Documentation Verification Report

Stieltjes

πŸ“ Source: Mathlib/MeasureTheory/Measure/Stieltjes.lean

Statistics

MetricCount
DefinitionsIotop, stieltjesFunction, StieltjesFunction, add, const, id, instAddCommMonoid, instAddZeroClass, instCoeFun, instInhabited, instModuleNNReal, length, measure, outer, toFun, botSet
16
TheoremsIoc_diff_botSet, Ioo_subset_Iotop, Iotop_subset_Ioc, stieltjesFunction_eq, add_apply, borel_le_measurable, const_apply, countable_leftLim_ne, eq_of_measure_of_eq, eq_of_measure_of_tendsto_atBot, ext, ext_iff, iInf_Ioi_eq, iInf_rat_gt_eq, id_apply, id_leftLim, instIsLocallyFiniteMeasure, isFiniteMeasure, isFiniteMeasure_of_forall_abs_le, isProbabilityMeasure, length_Ioc, length_diff_botSet, length_empty, length_eq, length_eq_of_isEmpty, length_mono, length_subadditive_Icc_Ioo, measurableSet_Ioi, measure_Icc, measure_Ici, measure_Ici_of_tendsto_atTop_atTop, measure_Ico, measure_Iic, measure_Iic_of_tendsto_atBot_atBot, measure_Iio, measure_Iio_of_tendsto_atBot_atBot, measure_Ioc, measure_Ioi, measure_Ioi_of_tendsto_atTop_atTop, measure_Ioo, measure_add, measure_botSet, measure_const, measure_def, measure_singleton, measure_smul, measure_univ, measure_univ_of_tendsto_atBot_atBot, measure_univ_of_tendsto_atTop_atTop, measure_zero, mono, mono', outer_Ioc, outer_le_length, outer_trim, rightLim_eq, right_continuous, right_continuous', zero_apply, botSet_eq_singleton_of_isBot, isOpen_Iotop, measurableSet_botSet, notMem_botSet_of_lt, subsingleton_botSet
64
Total80

Monotone

Definitions

NameCategoryTheorems
stieltjesFunction πŸ“–CompOp
2 mathmath: ae_hasDerivAt, stieltjesFunction_eq

Theorems

NameKindAssumesProvesValidatesDepends On
stieltjesFunction_eq πŸ“–mathematicalMonotone
Real
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
StieltjesFunction.toFun
stieltjesFunction
Function.rightLim
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”β€”

