Documentation Verification Report

Restrict

πŸ“ Source: Mathlib/MeasureTheory/Measure/Restrict.lean

Statistics

MetricCount
DefinitionsmeasureSpace, restrict, restrictβ‚—
3
Theoremsrestrict, ae_map_iff, comap_apply, comap_map, comap_preimage, comap_restrict, map_comap, restrict_comap, restrict_map, comap_apply, restrict_map, map_coe_volume, restrict, nullMeasurableSet_subtype_coe, subtype_coe, ae_eq_comp, restrict, volume_def, volume_univ, absolutelyContinuous_restrict, exists_mem_of_measure_ne_zero_of_ae, ext_iff_of_biUnion_eq_univ, ext_iff_of_iUnion_eq_univ, ext_iff_of_sUnion_eq_univ, ext_of_biUnion_eq_univ, ext_of_generateFrom_of_cover, ext_of_generateFrom_of_cover_subset, ext_of_generateFrom_of_iUnion, ext_of_iUnion_eq_univ, ext_of_sUnion_eq_univ, le_restrict_apply, map_eq_comap, measure_inter_eq_zero_of_restrict, measure_subtype_coe_eq_zero_of_comap_eq_zero, measure_subtype_coe_le_comap, neZero, restrict_add, restrict_add_restrict_compl, restrict_apply, restrict_apply', restrict_apply_eq_zero, restrict_apply_eq_zero', restrict_apply_le, restrict_apply_self, restrict_apply_superset, restrict_apply_univ, restrict_applyβ‚€, restrict_applyβ‚€', restrict_biUnion, restrict_biUnion_congr, restrict_biUnion_finset, restrict_biUnion_finset_congr, restrict_biUnion_le, restrict_comm, restrict_compl_add_restrict, restrict_congr_meas, restrict_congr_mono, restrict_congr_set, restrict_empty, restrict_eq_self, restrict_eq_self_of_ae_mem, restrict_eq_zero, restrict_finset_biUnion_congr, restrict_iUnion, restrict_iUnion_ae, restrict_iUnion_apply, restrict_iUnion_apply_ae, restrict_iUnion_apply_eq_iSup, restrict_iUnion_congr, restrict_iUnion_le, restrict_inter_add_diff, restrict_inter_add_diffβ‚€, restrict_inter_toMeasurable, restrict_le_self, restrict_map, restrict_mono, restrict_mono', restrict_mono_ae, restrict_mono_measure, restrict_mono_set, restrict_restrict, restrict_restrict', restrict_restrict_of_subset, restrict_restrictβ‚€, restrict_restrictβ‚€', restrict_sInf_eq_sInf_restrict, restrict_sUnion_congr, restrict_smul, restrict_sum, restrict_sum_of_countable, restrict_toMeasurable, restrict_toOuterMeasure_eq_toOuterMeasure_restrict, restrict_union, restrict_union', restrict_union_add_inter, restrict_union_add_inter', restrict_union_add_interβ‚€, restrict_union_congr, restrict_union_le, restrict_unionβ‚€, restrict_univ, restrict_zero, restrict_zero_set, restrictβ‚—_apply, sum_restrict_le, volume_subtype_coe_eq_zero_of_volume_eq_zero, volume_subtype_coe_le_volume, measure_preimage_eq_measure_restrict_preimage_of_ae_compl_eq_const, ae_add_measure_iff, ae_eq_comp, ae_eq_comp', ae_eq_restrict_biUnion_finset_iff, ae_eq_restrict_biUnion_iff, ae_eq_restrict_iUnion_iff, ae_finsetSum_measure_iff, ae_imp_of_ae_restrict, ae_of_ae_restrict_of_ae_restrict_compl, ae_restrict_biUnion_eq, ae_restrict_biUnion_finset_eq, ae_restrict_biUnion_finset_iff, ae_restrict_biUnion_iff, ae_restrict_congr_set, ae_restrict_eq, ae_restrict_eq_bot, ae_restrict_iUnion_eq, ae_restrict_iUnion_iff, ae_restrict_iff, ae_restrict_iff', ae_restrict_iff'β‚€, ae_restrict_iffβ‚€, ae_restrict_le, ae_restrict_mem, ae_restrict_memβ‚€, ae_restrict_neBot, ae_restrict_of_ae, ae_restrict_of_ae_eq_of_ae_restrict, ae_restrict_of_ae_restrict_of_subset, ae_restrict_of_forall_mem, ae_restrict_uIoc_eq, ae_restrict_uIoc_iff, ae_restrict_union_eq, ae_restrict_union_iff, div_ae_eq_one, le_ae_restrict, mem_map_restrict_ae_iff, nullMeasurableSet_restrict, nullMeasurableSet_restrict_of_subset, one_le_div_ae, self_mem_ae_restrict, sub_ae_eq_zero, sub_nonneg_ae, ae_eq_restrict_iff_indicator_ae_eq, ae_restrict_iff_subtype, comap_subtype_coe_apply, indicator_ae_eq_of_ae_eq_set, indicator_ae_eq_of_restrict_compl_ae_eq_zero, indicator_ae_eq_restrict, indicator_ae_eq_restrict_compl, indicator_ae_eq_zero_of_restrict_ae_eq_zero, indicator_meas_zero, map_comap_subtype_coe, map_restrict_ae_le_map_indicator_ae, mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem, mem_map_indicator_ae_iff_of_zero_notMem, piecewise_ae_eq_of_ae_eq_set, piecewise_ae_eq_restrict, piecewise_ae_eq_restrict_compl, volume_image_subtype_coe, volume_preimage_coe, volume_set_coe_def
170
Total173

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
restrict πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrictβ€”MeasureTheory.Measure.instOuterMeasureClass
filter_mono
MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
MeasureTheory.Measure.absolutelyContinuous_restrict

MeasurableEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
ae_map_iff πŸ“–mathematicalMeasurableEmbeddingFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.map
β€”MeasureTheory.Measure.instOuterMeasureClass
map_apply
comap_apply πŸ“–mathematicalMeasurableEmbeddingDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.comap
Set.image
β€”Function.Injective.preimage_image
injective
map_apply
map_comap
MeasureTheory.Measure.restrict_apply'
measurableSet_range
Set.inter_eq_self_of_subset_left
Set.image_subset_range
comap_map πŸ“–mathematicalMeasurableEmbeddingMeasureTheory.Measure.comap
MeasureTheory.Measure.map
β€”MeasureTheory.Measure.ext
comap_apply
map_apply
Set.preimage_image_eq
injective
comap_preimage πŸ“–mathematicalMeasurableEmbeddingDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.comap
Set.preimage
Set.instInter
Set.range
β€”map_apply
map_comap
MeasureTheory.Measure.restrict_apply'
measurableSet_range
comap_restrict πŸ“–mathematicalMeasurableEmbeddingMeasureTheory.Measure.comap
MeasureTheory.Measure.restrict
Set.preimage
β€”MeasureTheory.Measure.ext
MeasureTheory.Measure.restrict_apply
comap_apply
measurableSet_image
Set.image_inter_preimage
map_comap πŸ“–mathematicalMeasurableEmbeddingMeasureTheory.Measure.map
MeasureTheory.Measure.comap
MeasureTheory.Measure.restrict
Set.range
β€”MeasureTheory.Measure.ext
map_apply
MeasureTheory.Measure.comap_apply
injective
measurableSet_image'
measurable
Set.image_preimage_eq_inter_range
MeasureTheory.Measure.restrict_apply
restrict_comap πŸ“–mathematicalMeasurableEmbeddingMeasureTheory.Measure.restrict
MeasureTheory.Measure.comap
Set.image
β€”comap_restrict
Set.preimage_image_eq
injective
restrict_map πŸ“–mathematicalMeasurableEmbeddingMeasureTheory.Measure.restrict
MeasureTheory.Measure.map
Set.preimage
β€”MeasureTheory.Measure.ext
MeasureTheory.Measure.restrict_apply
map_apply
measurable

MeasurableEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
comap_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.comap
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
Set.preimage
symm
β€”MeasurableEmbedding.comap_apply
measurableEmbedding
image_eq_preimage_symm
restrict_map πŸ“–mathematicalβ€”MeasureTheory.Measure.restrict
MeasureTheory.Measure.map
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
instEquivLike
Set.preimage
β€”MeasurableEmbedding.restrict_map
measurableEmbedding

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
map_coe_volume πŸ“–mathematicalMeasurableSet
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.map
Set
Set.instMembership
MeasureTheory.Measure.Subtype.measureSpace
MeasureTheory.MeasureSpace.volume
MeasureTheory.Measure.restrict
β€”volume_set_coe_def
MeasurableEmbedding.map_comap
MeasurableEmbedding.subtype_coe
Subtype.range_coe

