpace.DiscreteTopology.metrizableSpace
Subsingleton.discreteTopology
IsEmpty.instSubsingleton
Finite.of_subsingleton
Set.eq_empty_of_isEmpty
instIsEmptySubtype
measure_empty
Measure.instOuterMeasureClass
TopologicalSpace.denseRange_denseSeq
Filter.HasBasis.exists_antitone_subbasis
uniformity_hasBasis_open_symmetric
DenseRange.iUnion_uniformity_ball
exists_measure_iInter_lt
instCountableNat
MeasurableSet.nullMeasurableSet
MeasurableSet.compl
measurable_prodMk_left
IsOpen.measurableSet
Prod.opensMeasurableSpace
secondCountableTopologyEither_of_right
measure_ne_top
Set.compl_iUnion
Set.compl_univ
ENNReal.exists_pos_sum_of_countable'
ne_of_gt
isCompact_closure_interUnionBalls
Filter.HasAntitoneBasis.toHasBasis
interUnionBalls.eq_1
Set.compl_iInter
LE.le.trans_lt
LE.le.trans
measure_iUnion_le
ENNReal.tsum_le_tsum
Set.ext
SetRel.comm
Set.iUnion_congr_Prop
LT.lt.le
Function.sometimes_spec
innerRegularWRT_isCompact 📖mathematicalMeasure.InnerRegularWRT
IsCompact
IsClosed
innerRegularWRT_isCompact_closure_iff
instR1Space
TopologicalSpace.PseudoMetrizableSpace.regularSpace
TopologicalSpace.IsCompletelyPseudoMetrizableSpace.PseudoMetrizableSpace
innerRegularWRT_isCompact_closure
innerRegularWRT_isCompact_closure 📖mathematicalMeasure.InnerRegularWRT
Set
IsCompact
closure
IsClosed
innerRegularWRT_isCompact_closure_of_univ
exists_isCompact_closure_measure_compl_lt
innerRegularWRT_isCompact_closure_iff 📖mathematicalMeasure.InnerRegularWRT
Set
IsCompact
closure
IsClosed
closure_minimal
LT.lt.trans_le
measure_mono
Measure.instOuterMeasureClass
subset_closure
closure_closure
IsCompact.closure
innerRegularWRT_isCompact_closure_of_univ 📖mathematicalIsCompact
closure
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Compl.compl
Set.instCompl
Measure.InnerRegularWRT
IsClosed
innerRegularWRT_of_exists_compl_lt
IsCompact.inter_right
IsCompact.of_isClosed_subset
isClosed_closure
LE.le.trans_eq
closure_inter_subset_inter_closure
IsClosed.closure_eq
innerRegularWRT_isCompact_isClosed 📖mathematicalMeasure.InnerRegularWRT
IsCompact
IsClosed
innerRegularWRT_isCompact_isClosed_iff_innerRegularWRT_isCompact_closure
instR1Space
TopologicalSpace.PseudoMetrizableSpace.regularSpace
TopologicalSpace.IsCompletelyPseudoMetrizableSpace.PseudoMetrizableSpace
innerRegularWRT_isCompact_closure
innerRegularWRT_isCompact_isClosed_iff 📖mathematicalMeasure.InnerRegularWRT
IsCompact
IsClosed
innerRegularWRT_isCompact_isClosed_iff_innerRegularWRT_isCompact_closure
innerRegularWRT_isCompact_closure_iff
innerRegularWRT_isCompact_isClosed_iff_innerRegularWRT_isCompact_closure 📖mathematicalMeasure.InnerRegularWRT
IsCompact
IsClosed
Set
closure
IsCompact.closure
closure_minimal
LT.lt.trans_le
measure_mono
Measure.instOuterMeasureClass
subset_closure
innerRegularWRT_isCompact_isClosed_isOpen 📖mathematicalMeasure.InnerRegularWRT
IsCompact
IsClosed
IsOpen
Measure.InnerRegularWRT.trans
innerRegularWRT_isCompact_isClosed
Measure.InnerRegularWRT.of_pseudoMetrizableSpace
TopologicalSpace.IsCompletelyPseudoMetrizableSpace.PseudoMetrizableSpace
innerRegularWRT_isCompact_isOpen 📖mathematicalMeasure.InnerRegularWRT
IsCompact
IsOpen
Measure.InnerRegularWRT.trans
innerRegularWRT_isCompact
Measure.InnerRegularWRT.of_pseudoMetrizableSpace
TopologicalSpace.IsCompletelyPseudoMetrizableSpace.PseudoMetrizableSpace
innerRegularWRT_of_exists_compl_lt 📖mathematicalSet
Set.instInter
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Measure.instFunLike
Compl.compl
Set.instCompl
Measure.InnerRegularWRTtsub_pos_of_lt
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
Set.inter_subset_right
LE.le.trans_lt
measure_mono
Measure.instOuterMeasureClass
Set.diff_inter_self_eq_diff
le_measure_diff
lt_of_tsub_lt_tsub_left
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
innerRegular_isCompact_isClosed_measurableSet_of_finite 📖mathematicalMeasure.InnerRegularWRT
IsCompact
IsClosed
MeasurableSet
Measure.InnerRegularWRT.measurableSet_of_isOpen
Measure.WeaklyRegular.toOuterRegular
Measure.WeaklyRegular.of_pseudoMetrizableSpace_secondCountable_of_locallyFinite
TopologicalSpace.IsCompletelyPseudoMetrizableSpace.PseudoMetrizableSpace
IsFiniteMeasure.toIsLocallyFiniteMeasure
innerRegularWRT_isCompact_isClosed_isOpen
BorelSpace.opensMeasurable
Set.diff_eq
IsCompact.inter_right
IsOpen.isClosed_compl
IsClosed.inter
isClosed_compl_iff
measure_ne_top
instInnerRegularCompactLTTopOfIsCompletelyPseudoMetrizableSpace 📖mathematicalMeasure.InnerRegularCompactLTTopNe.lt_top
Measure.restrict_apply_self
MeasurableSet.exists_lt_isCompact_of_ne_top
Measure.InnerRegular.instInnerRegularCompactLTTop
instInnerRegularOfIsCompletelyPseudoMetrizableSpace
Restrict.isFiniteMeasure
Measure.restrict_eq_self
instInnerRegularOfIsCompletelyPseudoMetrizableSpace 📖mathematicalMeasure.InnerRegularMeasure.InnerRegularWRT.measurableSet_of_isOpen
Measure.WeaklyRegular.toOuterRegular
Measure.WeaklyRegular.of_pseudoMetrizableSpace_secondCountable_of_locallyFinite
TopologicalSpace.IsCompletelyPseudoMetrizableSpace.PseudoMetrizableSpace
IsFiniteMeasure.toIsLocallyFiniteMeasure
innerRegularWRT_isCompact_isOpen
BorelSpace.opensMeasurable
IsCompact.inter_right
IsOpen.isClosed_compl
Measure.InnerRegularCompactLTTop.instInnerRegularOfSigmaFinite
sigmaFinite_of_locallyFinite

MeasureTheory.PolishSpace

Theorems

NameKindAssumesProvesValidatesDepends On
innerRegular_isCompact_isClosed_measurableSet 📖mathematicalMeasureTheory.Measure.InnerRegularWRT
IsCompact
IsClosed
MeasurableSet
MeasureTheory.innerRegular_isCompact_isClosed_measurableSet_of_finite

---

← Back to Index