StieltjesFunction

Definitions

NameCategoryTheorems
add πŸ“–CompOpβ€”
const πŸ“–CompOp
2 mathmath: const_apply, measure_const
id πŸ“–CompOp
4 mathmath: Real.volume_val, id_leftLim, Real.volume_eq_stieltjes_id, id_apply
instAddCommMonoid πŸ“–CompOp
3 mathmath: add_apply, measure_add, measure_smul
instAddZeroClass πŸ“–CompOp
3 mathmath: measure_zero, zero_apply, measure_smul
instCoeFun πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instModuleNNReal πŸ“–CompOp
1 mathmath: measure_smul
length πŸ“–CompOp
7 mathmath: length_diff_botSet, length_eq_of_isEmpty, length_empty, length_eq, outer_le_length, length_mono, length_Ioc
measure πŸ“–CompOp
47 mathmath: ProbabilityTheory.cdf_measure_stieltjesFunction, measure_univ_of_tendsto_atBot_atBot, measure_botSet, measure_zero, measure_Ioi_of_tendsto_atTop_atTop, measure_Ici_of_tendsto_atTop_atTop, measure_Ioo, Real.volume_val, instIsLocallyFiniteMeasure, measure_singleton, measure_univ, ProbabilityTheory.IsMeasurableRatCDF.instIsProbabilityMeasure_stieltjesFunction, Real.volume_eq_stieltjes_id, measure_Iic_of_tendsto_atBot_atBot, measure_univ_of_tendsto_atTop_atTop, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_univ, Monotone.ae_hasDerivAt, measurable_measure, isFiniteMeasure_of_forall_abs_le, measure_Ici, ProbabilityTheory.measurable_measure_stieltjesOfMeasurableRat, isProbabilityMeasure, measure_Ioi, ProbabilityTheory.instIsProbabilityMeasureCondCDF, ProbabilityTheory.measure_cdf, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_Iic, ProbabilityTheory.measure_stieltjesOfMeasurableRat_univ, measure_Icc, measure_def, isFiniteMeasure, ProbabilityTheory.measure_stieltjesOfMeasurableRat_Iic, measure_add, measure_Ioc, measure_Iio, measure_smul, ae_hasDerivAt, ProbabilityTheory.measure_condCDF_Iic, ProbabilityTheory.measurable_measure_condCDF, ProbabilityTheory.instIsProbabilityMeasure_stieltjesOfMeasurableRat, ProbabilityTheory.IsMeasurableRatCDF.measurable_measure_stieltjesFunction, ProbabilityTheory.measure_condCDF_univ, measure_Ico, measure_Iic, measure_Iio_of_tendsto_atBot_atBot, ProbabilityTheory.IsCondKernelCDF.toKernel_apply, ProbabilityTheory.instIsProbabilityMeasurecdf, measure_const
outer πŸ“–CompOp
5 mathmath: borel_le_measurable, measurableSet_Ioi, outer_le_length, outer_Ioc, outer_trim
toFun πŸ“–CompOp
96 mathmath: ProbabilityTheory.stieltjesOfMeasurableRat_ae_eq, ProbabilityTheory.paretoCDFReal_eq_lintegral, ProbabilityTheory.condCDF_ae_eq, ProbabilityTheory.lintegral_condCDF, ProbabilityTheory.condCDF_nonneg, ProbabilityTheory.IsCondKernelCDF.toKernel_Iic, ProbabilityTheory.IsCondKernelCDF.le_one, rightLim_eq, ProbabilityTheory.unitInterval.cdf_eq_real, ProbabilityTheory.gammaCDFReal_eq_lintegral, ProbabilityTheory.tendsto_condCDF_atBot, ProbabilityTheory.setIntegral_condCDF, ProbabilityTheory.IsCondKernelCDF.tendsto_atTop_one, measure_Ioo, ProbabilityTheory.cdf_paretoMeasure_eq_integral, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat_rat, ProbabilityTheory.IsCondKernelCDF.nonneg, ProbabilityTheory.cdf_expMeasure