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
ae_add_measure_iff πŸ“–mathematicalβ€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.instAdd
β€”add_eq_zero
Unique.instSubsingleton
ae_eq_comp πŸ“–β€”AEMeasurable
Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.map
β€”β€”Measure.instOuterMeasureClass
ae_eq_comp'
Measure.AbsolutelyContinuous.rfl
ae_eq_comp' πŸ“–β€”AEMeasurable
Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.AbsolutelyContinuous
Measure.map
β€”β€”Measure.instOuterMeasureClass
Filter.Tendsto.mono_right
Measure.tendsto_ae_map
Measure.AbsolutelyContinuous.ae_le
ae_eq_restrict_biUnion_finset_iff πŸ“–mathematicalβ€”Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
Finset
Finset.instMembership
β€”ae_eq_restrict_biUnion_iff
Finset.countable_toSet
ae_eq_restrict_biUnion_iff πŸ“–mathematicalβ€”Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
Set
Set.instMembership
β€”Measure.instOuterMeasureClass
ae_restrict_biUnion_eq
ae_eq_restrict_iUnion_iff πŸ“–mathematicalβ€”Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
β€”Measure.instOuterMeasureClass
ae_restrict_iUnion_eq
ae_finsetSum_measure_iff πŸ“–mathematicalβ€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Finset.sum
Measure.instAddCommMonoid
β€”Finset.cons_induction
Measure.instOuterMeasureClass
ae_zero
instIsEmptyFalse
ae.congr_simp
Finset.sum_cons
ae_imp_of_ae_restrict πŸ“–β€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”β€”Measure.instOuterMeasureClass
Set.inter_comm
Measure.measure_inter_eq_zero_of_restrict
ae_of_ae_restrict_of_ae_restrict_compl πŸ“–β€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Compl.compl
Set
Set.instCompl
β€”β€”Measure.instOuterMeasureClass
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
measure_le_inter_add_diff
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Measure.le_restrict_apply
ae_iff
zero_add
ae_restrict_biUnion_eq πŸ“–mathematicalβ€”ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
Set
Set.instMembership
iSup
Filter
Filter.instSupSet
β€”Measure.instOuterMeasureClass
Set.biUnion_eq_iUnion
ae_restrict_iUnion_eq
Set.Countable.to_subtype
iSup_subtype''
ae_restrict_biUnion_finset_eq πŸ“–mathematicalβ€”ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
Finset
Finset.instMembership
iSup
Filter
Filter.instSupSet
β€”ae_restrict_biUnion_eq
Finset.countable_toSet
ae_restrict_biUnion_finset_iff πŸ“–mathematicalβ€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
Finset
Finset.instMembership
β€”Measure.instOuterMeasureClass
ae_restrict_biUnion_finset_eq
ae_restrict_biUnion_iff πŸ“–mathematicalβ€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
Set
Set.instMembership
β€”Measure.instOuterMeasureClass
ae_restrict_biUnion_eq
ae_restrict_congr_set πŸ“–mathematicalFilter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Filter.Eventually
Measure.restrict
β€”Measure.instOuterMeasureClass
ae_restrict_of_ae_eq_of_ae_restrict
Filter.EventuallyEq.symm
ae_restrict_eq πŸ“–mathematicalMeasurableSetae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Filter
Filter.instInf
Filter.principal
β€”Filter.ext
Measure.instOuterMeasureClass
Measure.restrict_apply_eq_zero'
ae_restrict_eq_bot πŸ“–mathematicalβ€”ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Bot.bot
Filter
Filter.instBot
DFunLike.coe
Set
ENNReal
instZeroENNReal
β€”Measure.instOuterMeasureClass
ae_eq_bot
Measure.restrict_eq_zero
ae_restrict_iUnion_eq πŸ“–mathematicalβ€”ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
iSup
Filter
Filter.instSupSet
β€”le_antisymm
Measure.instOuterMeasureClass
ae_mono
Measure.restrict_iUnion_le
Measure.ae_sum_eq
iSup_le
Measure.restrict_mono
Set.subset_iUnion
le_rfl
ae_restrict_iUnion_iff πŸ“–mathematicalβ€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.iUnion
β€”Measure.instOuterMeasureClass
ae_restrict_iUnion_eq
ae_restrict_iff πŸ“–mathematicalMeasurableSet
setOf
Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”ae_restrict_iffβ‚€
MeasurableSet.nullMeasurableSet
ae_restrict_iff' πŸ“–mathematicalMeasurableSetFilter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”ae_restrict_iff'β‚€
MeasurableSet.nullMeasurableSet
ae_restrict_iff'β‚€ πŸ“–mathematicalNullMeasurableSetFilter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”Measure.instOuterMeasureClass
Measure.restrict_applyβ‚€'
Set.ext
ae_restrict_iffβ‚€ πŸ“–mathematicalNullMeasurableSet
setOf
Measure.restrict
Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
β€”Measure.instOuterMeasureClass
Measure.restrict_applyβ‚€
NullMeasurableSet.compl
Set.ext
ae_restrict_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”ae_mono
Measure.restrict_le_self
ae_restrict_mem πŸ“–mathematicalMeasurableSetFilter.Eventually
Set
Set.instMembership
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”ae_restrict_memβ‚€
MeasurableSet.nullMeasurableSet
ae_restrict_memβ‚€ πŸ“–mathematicalNullMeasurableSetFilter.Eventually
Set
Set.instMembership
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”Measure.instOuterMeasureClass
ae_restrict_iff'β‚€
Filter.Eventually.of_forall
ae_restrict_neBot πŸ“–mathematicalβ€”Filter.NeBot
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”Measure.instOuterMeasureClass
Filter.neBot_iff
Iff.not
ae_restrict_eq_bot
ae_restrict_of_ae πŸ“–mathematicalFilter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrictβ€”Measure.instOuterMeasureClass
Filter.Eventually.filter_mono
ae_mono
Measure.restrict_le_self
ae_restrict_of_ae_eq_of_ae_restrict πŸ“–β€”Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Filter.Eventually
Measure.restrict
β€”β€”Measure.instOuterMeasureClass
ae.congr_simp
Measure.restrict_congr_set
ae_restrict_of_ae_restrict_of_subset πŸ“–β€”Set
Set.instHasSubset
Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”β€”Measure.instOuterMeasureClass
Filter.Eventually.filter_mono
ae_mono
Measure.restrict_mono
le_refl
ae_restrict_of_forall_mem πŸ“–mathematicalMeasurableSetFilter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”Filter.Eventually.mono
Measure.instOuterMeasureClass
ae_restrict_mem
ae_restrict_uIoc_eq πŸ“–mathematicalβ€”ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.uIoc
Filter
Filter.instSup
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Measure.instOuterMeasureClass
ae.congr_simp
Set.uIoc_eq_union
ae_restrict_union_eq
ae_restrict_uIoc_iff πŸ“–mathematicalβ€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set.uIoc
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Measure.instOuterMeasureClass
ae_restrict_uIoc_eq
Filter.eventually_sup
ae_restrict_union_eq πŸ“–mathematicalβ€”ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set
Set.instUnion
Filter
Filter.instSup
β€”Measure.instOuterMeasureClass
ae.congr_simp
Set.union_eq_iUnion
ae_restrict_iUnion_eq
Bool.countable
iSup_bool_eq
ae_restrict_union_iff πŸ“–mathematicalβ€”Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
Set
Set.instUnion
β€”Measure.instOuterMeasureClass
ae_restrict_union_eq
div_ae_eq_one πŸ“–mathematicalβ€”Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Pi.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
Pi.instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”Measure.instOuterMeasureClass
Filter.Eventually.mono
div_eq_one
Pi.one_apply
Pi.div_apply
le_ae_restrict πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instInf
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Filter.principal
Measure.restrict
β€”Measure.instOuterMeasureClass
Filter.eventually_inf_principal
ae_imp_of_ae_restrict
mem_map_restrict_ae_iff πŸ“–mathematicalMeasurableSetSet
Filter
Filter.instMembership
Filter.map
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
DFunLike.coe
ENNReal
Set.instInter
Compl.compl
Set.instCompl
Set.preimage
instZeroENNReal
β€”Measure.instOuterMeasureClass
Filter.mem_map
mem_ae_iff
Measure.restrict_apply'
nullMeasurableSet_restrict πŸ“–mathematicalNullMeasurableSetMeasure.restrict
Set
Set.instInter
β€”Measure.instOuterMeasureClass
NullMeasurableSet.exists_measurable_superset_ae_eq
ae_restrict_iff'β‚€
Filter.mp_mem
Filter.univ_mem'
ae_eq_set_inter
Filter.EventuallyEq.refl
NullMeasurableSet.congr
MeasurableSet.nullMeasurableSet
MeasurableSet.inter
Filter.EventuallyEq.trans
NullMeasurableSet.of_null
Measure.restrict_applyβ‚€'
Set.diff_inter_self
measure_empty
NullMeasurableSet.mono_ac
Measure.absolutelyContinuous_restrict
Set.diff_union_inter
NullMeasurableSet.union
nullMeasurableSet_restrict_of_subset πŸ“–mathematicalSet
Set.instHasSubset
NullMeasurableSet
Measure.restrict
β€”Measure.instOuterMeasureClass
NullMeasurableSet.exists_measurable_subset_ae_eq
ae_imp_of_ae_restrict
Filter.mp_mem
Filter.univ_mem'
NullMeasurableSet.congr
MeasurableSet.nullMeasurableSet
NullMeasurableSet.mono_ac
Measure.absolutelyContinuous_restrict
one_le_div_ae πŸ“–mathematicalβ€”Filter.EventuallyLE
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Pi.instOne
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Pi.instDiv
DivInvMonoid.toDiv
Group.toDivInvMonoid
β€”Measure.instOuterMeasureClass
Filter.Eventually.mono
one_le_div'
Pi.div_apply
Pi.one_apply
self_mem_ae_restrict πŸ“–mathematicalMeasurableSetSet
Filter
Filter.instMembership
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.restrict
β€”Measure.instOuterMeasureClass
ae_restrict_eq
Filter.univ_mem
Set.Subset.rfl
Set.univ_inter
sub_ae_eq_zero πŸ“–mathematicalβ€”Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”Measure.instOuterMeasureClass
Filter.Eventually.mono
sub_eq_zero
Pi.zero_apply
Pi.sub_apply
sub_nonneg_ae πŸ“–mathematicalβ€”Filter.EventuallyLE
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”Measure.instOuterMeasureClass
Filter.Eventually.mono
sub_nonneg
Pi.sub_apply
Pi.zero_apply