_eq, ProbabilityTheory.IsCondKernelCDF.integral, mono', ProbabilityTheory.stieltjesOfMeasurableRat_nonneg, ProbabilityTheory.gammaCDFReal_eq_integral, ProbabilityTheory.monotone_cdf, measure_singleton, ProbabilityTheory.integral_stieltjesOfMeasurableRat, ProbabilityTheory.integrable_condCDF, ProbabilityTheory.tendsto_stieltjesOfMeasurableRat_atTop, const_apply, ProbabilityTheory.stieltjesOfMeasurableRat_le_one, id_leftLim, ProbabilityTheory.cdf_eq_real, ProbabilityTheory.cdf_nonneg, iInf_rat_gt_eq, ProbabilityTheory.IsMeasurableRatCDF.stronglyMeasurable_stieltjesFunction, ProbabilityTheory.ofReal_condCDF_ae_eq, ProbabilityTheory.IsCondKernelCDF.setIntegral, length_subadditive_Icc_Ioo, ProbabilityTheory.IsCondKernelCDF.setLIntegral, ProbabilityTheory.cdf_le_one, countable_leftLim_ne, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat, ProbabilityTheory.cdf_gammaMeasure_eq_lintegral, zero_apply, add_apply, ProbabilityTheory.stronglyMeasurable_stieltjesOfMeasurableRat, mono, ProbabilityTheory.IsCondKernelCDF.measurable, ProbabilityTheory.tendsto_stieltjesOfMeasurableRat_atBot, ProbabilityTheory.measurable_stieltjesOfMeasurableRat, ProbabilityTheory.exponentialCDFReal_eq_integral, ProbabilityTheory.stieltjesOfMeasurableRat_eq, ProbabilityTheory.cdf_expMeasure_eq_integral, ProbabilityTheory.paretoCDFReal_eq_integral, ProbabilityTheory.IsCondKernelCDF.integrable, ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunction_eq, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_Iic, ProbabilityTheory.IsCondKernelCDF.tendsto_atBot_zero, ext_iff, ProbabilityTheory.exponentialCDFReal_eq, measure_Icc, ProbabilityTheory.IsMeasurableRatCDF.measurable_stieltjesFunction, length_eq, ProbabilityTheory.integral_condCDF, ProbabilityTheory.condCDF_le_one, ProbabilityTheory.measure_stieltjesOfMeasurableRat_Iic, ProbabilityTheory.tendsto_cdf_atTop, measure_Ioc, ProbabilityTheory.cdf_expMeasure_eq_lintegral, ProbabilityTheory.stronglyMeasurable_condCDF, iInf_Ioi_eq, ae_hasDerivAt, ProbabilityTheory.measure_condCDF_Iic, id_apply, outer_Ioc, ProbabilityTheory.setLIntegral_condCDF, ProbabilityTheory.lintegral_stieltjesOfMeasurableRat, measure_Ico, ProbabilityTheory.measurable_condCDF, ProbabilityTheory.IsMeasurableRatCDF.tendsto_stieltjesFunction_atTop, ProbabilityTheory.IsCondKernelCDF.lintegral, length_Ioc, ProbabilityTheory.cdf_paretoMeasure_eq_lintegral, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat_rat, ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunction_le_one, Monotone.stieltjesFunction_eq, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat, right_continuous, ProbabilityTheory.tendsto_cdf_atBot, ProbabilityTheory.tendsto_condCDF_atTop, ProbabilityTheory.exponentialCDFReal_eq_lintegral, ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunction_nonneg, ProbabilityTheory.cdf_gammaMeasure_eq_integral, ProbabilityTheory.ofReal_cdf, ProbabilityTheory.IsMeasurableRatCDF.tendsto_stieltjesFunction_atBot, ProbabilityTheory.integrable_stieltjesOfMeasurableRat, right_continuous'

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”toFun
StieltjesFunction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoid
Real
Real.instAdd
β€”β€”
borel_le_measurable πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
borel
MeasureTheory.OuterMeasure.caratheodory
outer
β€”borel_eq_generateFrom_Ioi
MeasurableSpace.generateFrom_le
measurableSet_Ioi
const_apply πŸ“–mathematicalβ€”toFun
const
β€”β€”
countable_leftLim_ne πŸ“–mathematicalβ€”Set.Countable
setOf
Real
Function.leftLim
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toFun
β€”Set.Countable.mono
Monotone.continuousWithinAt_Iio_iff_leftLim_eq
instOrderTopologyReal
mono
ContinuousAt.continuousWithinAt
Monotone.countable_not_continuousAt
instSecondCountableTopologyReal
eq_of_measure_of_eq πŸ“–β€”measure
toFun
β€”β€”ext
le_total
measure_Ioc
ENNReal.ofReal_eq_ofReal_iff
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mono
eq_of_measure_of_tendsto_atBot πŸ“–β€”measure
Filter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”β€”ext
measure_Iic
ENNReal.ofReal_eq_ofReal_iff
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Monotone.le_of_tendsto
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SemilatticeInf.instIsCodirectedOrder
mono
ext πŸ“–β€”toFunβ€”β€”mono'
right_continuous'
ext_iff πŸ“–mathematicalβ€”toFunβ€”ext
iInf_Ioi_eq πŸ“–mathematicalβ€”iInf
Real
Set.Elem
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instInfSet
toFun
Set
Set.instMembership
β€”Monotone.rightLim_eq_sInf
instOrderTopologyReal
mono
Filter.neBot_iff
nhdsGT_neBot
sInf_image'
rightLim_eq
iInf_rat_gt_eq πŸ“–mathematicalβ€”iInf
Real
Real.instLT
Real.instRatCast
Real.instInfSet
toFun
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”iInf_Ioi_eq
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Real.iInf_Ioi_eq_iInf_rat_gt
mono
le_of_lt
id_apply πŸ“–mathematicalβ€”toFun
Real
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
id
β€”β€”
id_leftLim πŸ“–mathematicalβ€”Function.leftLim
Real
Real.linearOrder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toFun
id
β€”ContinuousWithinAt.leftLim_eq
instOrderTopologyReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
continuousWithinAt_id
instIsLocallyFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.IsLocallyFiniteMeasure
measure
β€”exists_Icc_mem_subset_of_mem_nhds
measure_Icc
isFiniteMeasure πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Filter.atTop
MeasureTheory.IsFiniteMeasure
measure
β€”isEmpty_or_nonempty
Set.eq_empty_of_isEmpty
instIsEmptySubtype
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
measure_univ
isFiniteMeasure_of_forall_abs_le πŸ“–mathematicalReal
Real.instLE
abs
Real.lattice
Real.instAddGroup
toFun
MeasureTheory.IsFiniteMeasure
measure
β€”isEmpty_or_nonempty
MeasureTheory.isFiniteMeasureOfIsEmpty
tendsto_atTop_of_monotone
instOrderTopologyReal
mono
Filter.Eventually.exists
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Filter.tendsto_atTop
tendsto_atBot_of_monotone
Filter.atBot_neBot
SemilatticeInf.instIsCodirectedOrder
Filter.tendsto_atBot
isFiniteMeasure
isProbabilityMeasure πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Filter.atTop
Real.instOne
MeasureTheory.IsProbabilityMeasure
measure
β€”measure_univ
sub_zero
ENNReal.ofReal_one
length_Ioc πŸ“–mathematicalβ€”length
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ENNReal.ofReal
Real
Real.instSub
toFun
β€”length_eq
le_antisymm
iInf_le_of_le
iInfβ‚‚_le
Set.diff_subset
le_iInf
ENNReal.coe_le_coe
le_or_gt
Real.toNNReal_of_nonpos
sub_nonpos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mono
zero_le
NNReal.instCanonicallyOrderedAdd
Set.Ioc_subset_Ioc_iff
Ioc_diff_botSet
Real.toNNReal_le_toNNReal
sub_le_sub
length_diff_botSet πŸ“–mathematicalβ€”length
Set
Set.instSDiff
botSet
β€”isEmpty_or_nonempty
length_eq_of_isEmpty
length_eq
iInf_congr_Prop
sdiff_idem
length_empty πŸ“–mathematicalβ€”length
Set
Set.instEmptyCollection
ENNReal
instZeroENNReal
β€”isEmpty_or_nonempty
length_eq_of_isEmpty
length_eq
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
iInf_le_of_le
iInf_congr_Prop
Set.empty_diff
Set.Ioc_eq_empty
Set.instReflSubset
sub_self
ENNReal.ofReal_zero
iInf_pos
length_eq πŸ“–mathematicalβ€”length
iInf
ENNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Set
Set.instHasSubset
Set.instSDiff
botSet
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ENNReal.ofReal
Real
Real.instSub
toFun
β€”β€”
length_eq_of_isEmpty πŸ“–mathematicalβ€”length
ENNReal
instZeroENNReal
β€”β€”
length_mono πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
length
β€”isEmpty_or_nonempty
length_eq_of_isEmpty
length_eq
iInf_mono
biInf_mono
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset_diff_left
length_subadditive_Icc_Ioo πŸ“–mathematicalSet
Set.instHasSubset
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.iUnion
Iotop
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
ENNReal.ofReal
Real
Real.instSub
toFun
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”le_total
ENNReal.ofReal_eq_zero
sub_nonpos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mono
zero_le
ENNReal.instCanonicallyOrderedAdd
Set.iUnion_congr_Prop
le_rfl
Finset.insert_erase
Finset.sum_insert
Finset.notMem_erase
Iotop_subset_Ioc
le_imp_le_of_le_of_le
le_refl
add_le_add_right
ENNReal.instIsOrderedAddMonoid
Finset.erase_ssubset
Set.biUnion_insert
Finset.coe_insert
le_trans
le_of_lt
ne_of_lt
le_antisymm
ENNReal.ofReal_add_le
ENNReal.ofReal_le_ofReal
sub_add_sub_cancel
sub_le_sub_right
IsCompact.elim_finite_subcover_image
CompactIccSpace.isCompact_Icc
isOpen_Iotop
Set.iUnion_true
ENNReal.tsum_eq_iSup_sum
le_iSup
measurableSet_Ioi πŸ“–mathematicalβ€”MeasurableSet
MeasureTheory.OuterMeasure.caratheodory
outer
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”MeasureTheory.OuterMeasure.ofFunction_caratheodory
length_empty
length_eq
le_iInf
length_diff_botSet
Set.inter_diff_right_comm
Set.diff_diff_comm
le_trans
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
length_mono
Set.inter_subset_inter_left
Set.diff_subset_diff_left
le_total
Set.Ioc_inter_Ioi
max_eq_right
Set.Ioc_eq_empty
Set.Ioc_diff_Ioi
min_eq_left
length_Ioc
zero_add
min_eq_right
Real.instIsOrderedAddMonoid
mono
sub_add_sub_cancel
max_eq_left
add_zero
measure_Icc πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ENNReal.ofReal
Real
Real.instSub
toFun
Function.leftLim
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”le_or_gt
Set.Icc_union_Ioc_eq_Icc
le_rfl
Set.Icc_self
MeasureTheory.measure_union
measurableSet_Ioc
BorelSpace.opensMeasurable
instClosedIicTopology
OrderTopology.to_orderClosedTopology
measure_singleton
measure_Ioc
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Monotone.leftLim_le
instOrderTopologyReal
mono
sub_add_sub_cancel'
Set.Icc_eq_empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
AddGroup.toOrderedSub
zero_add
Monotone.le_leftLim
measure_Ici πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Ici
ENNReal.ofReal
Real.instSub
Function.leftLim
β€”Set.Icc_top
measure_Icc
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.pure_neBot
Filter.atTop_eq_pure_of_isTop
isTop_top
tendsto_pure_nhds
NoTopOrder.to_noMaxOrder
ENNReal.instT2Space
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
MeasureTheory.tendsto_measure_Ico_atTop
instIsCountablyGenerated_atTop
TopologicalSpace.SecondCountableTopology.to_separableSpace
measure_Ico
ENNReal.tendsto_ofReal
Filter.Tendsto.sub_const
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
tendsto_order
instOrderTopologyReal
NoMaxOrder.exists_gt
LT.lt.trans_le
le_rfl
Monotone.le_leftLim
mono
Filter.mp_mem
Filter.univ_mem'
LE.le.trans_lt
Monotone.leftLim_le
measure_Ici_of_tendsto_atTop_atTop πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Ici
Top.top
instTopENNReal
β€”top_le_iff
measure_Ioi_of_tendsto_atTop_atTop
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.Ioi_subset_Ici_self
measure_Ico πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ENNReal.ofReal
Real
Real.instSub
Function.leftLim
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toFun
β€”le_or_gt
Set.Ico_eq_empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
Monotone.leftLim
instOrderTopologyReal
mono
Set.Icc_union_Ioo_eq_Ico
le_rfl
Set.Icc_self
MeasureTheory.measure_union
measurableSet_Ioo
BorelSpace.opensMeasurable
OrderTopology.to_orderClosedTopology
measure_singleton
measure_Ioo
Monotone.leftLim_le
Monotone.le_leftLim
sub_add_sub_cancel'
measure_Iic πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Iic
ENNReal.ofReal
Real.instSub
β€”Set.Icc_bot
measure_Icc
leftLim_eq_of_isBot
isBot_bot
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.pure_neBot
Filter.atBot_eq_pure_of_isBot
tendsto_pure_nhds
NoBotOrder.to_noMinOrder
ENNReal.instT2Space
Filter.atBot_neBot
SemilatticeInf.instIsCodirectedOrder
MeasureTheory.tendsto_measure_Ioc_atBot
instIsCountablyGenerated_atBot
TopologicalSpace.SecondCountableTopology.to_separableSpace
measure_Ioc
ENNReal.tendsto_ofReal
Filter.Tendsto.const_sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
measure_Iic_of_tendsto_atBot_atBot πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Iic
Top.top
instTopENNReal
β€”ENNReal.eq_top_of_forall_nnreal_le
Filter.eventually_atBot
SemilatticeInf.instIsCodirectedOrder
Filter.tendsto_atBot
LE.le.trans
ENNReal.ofReal_le_ofReal
le_sub_comm
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
min_le_right
ENNReal.coe_nnreal_eq
measure_Ioc
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.Ioc_subset_Iic_self
measure_Iio πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Iio
ENNReal.ofReal
Real.instSub
Function.leftLim
β€”Set.Iic_diff_right
MeasureTheory.measure_diff
MeasureTheory.nullMeasurableSet_singleton
MeasureTheory.NullMeasurableSet.instMeasurableSingletonClass