MeasureTheory.Measure

Definitions

NameCategoryTheorems
restrict πŸ“–CompOp
981 math, 3 bridgemath: MeasureTheory.setIntegral_union, NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, MeasureTheory.setIntegral_tilted, Real.isFiniteMeasure_restrict_Ioc, MeasureTheory.LpToLpRestrictCLM_coeFn, Set.Countable.measure_restrict_compl, ProbabilityTheory.paretoCDFReal_eq_lintegral, restrict_singleton, QuasiMeasurePreserving.restrict, restrict_comm, MeasureTheory.setIntegral_complβ‚€, MeasureTheory.setIntegral_nonpos_ae, MeasureTheory.ae_withDensity_iff_ae_restrict, NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, MeasureTheory.withDensity_apply_le, MeasureTheory.Martingale.stoppedValue_ae_eq_restrict_eq, MeasureTheory.restrict_dirac', MeasureTheory.IsFundamentalDomain.absolutelyContinuous_map, tendsto_tsum_div_pow_atTop_integral, restrict_smul, MeasureTheory.SimpleFunc.integral_piecewise_zero, MeasureTheory.setIntegral_condExp, MeasureTheory.aecover_Ioi_of_Ici, Manifold.pathELength_eq_lintegral_mfderiv_Ioo, MeasureTheory.tendsto_setIntegral_of_L1', Filter.EventuallyEq.restrict, MeasureTheory.L2.inner_indicatorConstLp_eq_inner_setIntegral, UnitAddCircle.lintegral_preimage, MeasureTheory.integral_image_eq_integral_abs_det_fderiv_smul, MeasureTheory.IsAddFundamentalDomain.lintegral_eq_tsum'', MeasureTheory.restrict_compl_singleton, MeasureTheory.lintegral_comp_eq_lintegral_meas_le_mul_of_measurable_of_sigmaFinite, MeasureTheory.IsAddFundamentalDomain.integral_eq_tsum, HasCompactSupport.integral_Ioi_deriv_eq, MeasureTheory.IsFundamentalDomain.aestronglyMeasurable_on_iff, MeasureTheory.aecover_Ioi_of_Ioi, Complex.integral_comp_pi_polarCoord_symm, MeasureTheory.integral_Ici_eq_integral_Ioi, ProbabilityTheory.Kernel.setIntegral_deterministic', ProbabilityTheory.setLIntegral_preCDF_fst, restrict_mono', MeasureTheory.integral_indicator, MeasureTheory.setIntegral_eq_integral_of_forall_compl_eq_zero, MeasureTheory.MeasurePreserving.setLIntegral_comp_emb, MeasureTheory.setLIntegral_le_iSup_mul, ProbabilityTheory.gammaCDFReal_eq_lintegral, circleIntegral_def_Icc, restrict_sUnion_congr, integral_exp_mul_Iic, restrict_toMeasurable, intervalIntegral.intervalIntegral_eq_integral_uIoc, MeasureTheory.FinStronglyMeasurable.exists_set_sigmaFinite, ContinuousOn.aestronglyMeasurable_of_isCompact, MeasureTheory.Conservative.measureRestrict, MeasureTheory.ae_restrict_mem, MeasureTheory.lintegral_iUnionβ‚€, MeasureTheory.setLIntegral_pos_iff, MeasureTheory.setIntegral_measure_zero, MeasureTheory.smul_le_stoppedValue_hittingBtwn, MeasureTheory.Integrable.tendsto_setIntegral_nhds_zero, MeasureTheory.lintegral_biUnion_finsetβ‚€, unitInterval.measurePreserving_coe, MeasureTheory.IsAddFundamentalDomain.aestronglyMeasurable_on_iff, AntitoneOn.memLp_isCompact, MeasureTheory.finStronglyMeasurable_iff_stronglyMeasurable_and_exists_set_sigmaFinite, MeasureTheory.integral_union_eq_left_of_forall, MeasureTheory.IsAddFundamentalDomain.sum_restrict, ProbabilityTheory.Kernel.setIntegral_restrict, MeasureTheory.MeasurePreserving.restrict_preimage, restrict_empty, MeasureTheory.IsAddFundamentalDomain.addQuotientMeasure_eq, Real.rpow_eq_const_mul_integral, MeasureTheory.ae_restrict_biUnion_iff, interval_average_eq_div, ProbabilityTheory.setIntegral_condCDF, lintegral_fderiv_lineMap_eq_edist, exists_eq_interval_average_of_noAtoms, restrict_congr_set, ProbabilityTheory.lintegral_gammaPDF_of_nonpos, ProbabilityTheory.setIntegral_condKernel_univ_left, MeasureTheory.restrict_compl_sigmaFiniteSet, ProbabilityTheory.Kernel.integral_restrict, InnerRegularWRT.restrict, restrict_add, MeasureTheory.exists_setLAverage_le, MeasureTheory.lintegral_biUnion_finset, ProbabilityTheory.cdf_paretoMeasure_eq_integral, ProbabilityTheory.Kernel.restrict_const, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat_rat, MeasureTheory.average_mem_openSegment_compl_self, MeasureTheory.setIntegral_prod_swap, LocallyBoundedVariationOn.ae_differentiableWithinAt, restrict_sInf_eq_sInf_restrict, MeasureTheory.setLIntegral_trim, MeasureTheory.eLpNorm_top_piecewise, ProbabilityTheory.tilted_mul_apply_cgf, restrict_singleton', MeasureTheory.setLIntegral_eq_const, MeasureTheory.integral_union_ae, ProbabilityTheory.IsRatCondKernelCDF.setIntegral, restrict_apply_self, MeasureTheory.ae_restrict_biUnion_eq, ProbabilityTheory.setLIntegral_condKernel_univ_right, MeasureTheory.lintegral_abs_det_fderiv_eq_addHaar_image, MeasureTheory.IsFundamentalDomain.quotientMeasure_eq, MeasureTheory.lintegral_biUnion, abs_setIntegral_mulExpNegMulSq_comp_sub_le_mul_measure, rnDeriv_restrict, MeasureTheory.aecover_Iio_of_Iic, integral_exp_neg_mul_rpow, MeasureTheory.lintegral_singleton, ext_iff_of_sUnion_eq_univ, MeasureTheory.lintegral_countable, ProbabilityTheory.setIntegral_condKernel_univ_right, restrict_add_restrict_compl, intervalIntegral.continuousOn_primitive, Real.aestronglyMeasurable_rpowIntegrand₀₁, MeasureTheory.setIntegral_dirac, MeasurableSet.map_coe_volume, integral_Ioi_rpow_of_lt, MeasureTheory.intervalIntegral_tendsto_integral_Iic, tendsto_setIntegral_pow_smul_of_unique_maximum_of_isCompact_of_integrableOn, ProbabilityTheory.gammaCDFReal_eq_integral, MeasurableEquiv.withDensity_ofReal_map_symm_apply_eq_integral_abs_det_fderiv_mul, MeasureTheory.withDensity_indicator, MeasureTheory.HasFiniteIntegral.tendsto_setIntegral_nhds_zero, setIntegral_Ioi_zero_rpow, MeasureTheory.integral_Ioi_of_hasDerivAt_of_nonneg, integral_rpow_mul_exp_neg_rpow, MeasureTheory.lintegral_image_eq_lintegral_deriv_mul_of_monotoneOn, MeasureTheory.setIntegral_prod_mul, MeasureTheory.integral_Ioi_of_hasDerivAt_of_nonpos', setIntegral_condKernel, MeasureTheory.aecover_Ioo_of_Ioc, setLIntegral_rnDeriv, Complex.hasDerivAt_GammaIntegral, ApproximatesLinearOn.norm_fderiv_sub_le, MeasureTheory.norm_setIntegral_le_of_norm_le_const_ae', MeasureTheory.setIntegral_compl, MeasureTheory.integral_Ioi_deriv_mul_eq_sub, MeasureTheory.integral_Ioi_of_hasDerivAt_of_tendsto', MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq, MeasureTheory.setIntegral_mono_on_aeβ‚€, IsUnifLocDoublingMeasure.ae_tendsto_measure_inter_div, MeasureTheory.aecover_Ioc_of_Ioo, ProbabilityTheory.Kernel.restrict_apply, MeasureTheory.setIntegral_trim, setIntegral_condKernel_univ_left, MeasureTheory.AddQuotientMeasureEqMeasurePreimage.addProjection_respects_measure', MeasureTheory.restrict_Ico_eq_restrict_Ioc, curveIntegralFun_trans_aeeq_right, Complex.integral_comp_polarCoord_symm, MeasureTheory.integral_divergence_prod_Icc_of_hasFDerivAt_off_countable_of_le, MeasureTheory.setIntegral_congr_ae, Manifold.pathELength_def, restrict_mono, MeasureTheory.integral_Ioi_mul_deriv_eq_deriv_mul, MeasureTheory.integral_biUnion_finset, MeasureTheory.exists_isSigmaFiniteSet_measure_ge, restrict_sum_of_countable, integral_exp_mul_complex_Ioi, setIntegral_Ioi_zero_cpow, restrict_eq_zero, MeasureTheory.MeasurePreserving.setIntegral_image_emb, MeasureTheory.measure_sigmaFiniteSetGE_le, MeasureTheory.integral_condExpL2_eq, ContinuousOn.aestronglyMeasurable_of_subset_isCompact, MeasureTheory.setIntegral_support, MeasureTheory.IsAddFundamentalDomain.restrict_restrict, restrict_apply_superset, MeasureTheory.SimpleFunc.const_lintegral_restrict, MeasureTheory.setLAverage_congr_fun_ae, ProbabilityTheory.Kernel.setIntegral_densityProcess_of_mem, MeasureTheory.sigmaFinite_restrict_sigmaFiniteSetGE, MeasureTheory.MeasurePreserving.setIntegral_preimage_emb, MeasureTheory.setLIntegral_lt_top_of_le_nnreal, MeasureTheory.setIntegral_condExpL2_indicator, intervalIntegral.abs_intervalIntegral_eq, restrict_map, ContinuousLinearMap.setIntegral_compLp, MeasureTheory.addMeasure_map_restrict_apply, MeasureTheory.lintegral_union, Manifold.pathELength_eq_lintegral_mfderivWithin_Icc, MeasureTheory.eLpNorm_restrict_eq_of_support_subset, MeasureTheory.integral_singleton', VitaliFamily.ae_tendsto_lintegral_div, ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_mgf', restrict_toMeasurable_of_cover, MeasureTheory.IsAddFundamentalDomain.measurePreserving_add_quotient_mk, aemeasurable_restrict_iff_comap_subtype, finite_integral_rpow_sub_one_pow_aux, Complex.GammaIntegral_ofReal, singularPart_restrict, MeasureTheory.restrict_dirac, lintegral_comp_pi_polarCoord_symm, MeasureTheory.integral_integral_indicator, restrict_apply, MeasureTheory.aecover_Icc_of_Ioc, MeasureTheory.AECover.integral_tendsto_of_countably_generated, MeasureTheory.IntegrableOn.restrict_toMeasurable, MeasureTheory.setIntegral_condExpInd, ProbabilityTheory.lintegral_exponentialPDF_eq_antiDeriv, MeasureTheory.lintegral_abs_det_fderiv_le_addHaar_image_aux1, MeasureTheory.integral_comp_rpow_Ioi_of_pos, MeasureTheory.Submartingale.setIntegral_le, MeasureTheory.lintegral_iUnion_le, MeasureTheory.IsFundamentalDomain.setLIntegral_eq, MonotoneOn.memLp_of_measure_ne_top, MeasureTheory.aecover_Ioc_of_Icc, map_restrict_ae_le_map_indicator_ae, MeasureTheory.setLIntegral_nnnorm_condExpL2_indicator_le, MeasureTheory.IsFundamentalDomain.lintegral_eq_tsum_of_ac, MeasureTheory.IsFundamentalDomain.lintegral_eq_tsum', MeasureTheory.setIntegral_le_integral, MeasureTheory.ae_withDensity_iff_ae_restrict', MeasureTheory.AEContinuous.hasBoxIntegral, restrict_biUnion_le, ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_mgf, ProbabilityTheory.Kernel.setIntegral_const, sum_mul_eq_sub_integral_mul', ProbabilityTheory.Kernel.setIntegral_densityProcess_of_le, MeasureTheory.ae_restrict_iUnion_eq, MeasureTheory.IsFundamentalDomain.setIntegral_eq_tsum', MeasureTheory.lintegral_rpow_eq_lintegral_meas_le_mul, singularPart_eq_restrict, restrict_inter_add_diffβ‚€, MeasureTheory.ae_restrict_memβ‚€, aestronglyMeasurable_indicator_iffβ‚€, setIntegral_compProd, MeasureTheory.integral_fintype_iUnion, MeasureTheory.IsFundamentalDomain.setLIntegral_eq_tsum, MeasureTheory.lintegral_abs_det_fderiv_le_addHaar_image, ProbabilityTheory.setLIntegral_condKernel, MeasureTheory.Integrable.restrict, MeasureTheory.IsFundamentalDomain.sum_restrict, MeasureTheory.MeasurePreserving.setLIntegral_comp_preimage, MeasureTheory.ae_restrict_eq_bot, LSeries_eq_mul_integral_of_nonneg, MeasureTheory.setLIntegral_withDensity_eq_setLIntegral_mul, MeasureTheory.lintegral_nnnorm_condExpL2_le, MeasureTheory.MeasurePreserving.restrict_image_emb, MeasurableEquiv.restrict_map, ProbabilityTheory.IsCondKernelCDF.setIntegral, IntervalIntegrable.aestronglyMeasurable', MeasurableEmbedding.restrict_map, setIntegral_condKernel_univ_right, MeasureTheory.norm_integral_sub_setIntegral_le, MeasureTheory.addHaar_image_le_lintegral_abs_det_fderiv_aux1, restrict_iUnion, MeasureTheory.setLIntegral_compl, MeasureTheory.QuotientMeasureEqMeasurePreimage.projection_respects_measure', MeasureTheory.IsAddFundamentalDomain.setLIntegral_eq, MeasureTheory.setLIntegral_withDensity_eq_lintegral_mulβ‚€, MeasureTheory.SimpleFunc.lintegral_restrict, MeasureTheory.lintegral_inter_add_diff, integral_exp_Iic, integral_mul_cexp_neg_mul_sq, intervalIntegral.continuousOn_primitive_Icc, MeasureTheory.integral_inter_add_diff, MeasureTheory.ae_restrict_of_forall_mem, MeasureTheory.aemeasurable_ofReal_abs_det_fderivWithin, AntitoneOn.memLp_top, MeasureTheory.integral_Iic_eq_integral_Iio', InnerRegularCompactLTTop.restrict, Regular.restrict_of_measure_ne_top, ProbabilityTheory.Kernel.setIntegral_deterministic, restrict_union, MeasureTheory.integral_Icc_eq_integral_Ioo, intervalIntegral.integral_cases, MeasureTheory.lintegral_comp_eq_lintegral_meas_le_mul_of_measurable, MeasureTheory.restrict_Iio_eq_restrict_Iic, ProbabilityTheory.Kernel.setLIntegral_restrict, restrict_union', MeasureTheory.setIntegral_map_equiv, restrict_mono_set, ProbabilityTheory.lintegral_exponentialPDF_of_nonpos, MeasureTheory.isFiniteMeasureRestrict, ContinuousMap.aeStronglyMeasurable_restrict_mkD_restrict_of_uncurry, MeasureTheory.setIntegral_condExpIndSMul, MeasureTheory.integral_divergence_prod_Icc_of_hasFDerivAt_of_le, MeasureTheory.setIntegral_mono_onβ‚€, MeasureTheory.lintegral_rpow_eq_lintegral_meas_lt_mul, ProbabilityTheory.IsCondKernelCDF.setLIntegral, MeasureTheory.setIntegral_map, MeasureTheory.integral_diff, restrict_toOuterMeasure_eq_toOuterMeasure_restrict, MeasureTheory.setLIntegral_congr_fun, MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable_of_equiv, MeasureTheory.setIntegral_rnDeriv_smul, MeasurableEmbedding.withDensity_ofReal_comap_apply_eq_integral_abs_det_fderiv_mul, ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_cgf', MeasureTheory.setIntegral_eq_of_subset_of_ae_diff_eq_zero_aux, MeasureTheory.measureReal_restrict_apply', MeasurableEmbedding.withDensity_ofReal_comap_apply_eq_integral_abs_deriv_mul', MeasureTheory.exists_measurable_le_forall_setLIntegral_eq, integral_rpow_mul_exp_neg_mul_rpow, restrict_restrict', MeasureTheory.measure_le_setAverage_pos, MeasureTheory.integral_image_eq_integral_abs_deriv_smul, absolutelyContinuous_restrict, integral_comp_polarCoord_symm, restrict_apply_eq_zero, VitaliFamily.ae_tendsto_average_norm_sub, MeasureTheory.tendsto_setIntegral_of_antitone, MeasureTheory.IsAddFundamentalDomain.setIntegral_eq_tsum, restrict_pi_pi, MeasureTheory.Martingale.condExp_stoppedValue_stopping_time_ae_eq_restrict_le, MeasureTheory.lintegral_subtype_comap, restrict.neZero, restrict_mono_measure, interval_average_symm, MeasureTheory.IsFundamentalDomain.restrict_restrict, MeasureTheory.IsFundamentalDomain.setIntegral_eq_tsum, MeasureTheory.setLIntegral_congr_fun_ae, interior_inter_support, MeasureTheory.IsAddFundamentalDomain.integral_eq_tsum'', MeasureTheory.setIntegral_tsupport, volume_regionBetween_eq_lintegral', MeasureTheory.L2.inner_indicatorConstLp_one, MeasureTheory.restrict_Ioo_eq_restrict_Icc, restrict_iUnion_apply, ProbabilityTheory.setIntegral_tilted_mul_eq_mgf', restrict_apply_le, MeasureTheory.aemeasurable_fderivWithin, restrict_union_add_inter, piecewise_ae_eq_restrict_compl, MeasureTheory.restrict_withDensity, MeasureTheory.setLIntegral_eq_zero_iff, ENNReal.essSup_piecewise, ProbabilityTheory.lintegral_paretoPDF_of_le, MeasureTheory.setLAverage_eq', restrict_restrictβ‚€', MeasureTheory.lintegral_deriv_eq_volume_image_of_antitoneOn, restrict_apply_univ, MeasureTheory.IntegrableOn.setLIntegral_lt_top, Real.integral_rpowIntegrand₀₁_one_pos, MeasureTheory.integral_Icc_eq_integral_Ioo', MutuallySingular.restrict_nullSet, HasCompactSupport.integral_Iic_deriv_eq, MeasureTheory.lintegral_image_eq_lintegral_abs_det_fderiv_mul, ProbabilityTheory.tilted_mul_apply_mgf', MeasureTheory.addHaar_image_le_lintegral_abs_det_fderiv_aux2, ProbabilityTheory.Kernel.setLIntegral_deterministic, MeasureTheory.IsAddFundamentalDomain.setLIntegral_eq_tsum', integral_comp_abs, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat, ContinuousOn.aestronglyMeasurable, enorm_sub_le_lintegral_derivWithin_Icc_of_contDiffOn_Icc, MeasureTheory.integral_target_eq_integral_abs_det_fderiv_smul, setLIntegral_rnDeriv', ProbabilityTheory.cdf_gammaMeasure_eq_lintegral, MeasureTheory.setIntegral_congr_aeβ‚€, restrict_restrict, MeasureTheory.ae_restrict_neBot, restrict_congr_meas, MeasureTheory.integral_Ioc_eq_integral_Ioo', MeasureTheory.IsAddFundamentalDomain.integral_eq_tsum', MeasureTheory.IsAddFundamentalDomain.essSup_measure_restrict, MeasureTheory.ae_eq_restrict_biUnion_finset_iff, MeasureTheory.restrict_compl_sigmaFiniteSet_eq_zero_or_top, ProbabilityTheory.gaussianReal_apply, prod_restrict, MeasureTheory.eLpNormEssSup_piecewise, restrict_inter_toMeasurable, MeasureTheory.tilted_apply_eq_ofReal_integral, MeasureTheory.AEStronglyMeasurable.restrict, ProbabilityTheory.setLIntegral_condKernel_univ_left, ProbabilityTheory.condExp_set_generateFrom_singleton, MeasureTheory.integral_add_compl, MeasureTheory.lintegral_eq_lintegral_meas_le, MeasureTheory.setLAverage_congr, Topology.IsClosedEmbedding.setIntegral_map, MeasureTheory.lintegral_add_compl, setIntegral_toReal_rnDeriv', MeasureTheory.setIntegral_indicator, ProbabilityTheory.Kernel.setLIntegral_compProd_univ_left, MeasureTheory.lintegral_indicator_le, ProbabilityTheory.condExp_generateFrom_singleton, ProbabilityTheory.Kernel.setIntegral_density_of_measurableSet, MeasureTheory.IsAddFundamentalDomain.lintegral_eq_tsum, Measurable.setLIntegral_kernel_prod_left, MeasureTheory.Lp_toLp_restrict_add, MeasureTheory.ae_eq_restrict_biUnion_iff, MeasureTheory.setAverage_eq', MeasureTheory.setIntegral_condExpL1, MeasureTheory.measure_sigmaFiniteSetWRT', HasCompactSupport.enorm_le_lintegral_Ici_deriv, MeasureTheory.intervalIntegral_tendsto_integral_Ioi, MeasureTheory.integral_posConvolution, sum_mul_eq_sub_integral_mulβ‚€', MeasureTheory.setIntegral_mono_on_ae, continuous_parametric_integral_of_continuous, intervalIntegral.norm_intervalIntegral_eq, MeasureTheory.setAverage_congr, AEMeasurable.restrict, ProbabilityTheory.Fernique.lintegral_closedBall_diff_exp_logRatio_mul_sq_le, MeasureTheory.ae_restrict_union_iff, MeasureTheory.mem_map_restrict_ae_iff, MeasureTheory.Restrict.isFiniteMeasure, MeasureTheory.integral_Icc_eq_integral_Ico', ProbabilityTheory.setIntegral_compProd_univ_right, Measurable.setLIntegral_kernel, restrict_sum, MeasureTheory.integral_Ioc_eq_integral_Ioo, MeasureTheory.tilted_apply, intervalAverage_congr_codiscreteWithin, aestronglyMeasurable_iUnion_iff, MeasureTheory.setAverage_eq, MeasureTheory.smul_le_stoppedValue_hitting, MeasureTheory.isFiniteMeasure_restrict, MeasureTheory.integral_Ico_eq_integral_Ioo, MeasureTheory.IsFundamentalDomain.integral_eq_tsum'', MeasureTheory.norm_setIntegral_le_of_norm_le_const, MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict, MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable', ProbabilityTheory.setLIntegral_toKernel_univ, MeasureTheory.integral_condExpL2_eq_of_fin_meas_real, ProbabilityTheory.condExpKernel_singleton_ae_eq_cond, intervalIntegral.integral_Iio_add_Ici, ContinuousWithinAt.integral_sub_linear_isLittleO_ae, MeasureTheory.Martingale.setIntegral_eq, MeasureTheory.setAverage_sub_setAverage, Real.isFiniteMeasure_restrict_Ioo, MeasureTheory.aecover_Icc_of_Icc, MeasureTheory.setIntegral_empty, restrict_map_of_aemeasurable, MeasureTheory.ae_restrict_of_ae, restrict.instNoAtoms, MeasureTheory.IsAddFundamentalDomain.hasFiniteIntegral_on_iff, MeasurableEquiv.withDensity_ofReal_map_symm_apply_eq_integral_abs_deriv_mul, MeasureTheory.setLIntegral_mono, MeasureTheory.IsFundamentalDomain.setLIntegral_eq_tsum', ProbabilityTheory.Kernel.setIntegral_densityProcess, MeasureTheory.integral_biUnion_eq_sum_powerset, ae_restrict_iff_subtype, MeasureTheory.instSigmaFiniteRestrictSigmaFiniteSetWRT, AbsolutelyContinuousOnInterval.tendsto_volume_restrict_totalLengthFilter_disjWithin_nhds_zero, MeasureTheory.setIntegral_abs_condExp_le, intervalIntegral.integral_of_ge, setLIntegral_condKernel, MeasureTheory.setIntegral_neg_eq_setIntegral_nonpos, aemeasurable_restrict_of_measurable_subtype, MeasureTheory.locallyIntegrableOn_iff_locallyIntegrable_restrict, ProbabilityTheory.setIntegral_tilted_mul_eq_cgf', MeasureTheory.restrict_Ioi_eq_restrict_Ici, MeasureTheory.Integrable.integral_eq_integral_meas_le, MeasurableEmbedding.gaussianReal_comap_apply, IntervalIntegrable.aestronglyMeasurable, MeasureTheory.AECover.inter_restrict, VitaliFamily.ae_tendsto_measure_inter_div, MeasureTheory.setLIntegral_rnDeriv_mul, MeasureTheory.BoundedContinuousFunction.integral_eq_integral_meas_le, MeasureTheory.setIntegral_condExpL1CLM_of_measure_ne_top, MeasureTheory.integral_comp_rpow_Ioi, MeasureTheory.IsFundamentalDomain.lintegral_eq_tsum, Complex.lintegral_comp_polarCoord_symm, restrict_unionβ‚€, integral_exp_neg_rpow, Antitone.tendsto_setIntegral, MeasureTheory.map_eq_setLIntegral_pdf, MeasureTheory.Integrable.integral_eq_integral_meas_lt, MeasureTheory.IsHahnDecomposition.ge_on_compl, MeasureTheory.integral_fun_norm_addHaar, tendsto_sum_mul_atTop_nhds_one_sub_integralβ‚€, MeasureTheory.ae_restrict_le, MeasureTheory.setIntegral_ge_of_const_le, MeasureTheory.measure_map_restrict_apply, StronglyMeasurableAtFilter.eventually, restrict_iUnion_apply_eq_iSup, MeasureTheory.restrict_Ico_eq_restrict_Icc, MeasureTheory.lintegral_nnnorm_condExpL2_indicator_le_real, MeasureTheory.lintegral_union_le, ProbabilityTheory.Kernel.setLIntegral_density, ProbabilityTheory.exponentialCDFReal_eq_integral, sum_mul_eq_sub_integral_mul₁, MeasureTheory.setLIntegral_lt_top_of_bddAbove, MeasureTheory.integral_Icc_eq_integral_Ico, MeasureTheory.average_union_mem_segment, ProbabilityTheory.cdf_expMeasure_eq_integral, MeasureTheory.setLIntegral_one, MeasureTheory.withDensity_applyβ‚€, Besicovitch.ae_tendsto_measure_inter_div, Real.isFiniteMeasure_restrict_Icc, MeasureTheory.integral_Iic_eq_integral_Iio, intervalIntegral.integral_of_le, InnerRegularWRT.restrict_of_measure_ne_top, MeasureTheory.exists_pos_setLIntegral_lt_of_measure_lt, MeasureTheory.setLIntegral_const_lt_top, MeasureTheory.ae_restrict_biUnion_finset_iff, restrict_zero, MeasureTheory.setIntegral_nonpos, LSeries_eq_mul_integral, ProbabilityTheory.Kernel.setLIntegral_deterministic', ProbabilityTheory.paretoCDFReal_eq_integral, AntitoneOn.memLp_of_measure_ne_top, MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq_of_countable, MeasureTheory.setLAverage_one, MeasureTheory.Supermartingale.setIntegral_le, VitaliFamily.ae_tendsto_lintegral_div', MeasureTheory.lintegral_indicator, MeasurableEmbedding.withDensity_ofReal_comap_apply_eq_integral_abs_deriv_mul, MeasureTheory.IsFundamentalDomain.lintegral_eq_tsum'', aemeasurable_uIoc_iff, MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq_of_countable_range, MeasureTheory.setIntegral_congr_fun, MeasureTheory.setIntegral_rnDeriv_smul', MeasureTheory.restrict_Ioo_eq_restrict_Ioc, MeasureTheory.tendsto_measure_sigmaFiniteSetGE, MeasureTheory.setLIntegral_mono_ae', enorm_sub_le_lintegral_deriv_of_contDiffOn_Icc, MeasureTheory.Martingale.condExp_stopping_time_ae_eq_restrict_eq_const_of_le_const, MeasureTheory.setLAverage_eq, MeasureTheory.integral_add_complβ‚€, MeasureTheory.lintegral_image_eq_lintegral_deriv_mul_of_antitoneOn, MeasureTheory.L2.inner_indicatorConstLp_eq_setIntegral_inner, MeasureTheory.lintegral_finset, MeasureTheory.memLp_indicator_iff_restrict, ProbabilityTheory.setIntegral_preCDF_fst, intervalIntegral.integral_Iic_sub_Iic, MeasureTheory.condExp_min_stopping_time_ae_eq_restrict_le_const, Real.isFiniteMeasure_restrict_Ico, MeasureTheory.setLIntegral_tilted, MeasureTheory.ae_restrict_biUnion_finset_eq, MeasureTheory.IsAddFundamentalDomain.lintegral_eq_tsum_of_ac, MeasureTheory.setLIntegral_map, MeasurableEmbedding.comap_restrict, MeasureTheory.setLIntegral_dirac', NumberField.mixedEmbedding.fundamentalCone.setLIntegral_paramSet_exp, restrict_restrict_of_subset, MeasureTheory.withDensityα΅₯_apply, MeasureTheory.lintegral_singleton', MeasureTheory.ContinuousOn.hasBoxIntegral, restrict_biUnion_finset, integral_exp_neg_Ioi, MeasureTheory.ae_restrict_eq, UnitAddCircle.measurePreserving_mk, MeasureTheory.setLIntegral_strict_mono, MeasureTheory.setLIntegral_empty, AbsolutelyContinuous.restrict, MeasureTheory.tendsto_setIntegral_of_L1, integral_comp_neg_Iic, MeasureTheory.ofReal_setIntegral_one, aemeasurable_iUnion_iff, MeasureTheory.FiniteMeasure.restrict_measure_eq, ae_restrict_le_codiscreteWithin, restrict_mono_ae, tendsto_setIntegral_pow_smul_of_unique_maximum_of_isCompact_of_measure_nhdsWithin_pos, singularPart_eq_restrict', MeasureTheory.setIntegral_indicatorConstLp, Real.Gamma_eq_integral, ContinuousMap.aeStronglyMeasurable_restrict_mkD_of_uncurry, MeasureTheory.lintegral_eq_lintegral_meas_lt, MeasureTheory.SimpleFunc.lintegral_restrict_iUnion_of_directed, MeasureTheory.IsFundamentalDomain.essSup_measure_restrict, MeasureTheory.integral_indicatorβ‚€, compProd_apply_prod, MeasureTheory.laverage_union_mem_segment, MeasureTheory.setLIntegral_const, MeasureTheory.instSigmaFiniteRestrictInterSet, setIntegral_withDensity_eq_setIntegral_smul, MeasureTheory.setIntegral_dirac', MeasureTheory.Restrict.sigmaFinite, ProbabilityTheory.setIntegral_condKernel, indicator_ae_eq_restrict_compl, aemeasurable_restrict_of_monotoneOn, MeasureTheory.setIntegral_nonpos_le, restrict_union_add_interβ‚€, MeasureTheory.measurePreserving_subtype_coe, MeasureTheory.ae_restrict_uIoc_iff, MeasureTheory.setLIntegral_dirac, ProbabilityTheory.Kernel.IsProper.setLIntegral_eq_indicator_mul_lintegral, MeasureTheory.nullMeasurableSet_restrict, ProbabilityTheory.Kernel.tendsto_setIntegral_densityProcess, LipschitzOnWith.ae_differentiableWithinAt_real, ProbabilityTheory.setLIntegral_toKernel_prod, ProbabilityTheory.setIntegral_compProd, MeasureTheory.integral_Ico_eq_integral_Ioo', setIntegral_toReal_rnDeriv_eq_withDensity', MeasureTheory.setLIntegral_subtype, restrict_iUnion_ae, MeasureTheory.laverage_union, ProbabilityTheory.Kernel.setLIntegral_compProd, Real.le_integral_rpowIntegrand₀₁_one, ProbabilityTheory.Kernel.IsProper.setLIntegral_eq_comp, MeasureTheory.Integrable.withDensityα΅₯_trim_eq_integral, restrict_finset_biUnion_congr, MeasureTheory.AEFinStronglyMeasurable.ae_eq_zero_compl, aemeasurable_union_iff, MeasureTheory.integral_subtype_comap, restrict_le_self, MeasureTheory.instSigmaFiniteRestrictUnionSet, MeasureTheory.aecover_Ioo_of_Ioo, MeasureTheory.AEFinStronglyMeasurable.sigmaFinite_restrict, NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral, MeasureTheory.aecover_Ioc_of_Ioc, MeasureTheory.lintegral_max, MeasureTheory.IsAddFundamentalDomain.setLIntegral_eq_tsum, MeasureTheory.setIntegral_gt_gt, MeasureTheory.setIntegral_nonneg_ae, MeasureTheory.setIntegral_nonpos_of_ae, MeasureTheory.setIntegral_eq_integral_of_ae_compl_eq_zero, MeasureTheory.HasFiniteIntegral.restrict, mem_support_restrict, restrict_biUnion_finset_congr, MeasureTheory.integral_image_eq_integral_deriv_smul_of_antitone, MeasureTheory.UnifIntegrable.restrict, MeasureTheory.SimpleFunc.restrict_lintegral_eq_lintegral_restrict, ProbabilityTheory.tilted_mul_apply_mgf, MeasureTheory.setLIntegral_max, MeasureTheory.setLIntegral_withDensity_eq_lintegral_mulβ‚€', MeasureTheory.IsAddFundamentalDomain.sum_restrict_of_ac, MeasureTheory.setLIntegral_pdf_le_map, MeasureTheory.AECover.lintegral_tendsto_of_countably_generated, restrict_biUnion, MeasureTheory.setLIntegral_eq_of_support_subset, MeasureTheory.lintegral_iUnion, MeasureTheory.setIntegral_nonneg, MeasureTheory.setIntegral_tilted', ContinuousOn.integral_sub_linear_isLittleO_ae, integral_exp_mul_Ioi, MeasurableEmbedding.restrict_comap, MeasureTheory.addHaar_image_le_lintegral_abs_det_fderiv, CFC.exists_measure_nnrpow_eq_integral_cfcβ‚™_rpowIntegrand₀₁, MeasureTheory.restrict_Ioo_eq_restrict_Ico, MeasureTheory.setIntegral_ge_of_const_le_real, MeasureTheory.IsFundamentalDomain.integral_eq_tsum_of_ac, iSup_restrict_spanningSets, restrict_eq_self_of_ae_mem, MeasureTheory.hasSum_integral_iUnion, setIntegral_comp_smul, MeasureTheory.lintegral_indicatorβ‚€, MeasureTheory.setIntegral_eq_of_subset_of_forall_diff_eq_zero, MeasureTheory.setLIntegral_nnnorm_condExpIndSMul_le, setLIntegral_condKernel_univ_left, MeasureTheory.integral_Ioi_of_hasDerivAt_of_tendsto, MeasureTheory.restrict_map_withDensity_abs_det_fderiv_eq_addHaar, ProbabilityTheory.setIntegral_condVar, ext_iff_of_iUnion_eq_univ, MeasureTheory.setAverage_congr_fun, MeasureTheory.exists_le_setAverage, MeasureTheory.laverage_mem_openSegment_compl_self, MeasureTheory.IsAddFundamentalDomain.integral_eq_tsum_of_ac, MeasureTheory.ae_restrict_congr_set, restrict_zero_set, MonotoneOn.exists_tendsto_deriv_liminf_lintegral_enorm_le, NumberField.mixedEmbedding.lintegral_comp_polarCoordReal_symm, MeasureTheory.lintegral_mono_set', MeasureTheory.IsFundamentalDomain.sum_restrict_of_ac, restrict_biUnion_congr, MeasureTheory.integral_Icc_eq_integral_Ioc', MeasureTheory.setIntegral_one_eq_measureReal, MeasureTheory.IsFundamentalDomain.hasFiniteIntegral_on_iff, MeasureTheory.aecover_restrict_of_ae_imp, MeasureTheory.integral_inter_add_diffβ‚€, MeasureTheory.eLpNormEssSup_indicator_eq_eLpNormEssSup_restrict, MeasureTheory.aecover_Ico_of_Ioo, ContinuousOn.aemeasurable, MeasureTheory.integral_Ioi_of_hasDerivAt_of_nonpos, ProbabilityTheory.Kernel.setLIntegral_compProd_univ_right, exists_eq_interval_average_of_measure, MeasureTheory.integral_comp_mul_right_Ioi, MeasureTheory.condExp_restrict_ae_eq_restrict, AddCircle.lintegral_preimage, MeasureTheory.BoundedContinuousFunction.integral_le_of_levyProkhorovEDist_lt, Manifold.pathELength_eq_lintegral_mfderiv_Icc, ProbabilityTheory.Kernel.setLIntegral_rnDeriv, ProbabilityTheory.lintegral_betaPDF, MeasureTheory.integral_subtype, restrict_iUnion_apply_ae, Real.circleAverage_eq_intervalAverage, MeasureTheory.integral_countable, MeasureTheory.exists_setAverage_le, ENNReal.essSup_indicator_eq_essSup_restrict, MeasureTheory.AECover.restrict, MeasureTheory.lintegral_image_eq_lintegral_abs_deriv_mul, AddCircle.measurePreserving_mk, MeasureTheory.hasSum_integral_iUnion_ae, MeasureTheory.ofReal_setIntegral_one_of_measure_ne_top, MeasureTheory.MemLp.restrict, MeasureTheory.ae_restrict_iff, MeasureTheory.IsAddFundamentalDomain.addQuotientMeasureEqMeasurePreimage_addQuotientMeasure, lintegral_comp_polarCoord_symm, ProbabilityTheory.setIntegral_tilted_mul_eq_mgf, integral_comp_neg_Ioi, Isometry.map_hausdorffMeasure, ProbabilityTheory.setLIntegral_condKernel_eq_measure_prod, ProbabilityTheory.tilted_mul_apply_eq_ofReal_integral_cgf, MeasureTheory.lintegral_insert, MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable, MeasureTheory.lintegral_mono_set, MeasureTheory.aemeasurable_toNNReal_abs_det_fderivWithin, MeasureTheory.maximal_ineq, ProbabilityTheory.Kernel.IsProper.setLIntegral_inter_eq_indicator_mul_setLIntegral, Filter.Tendsto.integral_sub_linear_isLittleO_ae, ProbabilityTheory.cdf_expMeasure_eq_lintegral, intervalIntegral.abs_integral_eq_abs_integral_uIoc, MeasureTheory.exists_setLIntegral_compl_lt, ENNReal.essSup_restrict_eq_of_support_subset, MeasureTheory.ae_restrict_iff', MeasurableEquiv.withDensity_ofReal_map_symm_apply_eq_integral_abs_deriv_mul', WeaklyRegular.restrict_of_measure_ne_top, restrict_apply_eq_zero', ProbabilityTheory.IsRatCondKernelCDFAux.setIntegral_iInf_rat_gt, setLIntegral_compProd, curveIntegralFun_trans_aeeq_left, piecewise_ae_eq_restrict, ProbabilityTheory.setIntegral_tilted_mul_eq_cgf, MeasureTheory.pdf.IsUniform.integral_eq, intervalIntegral.integral_interval_add_Ioi', MeasureTheory.aecover_Ioc_of_Ico, rnDeriv_restrict_self, ProbabilityTheory.Kernel.setIntegral_piecewise, MeasureTheory.setIntegral_setAverage_sub, MeasureTheory.norm_Lp_toLp_restrict_le, restrict_sub_eq_restrict_sub_restrict, MeasureTheory.le_ae_restrict, MeasureTheory.integral_union_eq_left_of_forallβ‚€, MeasureTheory.setLAverage_const, MeasureTheory.setAverage_const, MeasureTheory.tendsto_setIntegral_of_monotone, MeasureTheory.restrict_trim, MeasureTheory.IntegrableOn.integrable, MeasureTheory.nullMeasurableSet_restrict_of_subset, MeasureTheory.lintegral_abs_det_fderiv_eq_addHaar_imageβ‚€, MeasureTheory.setIntegral_mono, ProbabilityTheory.setIntegral_compProd_univ_left, ProbabilityTheory.Kernel.setIntegral_traj_partialTraj, MeasureTheory.aecover_Ioo_of_Ico, MeasureTheory.setLIntegral_trim_ae, Asymptotics.IsBigO.set_integral_isBigO, MeasureTheory.aecover_Iio_of_Iio, measurePreserving_quotientAddGroup_mk_of_AddQuotientMeasureEqMeasurePreimage, MeasureTheory.Martingale.condExp_stopping_time_ae_eq_restrict_eq_const, MeasureTheory.setIntegral_eq_of_subset_of_ae_diff_eq_zero, Real.integral_rpow_mul_exp_neg_mul_Ioi, MeasureTheory.setLIntegral_smul_measure, MeasureTheory.setIntegral_congr_set, MeasureTheory.aecover_Icc_of_Ioo, MutuallySingular.restrict_compl_nullSet, intervalIntegral.norm_integral_eq_norm_integral_uIoc, integral_Ioi_cpow_of_lt, ProbabilityTheory.Kernel.setIntegral_density, MeasureTheory.setIntegral_eq_zero_of_forall_eq_zero, tendsto_sum_mul_atTop_nhds_one_sub_integral, MeasureTheory.integral_Iic_of_hasDerivAt_of_tendsto, MeasureTheory.IsFundamentalDomain.setIntegral_eq, MonotoneOn.memLp_isCompact, ProbabilityTheory.Kernel.integral_integral_indicator, aemeasurable_indicator_iff, MeasurableEmbedding.setIntegral_map, MeasureTheory.restrict_compl_sigmaFiniteSetWRT, MeasureTheory.aecover_Ico_of_Ioc, Complex.lintegral_comp_pi_polarCoord_symm, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, volume_regionBetween_eq_integral, mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem, ProbabilityTheory.setLIntegral_condCDF, restrictβ‚—_apply, MeasureTheory.measure_setAverage_le_pos, MeasureTheory.withDensity_apply', MeasureTheory.integral_singleton, MeasureTheory.integral_iUnion, MeasureTheory.integral_comp_smul_deriv_Ioi, setIntegral_toReal_rnDeriv_le, MeasureTheory.BoundedContinuousFunction.integral_eq_integral_meas_le_of_hasFiniteIntegral, MeasureTheory.setLIntegral_tilted', MeasureTheory.integral_Iic_of_hasDerivAt_of_tendsto', MeasureTheory.IsAddFundamentalDomain.setIntegral_eq, integral_exp_mul_complex_Iic, ProbabilityTheory.Kernel.setLIntegral_piecewise, MeasurableEmbedding.map_comap, MeasureTheory.measureReal_restrict_apply_univ, integrable_mulExpNegMulSq_comp_restrict_of_isCompact, MonotoneOn.memLp_top, MeasureTheory.ae_restrict_iff'β‚€, MeasureTheory.lintegral_abs_det_fderiv_le_addHaar_image_aux2, MeasureTheory.integral_piecewise, MeasureTheory.MeasurePreserving.setLIntegral_comp_preimage_emb, sum_mul_eq_sub_sub_integral_mul', integral_Ioi_inv_one_add_sq, restrict_union_add_inter', MeasureTheory.sigmaFinite_restrict_sigmaFiniteSetWRT', MeasureTheory.IsAddFundamentalDomain.lintegral_eq_tsum', MeasureTheory.integral_comp_mul_left_Ioi, setLIntegral_condKernel_univ_right, ProbabilityTheory.setLIntegral_condDistrib_of_measurableSet, MeasureTheory.instSigmaFiniteRestrictSigmaFiniteSet, MeasureTheory.IsFundamentalDomain.projection_respects_measure, aestronglyMeasurable_union_iff, integral_exp_neg_Ioi_zero, MeasureTheory.measure_smul_setAverage, MeasureTheory.setLIntegral_setLAverage, IntervalIntegrable.aestronglyMeasurable_restrict_uIoc, MeasureTheory.setLIntegral_eq_zero, MeasureTheory.laverage_union_mem_openSegment, sum_mul_eq_sub_integral_mul, exists_eq_const_mul_setIntegral_of_nonneg, MeasurableEquiv.gaussianReal_map_symm_apply, MeasureTheory.setIntegral_condExpL1CLM, setIntegral_toReal_rnDeriv_eq_withDensity, setIntegral_comp_smul_of_pos, map_comap_subtype_coe, ProbabilityTheory.Kernel.withDensity_apply', integral_gaussian_Ioi, setIntegral_re_add_im, intervalIntegral.integral_Iic_add_Ioi, MeasureTheory.exists_eq_setAverage, MeasureTheory.instSigmaFiniteRestrictInterSet_1, MeasureTheory.integral_finset, ProbabilityTheory.setLIntegral_preimage_condDistrib, ProbabilityTheory.Kernel.tendsto_eLpNorm_one_restrict_densityProcess_limitProcess, ContinuousAt.integral_sub_linear_isLittleO_ae, MeasureTheory.integral_Ici_eq_integral_Ioi', intervalIntegral.integral_interval_add_Ioi, toSignedMeasure_restrict_eq_restrict_toSignedMeasure, MeasureTheory.measure_setLAverage_le_pos, MeasureTheory.setIntegral_nonneg_of_ae, MeasureTheory.setLAverage_congr_fun, ae_eq_restrict_iff_indicator_ae_eq, measurePreserving_quotientGroup_mk_of_QuotientMeasureEqMeasurePreimage, MutuallySingular.restrict, abs_integral_sub_setIntegral_mulExpNegMulSq_comp_lt, MeasureTheory.exists_measurable_le_setLIntegral_eq_of_integrable, MeasureTheory.IsFundamentalDomain.quotientMeasureEqMeasurePreimage_quotientMeasure, ProbabilityTheory.cdf_paretoMeasure_eq_lintegral, MeasureTheory.aecover_Ico_of_Icc, MeasureTheory.integral_Iic_mul_deriv_eq_deriv_mul, MeasureTheory.withDensity_indicator_one, integral_Iic_inv_one_add_sq, MeasureTheory.aecover_Ico_of_Ico, interval_average_eq, NumberField.mixedEmbedding.volume_eq_two_pi_pow_mul_integral, ProbabilityTheory.Kernel.setLIntegral_const, Real.integral_rpowIntegrand₀₁_eq_rpow_mul_const, MeasureTheory.setIntegral_le_nonneg, restrict_apply', ProbabilityTheory.gaussianReal_apply_eq_integral, MeasureTheory.setIntegral_mono_ae, VitaliFamily.ae_tendsto_average, ProbabilityTheory.IsRatCondKernelCDFAux.setIntegral, Measurable.setLIntegral_kernel_prod_right, MeasureTheory.ae_restrict_iUnion_iff, indicator_ae_eq_restrict, MeasureTheory.lintegral_deriv_eq_volume_image_of_monotoneOn, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat_rat, MeasureTheory.integral_norm_eq_pos_sub_neg, exists_eq_interval_average, MeasureTheory.IsAddFundamentalDomain.absolutelyContinuous_map, integral_exp_Iic_zero, PMF.restrict_toMeasure_support, MeasureTheory.tilted_apply_eq_ofReal_integral', MeasureTheory.instSFiniteRestrict, MeasureTheory.setIntegral_congr_funβ‚€, MeasureTheory.IsAddFundamentalDomain.setIntegral_eq_tsum', MeasureTheory.lintegral_biUnionβ‚€, sum_mul_eq_sub_integral_mulβ‚€, MeasureTheory.average_union_mem_openSegment, MeasureTheory.aecover_Icc_of_Ico, setLIntegral_rnDeriv_le, MeasureTheory.setLIntegral_condLExp, restrict_applyβ‚€', MeasureTheory.IsAddFundamentalDomain.addProjection_respects_measure, MeasureTheory.continuous_setIntegral, NumberField.mixedEmbedding.integral_comp_polarCoord_symm, MeasureTheory.average_union, ContinuousOn.aemeasurableβ‚€, sum_restrict_le, MeasureTheory.setLIntegral_le_meas, MeasureTheory.integral_iUnion_fintype, restrict_eq_self, tendsto_setIntegral_pow_smul_of_unique_maximum_of_isCompact_of_continuousOn, MeasureTheory.MeasurePreserving.restrict_preimage_emb, MeasureTheory.setLAverage_lt_top, MeasureTheory.setIntegral_mono_on, Complex.integral_cpow_mul_exp_neg_mul_Ioi, MeasureTheory.lintegral_piecewise, MeasureTheory.aecover_Ioo_of_Icc, ProbabilityTheory.Kernel.setIntegral_comp, LipschitzOnWith.ae_differentiableWithinAt, lintegral_rnDeriv_lt_top_of_measure_ne_top, MeasureTheory.ae_restrict_uIoc_eq, intervalIntegral.norm_integral_le_integral_norm_uIoc, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat, VitaliFamily.ae_tendsto_lintegral_enorm_sub_div_of_integrable, restrict_union_le, MeasureTheory.AECover.iSup_lintegral_eq_of_countably_generated, sum_mul_eq_sub_sub_integral_mul, MeasureTheory.eLpNorm_restrict_le, VitaliFamily.ae_tendsto_lintegral_enorm_sub_div, MeasureTheory.setIntegral_eq_zero_of_ae_eq_zero, setIntegral_toReal_rnDeriv, ProbabilityTheory.Kernel.compProd_apply_prod, MeasureTheory.IsFundamentalDomain.integral_eq_tsum', VitaliFamily.ae_tendsto_lintegral_enorm_sub_div'_of_integrable, restrict_iUnion_congr, UnitAddCircle.integral_preimage, MeasureTheory.integral_Ioi_of_hasDerivAt_of_nonneg', aemeasurable_restrict_of_antitoneOn, MeasureTheory.setLIntegral_iUnion_of_directed, MeasureTheory.Integrable.integral_eq_integral_Ioc_meas_le, MeasureTheory.LocallyIntegrableOn.aestronglyMeasurable, MeasureTheory.restrict_withDensity', restrict_toMeasurable_of_sFinite, restrict_compl_add_restrict, MeasureTheory.tendsto_integral_meas_thickening_le, ProbabilityTheory.Kernel.setIntegral_traj_partialTraj', Real.exists_measure_rpow_eq_integral, le_restrict_apply, MeasureTheory.measure_mul_setLAverage, ProbabilityTheory.Kernel.setLIntegral_rnDerivAux, MeasureTheory.ae_eq_restrict_iUnion_iff, MeasureTheory.integral_Iic_deriv_mul_eq_sub, integral_pow_abs_sub_uIoc, MeasureTheory.setLIntegral_le_lintegral, NumberField.mixedEmbedding.integral_comp_polarCoordReal_symm, MeasureTheory.map_withDensity_abs_det_fderiv_eq_addHaar, AddCircle.integral_preimage, MeasureTheory.condExp_min_stopping_time_ae_eq_restrict_le, integral_comp_pi_polarCoord_symm, MeasureTheory.measureReal_restrict_apply, restrict_prod_eq_prod_univ, MeasureTheory.integral_iUnion_ae, MeasureTheory.integral_Icc_eq_integral_Ioc, toSignedMeasure_restrict_sub, MeasureTheory.restrict_Ioc_eq_restrict_Icc, MeasureTheory.ae_restrict_union_eq, LSeries_eq_mul_integral', ProbabilityTheory.exponentialCDFReal_eq_lintegral, MeasureTheory.sum_restrict_disjointed_spanningSets, MeasureTheory.IsFundamentalDomain.measurePreserving_quotient_mk, setLIntegral_condKernel_eq_measure_prod, MeasureTheory.setIntegral_setAverage, ProbabilityTheory.Kernel.setLIntegral_rnDeriv_le, ProbabilityTheory.cdf_gammaMeasure_eq_integral, MonotoneOn.ae_differentiableWithinAt, MeasureTheory.setIntegral_univ, support_restrict_subset, aestronglyMeasurable_indicator_iff, ContinuousOn.aestronglyMeasurable_of_isSeparable, ProbabilityTheory.tilted_mul_apply_cgf', MeasureTheory.setLIntegral_indicator, MeasureTheory.self_mem_ae_restrict, ProbabilityTheory.Kernel.lintegral_restrict, MeasureTheory.IsHahnDecomposition.le_on, MeasureTheory.measureReal_restrict_applyβ‚€', MeasureTheory.integral_comp_mul_deriv_Ioi, MeasureTheory.AEFinStronglyMeasurable.exists_set_sigmaFinite, MeasureTheory.iInf_mul_le_setLIntegral, MeasureTheory.measure_sigmaFiniteSetGE_ge, MeasureTheory.Lp_toLp_restrict_smul, MeasureTheory.setIntegral_prod, MeasureTheory.condExp_ae_eq_restrict_of_measurableSpace_eq_on, MeasureTheory.AECover.lintegral_tendsto_of_nat, MeasureTheory.tilted_apply', aemeasurable_indicator_iffβ‚€, MeasureTheory.setLIntegral_congr, MeasureTheory.IsFundamentalDomain.integral_eq_tsum, MeasureTheory.setLIntegral_lt_top_of_isCompact, MeasureTheory.withDensity_apply, integral_gaussian_complex_Ioi, MeasureTheory.setLIntegral_mono', restrict_inter_add_diff, restrict_univ, lintegral_Iic_eq_lintegral_Iio_add_Icc, ProbabilityTheory.setLIntegral_toKernel_Iic, MeasureTheory.tendsto_setLIntegral_zero, restrict_iUnion_le, MeasureTheory.setLIntegral_condLExp_trim, iSup_restrict_spanningSets_of_measurableSet, ext_iff_of_biUnion_eq_univ, MeasureTheory.IntegrableOn.restrict, MeasureTheory.integral_image_eq_integral_deriv_smul_of_monotoneOn, MeasureTheory.measureReal_restrict_apply_self, MeasureTheory.instIsFiniteMeasureOnCompactsRestrict, MeasureTheory.setLIntegral_univ, restrict_union_congr, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm, MeasureTheory.AEStronglyMeasurable.aestronglyMeasurable_uIoc_iff, MeasureTheory.setIntegral_const, MeasureTheory.integral_finset_biUnion, MeasureTheory.setLIntegral_measure_zero
bridge: MeasureTheory.SimpleFunc.hasBoxIntegral, MeasureTheory.IntegrableOn.hasBoxIntegral, MeasureTheory.SimpleFunc.box_integral_eq_integral
restrictβ‚— πŸ“–CompOp
1 mathmath: restrictβ‚—_apply

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous_restrict πŸ“–mathematicalβ€”AbsolutelyContinuous
restrict
β€”absolutelyContinuous_of_le
restrict_le_self
exists_mem_of_measure_ne_zero_of_ae πŸ“–mathematicalFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrict
Set
Set.instMembership
β€”instOuterMeasureClass
Filter.Frequently.exists
Filter.Frequently.and_eventually
MeasureTheory.frequently_ae_mem_iff
restrict_apply_self
ext_iff_of_biUnion_eq_univ πŸ“–mathematicalSet.iUnion
Set
Set.instMembership
Set.univ
restrictβ€”restrict_biUnion_congr
restrict_univ
ext_iff_of_iUnion_eq_univ πŸ“–mathematicalSet.iUnion
Set.univ
restrictβ€”restrict_iUnion_congr
restrict_univ
ext_iff_of_sUnion_eq_univ πŸ“–mathematicalSet.sUnion
Set.univ
restrictβ€”ext_iff_of_biUnion_eq_univ
Set.sUnion_eq_biUnion
ext_of_biUnion_eq_univ πŸ“–β€”Set.iUnion
Set
Set.instMembership
Set.univ
restrict
β€”β€”ext_iff_of_biUnion_eq_univ
ext_of_generateFrom_of_cover πŸ“–β€”MeasurableSpace.generateFrom
IsPiSystem
Set.sUnion
Set.univ
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Set.instInter
β€”β€”ext_of_sUnion_eq_univ
ext
restrict_apply
MeasurableSpace.induction_on_inter
Set.empty_inter
MeasureTheory.measure_empty
instOuterMeasureClass
Set.inter_comm
ne_top_of_le_ne_top
MeasureTheory.measure_mono
Set.inter_subset_left
MeasureTheory.measure_inter_add_diff
MeasurableSet.iUnion
instCountableNat
MeasureTheory.measure_iUnion
ext_of_generateFrom_of_cover_subset πŸ“–β€”MeasurableSpace.generateFrom
IsPiSystem
Set
Set.instHasSubset
Set.sUnion
Set.univ
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
β€”β€”ext_of_generateFrom_of_cover
Set.eq_empty_or_nonempty
MeasureTheory.measure_empty
instOuterMeasureClass
ext_of_generateFrom_of_iUnion πŸ“–β€”MeasurableSpace.generateFrom
IsPiSystem
Set.iUnion
Set.univ
Set
Set.instMembership
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
β€”β€”ext_of_generateFrom_of_cover_subset
Set.countable_range
instCountableNat
ext_of_iUnion_eq_univ πŸ“–β€”Set.iUnion
Set.univ
restrict
β€”β€”ext_iff_of_iUnion_eq_univ
ext_of_sUnion_eq_univ πŸ“–β€”Set.sUnion
Set.univ
restrict
β€”β€”ext_iff_of_sUnion_eq_univ
le_restrict_apply πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.instInter
restrict
β€”restrict_eq_self
Set.inter_subset_right
MeasureTheory.measure_mono
instOuterMeasureClass
Set.inter_subset_left
map_eq_comap πŸ“–mathematicalMeasurable
MeasurableEmbedding
Filter.Eventually
Set
Set.instMembership
Set.range
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
map
comap
β€”instOuterMeasureClass
ext
map_apply
MeasurableEmbedding.comap_apply
MeasureTheory.measure_diff_null
sdiff_compl
measure_inter_eq_zero_of_restrict πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
restrict
instZeroENNReal
Set.instInterβ€”nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
le_restrict_apply
measure_subtype_coe_eq_zero_of_comap_eq_zero πŸ“–mathematicalMeasureTheory.NullMeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
Set.instMembership
Subtype.instMeasurableSpace
ENNReal
instFunLike
comap
instZeroENNReal
Set.imageβ€”eq_bot_iff
LE.le.trans
measure_subtype_coe_le_comap
Eq.le
measure_subtype_coe_le_comap πŸ“–mathematicalMeasureTheory.NullMeasurableSetENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.image
Set.instMembership
Subtype.instMeasurableSpace
comap
β€”le_comap_apply
Subtype.coe_injective
MeasurableSet.nullMeasurableSet_subtype_coe
restrict_add πŸ“–mathematicalβ€”restrict
MeasureTheory.Measure
instAdd
β€”LinearMap.map_add
IsScalarTower.right
restrict_add_restrict_compl πŸ“–mathematicalMeasurableSetMeasureTheory.Measure
instAdd
restrict
Compl.compl
Set
Set.instCompl
β€”restrict_union
disjoint_compl_right
MeasurableSet.compl
Set.union_compl_self
restrict_univ
restrict_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
restrict
Set.instInter
β€”restrict_applyβ‚€
MeasurableSet.nullMeasurableSet
restrict_apply' πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
restrict
Set.instInter
β€”toOuterMeasure_apply
IsScalarTower.right
restrict_toOuterMeasure_eq_toOuterMeasure_restrict
MeasureTheory.OuterMeasure.restrict_apply
restrict_apply_eq_zero πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
restrict
instZeroENNReal
Set.instInter
β€”restrict_apply
restrict_apply_eq_zero' πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
restrict
instZeroENNReal
Set.instInter
β€”restrict_apply'
restrict_apply_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
restrict
β€”le_iff'
restrict_le_self
restrict_apply_self πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
restrict
β€”restrict_eq_self
Set.Subset.rfl
restrict_apply_superset πŸ“–mathematicalSet
Set.instHasSubset
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
restrict
β€”LE.le.antisymm
LE.le.trans_eq
MeasureTheory.measure_mono
instOuterMeasureClass
Set.subset_univ
restrict_apply_univ
Eq.trans_le
restrict_apply_self
restrict_apply_univ πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
restrict
Set.univ
β€”restrict_apply
MeasurableSet.univ
Set.univ_inter
restrict_applyβ‚€ πŸ“–mathematicalMeasureTheory.NullMeasurableSet
restrict
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Set.instInter
β€”IsScalarTower.right
restrictβ‚—_apply
restrictβ‚—.eq_1
liftLinear_applyβ‚€
restrict.eq_1
MeasureTheory.OuterMeasure.restrict_apply
coe_toOuterMeasure
restrict_applyβ‚€' πŸ“–mathematicalMeasureTheory.NullMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
restrict
Set.instInter
β€”restrict_congr_set
MeasureTheory.NullMeasurableSet.toMeasurable_ae_eq
restrict_apply'
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.measure_congr
instOuterMeasureClass
Filter.EventuallyEq.inter
MeasureTheory.ae_eq_refl
restrict_biUnion πŸ“–mathematicalSet.Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
restrict
Set.iUnion
Set.instMembership
sum
Set.Elem
β€”Set.biUnion_eq_iUnion
restrict_iUnion
Subtype.coe_prop
Subtype.coe_ne_coe
restrict_biUnion_congr πŸ“–mathematicalβ€”restrict
Set.iUnion
Set
Set.instMembership
β€”Set.biUnion_eq_iUnion
Encodable.countable
restrict_biUnion_finset πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
Finset.instSetLike
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
restrict
Set.iUnion
Finset.instMembership
sum
SetLike.instMembership
β€”restrict_biUnion
Finite.to_countable
Finite.of_fintype
restrict_biUnion_finset_congr πŸ“–mathematicalβ€”restrict
Set.iUnion
Finset
Finset.instMembership
β€”Finset.induction_on
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
restrict_empty
Set.iUnion_iUnion_eq_or_left
restrict_union_congr
restrict_biUnion_le πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrict
Set.iUnion
Set
Set.instMembership
sum
Set.Elem
β€”le_iff
restrict_apply
Set.inter_iUnion
sum_apply
MeasureTheory.measure_biUnion_le
instOuterMeasureClass
restrict_comm πŸ“–mathematicalMeasurableSetrestrictβ€”restrict_restrict
restrict_restrict'
Set.inter_comm
restrict_compl_add_restrict πŸ“–mathematicalMeasurableSetMeasureTheory.Measure
instAdd
restrict
Compl.compl
Set
Set.instCompl
β€”add_comm
restrict_add_restrict_compl
restrict_congr_meas πŸ“–mathematicalMeasurableSetrestrict
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
β€”Set.inter_eq_self_of_subset_left
restrict_apply
ext
Set.inter_subset_right
MeasurableSet.inter
restrict_congr_mono πŸ“–β€”Set
Set.instHasSubset
restrict
β€”β€”restrict_restrict_of_subset
restrict_congr_set πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrictβ€”instOuterMeasureClass
le_antisymm
restrict_mono_ae
Filter.EventuallyEq.le
Filter.EventuallyEq.symm
restrict_empty πŸ“–mathematicalβ€”restrict
Set
Set.instEmptyCollection
MeasureTheory.Measure
instZero
β€”restrict_zero_set
MeasureTheory.measure_empty
instOuterMeasureClass
restrict_eq_self πŸ“–mathematicalSet
Set.instHasSubset
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
restrict
β€”LE.le.antisymm
le_iff'
restrict_le_self
MeasureTheory.measure_mono
instOuterMeasureClass
Set.subset_inter
MeasureTheory.subset_toMeasurable
restrict_apply
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.measure_toMeasurable
restrict_eq_self_of_ae_mem πŸ“–mathematicalFilter.Eventually
Set
Set.instMembership
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
restrictβ€”instOuterMeasureClass
restrict_congr_set
Filter.eventuallyEq_univ
restrict_univ
restrict_eq_zero πŸ“–mathematicalβ€”restrict
MeasureTheory.Measure
instZero
DFunLike.coe
Set
ENNReal
instFunLike
instZeroENNReal
β€”measure_univ_eq_zero
restrict_apply_univ
restrict_finset_biUnion_congr πŸ“–mathematicalβ€”restrict
Set.iUnion
Finset
Finset.instMembership
β€”restrict_biUnion_finset_congr
restrict_iUnion πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
restrict
Set.iUnion
sum
β€”restrict_iUnion_ae
Pairwise.aedisjoint
MeasurableSet.nullMeasurableSet
restrict_iUnion_ae πŸ“–mathematicalPairwise
Function.onFun
Set
MeasureTheory.AEDisjoint
MeasureTheory.NullMeasurableSet
restrict
Set.iUnion
sum
β€”ext
restrict_iUnion_apply_ae
sum_apply
restrict_iUnion_apply πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
restrict
Set.iUnion
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”restrict_iUnion_apply_ae
Pairwise.aedisjoint
MeasurableSet.nullMeasurableSet
restrict_iUnion_apply_ae πŸ“–mathematicalPairwise
Function.onFun
Set
MeasureTheory.AEDisjoint
MeasureTheory.NullMeasurableSet
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
restrict
Set.iUnion
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”restrict_apply
Set.inter_iUnion
MeasureTheory.measure_iUnionβ‚€
Pairwise.mono
MeasureTheory.AEDisjoint.mono
Set.inter_subset_right
MeasureTheory.NullMeasurableSet.inter
MeasurableSet.nullMeasurableSet
restrict_iUnion_apply_eq_iSup πŸ“–mathematicalDirected
Set
Set.instHasSubset
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
restrict
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”restrict_apply
Set.inter_iUnion
Directed.measure_iUnion
Directed.mono_comp
Set.inter_subset_inter_right
restrict_iUnion_congr πŸ“–mathematicalβ€”restrict
Set.iUnion
β€”restrict_congr_mono
Set.subset_iUnion
ext
Monotone.directed_le
Finset.isDirected_le
Set.biUnion_subset_biUnion_left
Set.iUnion_eq_iUnion_finset
restrict_iUnion_apply_eq_iSup
Finset.countable
restrict_biUnion_finset_congr
restrict_iUnion_le πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrict
Set.iUnion
sum
β€”le_iff
restrict_apply
Set.inter_iUnion
sum_apply
MeasureTheory.measure_iUnion_le
instOuterMeasureClass
restrict_inter_add_diff πŸ“–mathematicalMeasurableSetMeasureTheory.Measure
instAdd
restrict
Set
Set.instInter
Set.instSDiff
β€”restrict_inter_add_diffβ‚€
MeasurableSet.nullMeasurableSet
restrict_inter_add_diffβ‚€ πŸ“–mathematicalMeasureTheory.NullMeasurableSetMeasureTheory.Measure
instAdd
restrict
Set
Set.instInter
Set.instSDiff
β€”ext
restrict_apply
MeasureTheory.measure_inter_add_diffβ‚€
restrict_inter_toMeasurable πŸ“–mathematicalMeasurableSet
Set
Set.instHasSubset
restrict
Set.instInter
MeasureTheory.toMeasurable
β€”ext
restrict_apply
Set.inter_comm
Set.inter_assoc
measure_toMeasurable_inter
MeasurableSet.inter
restrict_le_self πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrict
β€”le_iff
restrict_apply
MeasureTheory.measure_mono
instOuterMeasureClass
Set.inter_subset_left
restrict_map πŸ“–mathematicalMeasurable
MeasurableSet
restrict
map
Set.preimage
β€”ext
restrict_apply
map_apply
restrict_mono πŸ“–mathematicalSet
Set.instHasSubset
MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictβ€”restrict_mono'
MeasureTheory.ae_of_all
instOuterMeasureClass
restrict_mono' πŸ“–mathematicalFilter.EventuallyLE
Prop.le
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictβ€”instOuterMeasureClass
le_iff
restrict_apply
MeasureTheory.measure_mono_ae
Filter.Eventually.mono
le_iff'
restrict_mono_ae πŸ“–mathematicalFilter.EventuallyLE
Prop.le
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrict
β€”instOuterMeasureClass
restrict_mono'
le_refl
restrict_mono_measure πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictβ€”restrict_mono
subset_rfl
Set.instReflSubset
restrict_mono_set πŸ“–mathematicalSet
Set.instHasSubset
MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrict
β€”restrict_mono
le_rfl
restrict_restrict πŸ“–mathematicalMeasurableSetrestrict
Set
Set.instInter
β€”restrict_restrictβ‚€
MeasurableSet.nullMeasurableSet
restrict_restrict' πŸ“–mathematicalMeasurableSetrestrict
Set
Set.instInter
β€”restrict_restrictβ‚€'
MeasurableSet.nullMeasurableSet
restrict_restrict_of_subset πŸ“–mathematicalSet
Set.instHasSubset
restrictβ€”ext
restrict_apply
restrict_eq_self
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_right
restrict_restrictβ‚€ πŸ“–mathematicalMeasureTheory.NullMeasurableSet
restrict
Set
Set.instInter
β€”ext
restrict_apply
restrict_applyβ‚€
MeasureTheory.NullMeasurableSet.inter
MeasurableSet.nullMeasurableSet
Set.inter_assoc
restrict_restrictβ‚€' πŸ“–mathematicalMeasureTheory.NullMeasurableSetrestrict
Set
Set.instInter
β€”ext
restrict_apply
restrict_applyβ‚€'
Set.inter_assoc
restrict_sInf_eq_sInf_restrict πŸ“–mathematicalSet.Nonempty
MeasureTheory.Measure
MeasurableSet
restrict
InfSet.sInf
instInfSet
Set.image
β€”ext
sInf_apply
restrict_apply
MeasurableSet.inter
Set.image_image
IsScalarTower.right
Set.image_congr
restrict_toOuterMeasure_eq_toOuterMeasure_restrict
MeasureTheory.OuterMeasure.restrict_sInf_eq_sInf_restrict
Set.Nonempty.image
MeasureTheory.OuterMeasure.restrict_apply
restrict_sUnion_congr πŸ“–mathematicalβ€”restrict
Set.sUnion
β€”Set.sUnion_eq_biUnion
restrict_biUnion_congr
restrict_smul πŸ“–mathematicalβ€”restrict
MeasureTheory.Measure
instSMul
β€”IsScalarTower.right
smul_one_smul
instIsScalarTower
LinearMap.map_smul
restrict_sum πŸ“–mathematicalMeasurableSetrestrict
sum
β€”ext
restrict_apply
sum_apply
MeasurableSet.inter
restrict_sum_of_countable πŸ“–mathematicalβ€”restrict
sum
β€”ext
sum_apply
restrict_apply
sum_apply_of_countable
restrict_toMeasurable πŸ“–mathematicalβ€”restrict
MeasureTheory.toMeasurable
β€”Set.univ_inter
restrict_inter_toMeasurable
MeasurableSet.univ
Set.subset_univ
restrict_toOuterMeasure_eq_toOuterMeasure_restrict πŸ“–mathematicalMeasurableSettoOuterMeasure
restrict
DFunLike.coe
LinearMap
ENNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
MeasureTheory.OuterMeasure
MeasureTheory.OuterMeasure.addCommMonoid
MeasureTheory.OuterMeasure.instModule
Semiring.toModule
IsScalarTower.right
Algebra.id
LinearMap.instFunLike
MeasureTheory.OuterMeasure.restrict
β€”IsScalarTower.right
restrictβ‚—.eq_1
MeasureTheory.OuterMeasure.restrict_trim
trimmed
restrict_union πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
restrict
Set.instUnion
MeasureTheory.Measure
instAdd
β€”restrict_unionβ‚€
Disjoint.aedisjoint
MeasurableSet.nullMeasurableSet
restrict_union' πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasurableSet
restrict
Set.instUnion
MeasureTheory.Measure
instAdd
β€”Set.union_comm
restrict_union
Disjoint.symm
add_comm
restrict_union_add_inter πŸ“–mathematicalMeasurableSetMeasureTheory.Measure
instAdd
restrict
Set
Set.instUnion
Set.instInter
β€”restrict_union_add_interβ‚€
MeasurableSet.nullMeasurableSet
restrict_union_add_inter' πŸ“–mathematicalMeasurableSetMeasureTheory.Measure
instAdd
restrict
Set
Set.instUnion
Set.instInter
β€”add_comm
Set.union_comm
Set.inter_comm
restrict_union_add_inter
restrict_union_add_interβ‚€ πŸ“–mathematicalMeasureTheory.NullMeasurableSetMeasureTheory.Measure
instAdd
restrict
Set
Set.instUnion
Set.instInter
β€”restrict_inter_add_diffβ‚€
Set.union_inter_cancel_right
Set.union_diff_right
add_comm
add_assoc
add_right_comm
restrict_union_congr πŸ“–mathematicalβ€”restrict
Set
Set.instUnion
β€”restrict_congr_mono
Set.subset_union_left
Set.subset_union_right
ext
restrict_apply
Set.inter_union_distrib_left
MeasureTheory.exists_measurable_supersetβ‚‚
MeasureTheory.measure_union_congr_of_subset
Eq.le
Set.Subset.rfl
le_rfl
MeasureTheory.measure_add_diff
MeasurableSet.nullMeasurableSet
Set.inter_comm
Set.inter_diff_assoc
MeasurableSet.diff
restrict_union_le πŸ“–mathematicalβ€”MeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrict
Set
Set.instUnion
instAdd
β€”le_iff
restrict_apply
Set.inter_union_distrib_left
MeasureTheory.measure_union_le
instOuterMeasureClass
restrict_unionβ‚€ πŸ“–mathematicalMeasureTheory.AEDisjoint
MeasureTheory.NullMeasurableSet
restrict
Set
Set.instUnion
MeasureTheory.Measure
instAdd
β€”restrict_union_add_interβ‚€
restrict_zero_set
add_zero
restrict_univ πŸ“–mathematicalβ€”restrict
Set.univ
β€”ext
restrict_apply
Set.inter_univ
restrict_zero πŸ“–mathematicalβ€”restrict
MeasureTheory.Measure
instZero
β€”LinearMap.map_zero
IsScalarTower.right
restrict_zero_set πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instZeroENNReal
restrict
instZero
β€”restrict_eq_zero
restrictβ‚—_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
ENNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
MeasureTheory.Measure
instAddCommMonoid
instModule
Semiring.toModule
IsScalarTower.right
Algebra.id
LinearMap.instFunLike
restrictβ‚—
restrict
β€”IsScalarTower.right
sum_restrict_le πŸ“–mathematicalMeasurableSet
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
setOf
Set
Set.instMembership
ENat.instNatCast
MeasureTheory.Measure
instPartialOrder
sum
restrict
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
instAddCommMonoid
Set.iUnion
β€”le_iff
sum_apply
Summable.tsum_le_of_sum_le
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
SummationFilter.instNeBotUnconditional
ENNReal.summable
MeasurableSet.inter
Finset.measurableSet_biInter
MeasurableSet.compl
Set.mem_biUnion
Finset.mem_powerset
Finset.filter_subset
Finset.mem_filter
Set.iUnion_congr_Prop
Finset.nonempty_iff_ne_empty
Finset.notMem_singleton
Set.iInter_congr_Prop
Set.iInter_true
of_not_not
Set.mem_iInterβ‚‚
Set.mem_inter_iff
Finset.mem_sdiff
Finset.sdiff_subset
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
LE.le.trans
restrict_mono_set
restrict_biUnion_le
Set.Finite.countable
Set.Finite.subset
Finset.finite_toSet
Set.sep_subset
Finset.sum_congr
Summable.tsum_finsetSum
ENNReal.instT2Space
ENNReal.instContinuousAdd
tsum_subtype
sum_eq_tsum_indicator
SummationFilter.instLeAtTopUnconditional
Finset.sum_const_zero
Finset.coe_sdiff
Finset.coe_singleton
Finset.sum_ite_mem
Finset.sum_const
nsmul_eq_mul
restrict_empty
nsmul_zero
Set.nonempty_iff_ne_empty
Set.encard_mono
nsmul_le_nsmul_left
zero_le
ENNReal.instCanonicallyOrderedAdd
Finset.card_mono
Set.ncard_coe_finset
ENat.toNat_le_of_le_coe
Finset.smul_sum
Finset.tsum_subtype
restrict_biUnion_finset
Set.disjoint_iff
subset_antisymm
Finset.instAntisymmSubset
Set.inter_comm
smul_apply
nsmul_le_nsmul_right
covariant_swap_add_of_covariant_add
volume_subtype_coe_eq_zero_of_volume_eq_zero πŸ“–mathematicalMeasureTheory.NullMeasurableSet
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
DFunLike.coe
MeasureTheory.Measure
Set.Elem
Subtype.measureSpace
Set
Set.instMembership
ENNReal
instFunLike
instZeroENNReal
Set.imageβ€”measure_subtype_coe_eq_zero_of_comap_eq_zero
volume_subtype_coe_le_volume πŸ“–mathematicalMeasureTheory.NullMeasurableSet
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.image
Set.instMembership
Set.Elem
Subtype.measureSpace
β€”measure_subtype_coe_le_comap

MeasureTheory.Measure.AbsolutelyContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
restrict πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousMeasureTheory.Measure.restrictβ€”MeasureTheory.Measure.restrict_apply

MeasureTheory.Measure.MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
nullMeasurableSet_subtype_coe πŸ“–mathematicalMeasureTheory.NullMeasurableSet
MeasurableSet
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.imageβ€”MeasurableSpace.generateFrom_induction
Subtype.image_preimage_coe
MeasureTheory.NullMeasurableSet.inter
MeasurableSet.nullMeasurableSet
Set.image_empty
Set.range_diff_image
Subtype.coe_injective
Subtype.range_coe_subtype
MeasureTheory.NullMeasurableSet.diff
Set.image_iUnion
MeasureTheory.NullMeasurableSet.iUnion
instCountableNat
MeasurableSpace.comap_eq_generateFrom
Subtype.instMeasurableSpace.eq_1

MeasureTheory.Measure.NullMeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
subtype_coe πŸ“–mathematicalMeasureTheory.NullMeasurableSet
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
MeasureTheory.Measure.comap
Set.imageβ€”image
Subtype.coe_injective
MeasureTheory.Measure.MeasurableSet.nullMeasurableSet_subtype_coe

MeasureTheory.Measure.QuasiMeasurePreserving

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eq_comp πŸ“–β€”MeasureTheory.Measure.QuasiMeasurePreserving
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_eq_comp'
aemeasurable
absolutelyContinuous
restrict πŸ“–mathematicalMeasureTheory.Measure.QuasiMeasurePreserving
Set.MapsTo
MeasureTheory.Measure.restrictβ€”measurable
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
Set.preimage_inter
Set.inter_subset_inter
subset_refl
Set.instReflSubset
preimage_null
MeasureTheory.Measure.restrict_apply
MeasureTheory.Measure.map_apply

MeasureTheory.Measure.Subtype

Definitions

NameCategoryTheorems
measureSpace πŸ“–CompOp
9 mathmath: volume_set_coe_def, MeasurableSet.map_coe_volume, volume_def, MeasureTheory.Measure.volume_subtype_coe_le_volume, volume_univ, MeasureTheory.integral_subtype, Manifold.lintegral_norm_mfderiv_Icc_eq_pathELength_projIcc, volume_preimage_coe, volume_image_subtype_coe

Theorems

NameKindAssumesProvesValidatesDepends On
volume_def πŸ“–mathematicalβ€”MeasureTheory.MeasureSpace.volume
Set.Elem
measureSpace
Set
Set.instMembership
MeasureTheory.Measure.comap
MeasureTheory.MeasureSpace.toMeasurableSpace
β€”β€”
volume_univ πŸ“–mathematicalMeasureTheory.NullMeasurableSet
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
DFunLike.coe
MeasureTheory.Measure
Set.Elem
measureSpace
Set
Set.instMembership
ENNReal
MeasureTheory.Measure.instFunLike
Set.univ
β€”volume_def
MeasureTheory.Measure.comap_applyβ‚€
Subtype.coe_injective
MeasureTheory.Measure.MeasurableSet.nullMeasurableSet_subtype_coe
MeasurableSet.nullMeasurableSet
MeasurableSet.univ
Set.image_univ
Subtype.range_coe_subtype

MeasureTheory.Measure.restrict

Theorems

NameKindAssumesProvesValidatesDepends On
neZero πŸ“–mathematicalβ€”MeasureTheory.Measure
MeasureTheory.Measure.instZero
MeasureTheory.Measure.restrict
β€”MeasureTheory.Measure.restrict_eq_zero

MeasureTheory.NullMeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
measure_preimage_eq_measure_restrict_preimage_of_ae_compl_eq_const πŸ“–mathematicalMeasureTheory.NullMeasurable
MeasureTheory.Measure.restrict
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Compl.compl
Set
Set.instCompl
MeasurableSet
Set.instMembership
DFunLike.coe
ENNReal
Set.preimage
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict_applyβ‚€
le_antisymm
LE.le.trans
MeasureTheory.measure_mono
Eq.le
Set.inter_union_compl
MeasureTheory.measure_union_le
MeasureTheory.NullMeasurableSet.of_null
MeasureTheory.ae_iff
Filter.EventuallyEq.eq_1
Set.inter_subset_inter_left
zero_le
ENNReal.instCanonicallyOrderedAdd
add_zero
Set.inter_subset_left

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eq_restrict_iff_indicator_ae_eq πŸ“–mathematicalMeasurableSetFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Set.indicator
β€”MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyEq.eq_1
MeasureTheory.ae_restrict_iff'
Filter.mp_mem
Filter.univ_mem'
Set.indicator_of_mem
Set.indicator_of_notMem
ae_restrict_iff_subtype πŸ“–mathematicalMeasurableSetFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Set.Elem
Set
Set.instMembership
Subtype.instMeasurableSpace
MeasureTheory.Measure.comap
β€”MeasureTheory.Measure.instOuterMeasureClass
map_comap_subtype_coe
MeasurableEmbedding.ae_map_iff
MeasurableEmbedding.subtype_coe
comap_subtype_coe_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.comap
Set.image
β€”MeasurableEmbedding.comap_apply
MeasurableEmbedding.subtype_coe
indicator_ae_eq_of_ae_eq_set πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Set.indicatorβ€”MeasureTheory.Measure.instOuterMeasureClass
piecewise_ae_eq_of_ae_eq_set
indicator_ae_eq_of_restrict_compl_ae_eq_zero πŸ“–mathematicalMeasurableSet
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Compl.compl
Set
Set.instCompl
Pi.instZero
Set.indicatorβ€”MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
MeasureTheory.ae_restrict_iff'
MeasurableSet.compl
Filter.EventuallyEq.eq_1
Filter.univ_mem'
Set.indicator_of_mem
indicator_ae_eq_restrict πŸ“–mathematicalMeasurableSetFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Set.indicator
β€”piecewise_ae_eq_restrict
indicator_ae_eq_restrict_compl πŸ“–mathematicalMeasurableSetFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Compl.compl
Set
Set.instCompl
Set.indicator
Pi.instZero
β€”piecewise_ae_eq_restrict_compl
indicator_ae_eq_zero_of_restrict_ae_eq_zero πŸ“–mathematicalMeasurableSet
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Pi.instZero
Set.indicatorβ€”MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
MeasureTheory.ae_restrict_iff'
Filter.EventuallyEq.eq_1
Filter.univ_mem'
Set.indicator_of_mem
Set.indicator_of_notMem
indicator_meas_zero πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
Set.indicator
Pi.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
indicator_ae_eq_of_ae_eq_set
MeasureTheory.ae_eq_empty
Set.indicator_empty'
map_comap_subtype_coe πŸ“–mathematicalMeasurableSetMeasureTheory.Measure.map
Set
Set.instMembership
Subtype.instMeasurableSpace
MeasureTheory.Measure.comap
MeasureTheory.Measure.restrict
β€”MeasurableEmbedding.map_comap
MeasurableEmbedding.subtype_coe
Subtype.range_coe
map_restrict_ae_le_map_indicator_ae πŸ“–mathematicalMeasurableSetFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.map
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Set.indicator
β€”MeasureTheory.Measure.instOuterMeasureClass
mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem
mem_map_indicator_ae_iff_of_zero_notMem
MeasureTheory.mem_map_restrict_ae_iff
MeasureTheory.measure_mono_null
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_left
Set.subset_union_left
mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem πŸ“–mathematicalSet
Set.instMembership
MeasurableSet
Filter
Filter.instMembership
Filter.map
Set.indicator
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict_apply'
Set.indicator_preimage
Set.ite.eq_1
Set.compl_union
Set.compl_inter
Set.preimage_const
compl_compl
Set.union_inter_distrib_right
Set.compl_inter_self
Set.union_empty
mem_map_indicator_ae_iff_of_zero_notMem πŸ“–mathematicalSet
Set.instMembership
Filter
Filter.instMembership
Filter.map
Set.indicator
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ENNReal
Set.instUnion
Compl.compl
Set.instCompl
Set.preimage
instZeroENNReal
β€”MeasureTheory.Measure.instOuterMeasureClass
Filter.mem_map
MeasureTheory.mem_ae_iff
Set.indicator_preimage
Set.ite.eq_1
Set.compl_union
Set.compl_inter
Set.preimage_const
Set.empty_diff
Set.compl_empty
Set.inter_univ
piecewise_ae_eq_of_ae_eq_set πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Set.piecewiseβ€”MeasureTheory.Measure.instOuterMeasureClass
Filter.Eventually.mono
Filter.EventuallyEq.mem_iff
piecewise_ae_eq_restrict πŸ“–mathematicalMeasurableSetFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Set.piecewise
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_restrict_eq
Filter.EventuallyEq.filter_mono
Set.EqOn.eventuallyEq
Set.piecewise_eqOn
inf_le_right
piecewise_ae_eq_restrict_compl πŸ“–mathematicalMeasurableSetFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
Compl.compl
Set
Set.instCompl
Set.piecewise
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_restrict_eq
MeasurableSet.compl
Filter.EventuallyEq.filter_mono
Set.EqOn.eventuallyEq
Set.piecewise_eqOn_compl
inf_le_right
volume_image_subtype_coe πŸ“–mathematicalMeasurableSet
MeasureTheory.MeasureSpace.toMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
Set.image
Set.Elem
Set.instMembership
MeasureTheory.Measure.Subtype.measureSpace
β€”comap_subtype_coe_apply
volume_preimage_coe πŸ“–mathematicalMeasureTheory.NullMeasurableSet
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
Set.instMembership
MeasureTheory.Measure.Subtype.measureSpace
ENNReal
MeasureTheory.Measure.instFunLike
Set.preimage
Set.instInter
β€”volume_set_coe_def
MeasureTheory.Measure.comap_applyβ‚€
Subtype.coe_injective
MeasureTheory.Measure.MeasurableSet.nullMeasurableSet_subtype_coe
MeasurableSet.nullMeasurableSet
measurable_subtype_coe
Set.image_preimage_eq_inter_range
Subtype.range_coe
volume_set_coe_def πŸ“–mathematicalβ€”MeasureTheory.MeasureSpace.volume
Set.Elem
MeasureTheory.Measure.Subtype.measureSpace
Set
Set.instMembership
MeasureTheory.Measure.comap
Subtype.instMeasurableSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
β€”β€”

---

← Back to Index