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
measure_singleton
measure_Iic
ENNReal.ofReal_sub
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Monotone.leftLim_le
instOrderTopologyReal
mono'
le_rfl
sub_sub_sub_cancel_left
measure_Iio_of_tendsto_atBot_atBot πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Iio
Top.top
instTopENNReal
β€”Filter.tendsto_pure_left
Filter.atBot_eq_pure_of_isBot
isBot_bot
Filter.Iio_mem_atBot
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
NoBotOrder.to_noMinOrder
NoMinOrder.exists_lt
top_le_iff
measure_Iic_of_tendsto_atBot_atBot
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.Iic_subset_Iio
measure_Ioc πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ENNReal.ofReal
Real
Real.instSub
toFun
β€”measure_def
outer_Ioc
measure_Ioi πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Ioi
ENNReal.ofReal
Real.instSub
β€”Set.Ici_diff_left
MeasureTheory.measure_diff
MeasureTheory.nullMeasurableSet_singleton
MeasureTheory.NullMeasurableSet.instMeasurableSingletonClass
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
measure_singleton
measure_Ici
ENNReal.ofReal_sub
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Monotone.leftLim_le
instOrderTopologyReal
mono'
le_rfl
sub_sub_sub_cancel_right
measure_Ioi_of_tendsto_atTop_atTop πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Ioi
Top.top
instTopENNReal
β€”ENNReal.eq_top_of_forall_nnreal_le
Filter.eventually_atTop
SemilatticeSup.instIsDirectedOrder
Filter.tendsto_atTop
LE.le.trans
ENNReal.ofReal_le_ofReal
le_tsub_of_add_le_right
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
le_max_right
ENNReal.coe_nnreal_eq
measure_Ioc
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.Ioc_subset_Ioi_self
measure_Ioo πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ENNReal.ofReal
Real
Real.instSub
Function.leftLim
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toFun
β€”le_or_gt
Set.Ioo_eq_empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
Monotone.leftLim_le
instOrderTopologyReal
mono
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.zero_termg
measure_Ioc
ENNReal.ofReal_ne_top
add_comm
ENNReal.ofReal_add
le_rfl
Monotone.le_leftLim
Set.Ioo_union_Icc_eq_Ioc
Set.Icc_self
MeasureTheory.measure_union
MeasurableSingletonClass.measurableSet_singleton
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
measure_singleton
measure_add πŸ“–mathematicalβ€”measure
StieltjesFunction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoid
MeasureTheory.Measure
MeasureTheory.Measure.instAdd
β€”MeasureTheory.Measure.ext_of_Icc
instIsLocallyFiniteMeasure
Filter.eq_or_neBot
leftLim_eq_of_eq_bot
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Monotone.tendsto_leftLim
instOrderTopologyReal
mono
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
measure_Icc
ENNReal.ofReal_add
sub_nonneg_of_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Monotone.leftLim_le
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.Ring.add_pf_add_gt
measure_botSet πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
botSet
instZeroENNReal
β€”botSet_eq_singleton_of_isBot
measure_singleton
leftLim_eq_of_isBot
sub_self
ENNReal.ofReal_zero
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
measure_const πŸ“–mathematicalβ€”measure
const
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasureTheory.Measure.ext_of_Icc
instIsLocallyFiniteMeasure
measure_Icc
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
ContinuousWithinAt.leftLim_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
continuousWithinAt_const
measure_def πŸ“–mathematicalβ€”measureβ€”β€”
measure_singleton πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.instSingletonSet
ENNReal.ofReal
Real
Real.instSub
toFun
Function.leftLim
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”leftLim_eq_of_eq_bot
sub_self
ENNReal.ofReal_zero
eq_bot_iff
measure_def
LE.le.trans
outer_le_length
length_diff_botSet
Set.Subsingleton.eq_singleton_of_mem
subsingleton_botSet
sdiff_self
length_empty
bot_eq_zero'
ENNReal.instCanonicallyOrderedAdd
exists_seq_strictMono_tendsto'
TopologicalSpace.SecondCountableTopology.to_firstCountableTopology
Set.Subset.antisymm
Set.mem_singleton_iff
le_of_tendsto'
instClosedIicTopology
OrderTopology.to_orderClosedTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
LT.lt.le
le_antisymm
MeasureTheory.tendsto_measure_iInter_atTop
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
nullMeasurableSet_Ioc
BorelSpace.opensMeasurable
Set.Ioc_subset_Ioc_left
StrictMono.monotone
measure_Ioc
ENNReal.ofReal_ne_top
Filter.Tendsto.comp
Monotone.tendsto_leftLim
instOrderTopologyReal
mono
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
Filter.Eventually.of_forall
ContinuousAt.tendsto
Continuous.continuousAt
ENNReal.continuous_ofReal
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
tendsto_const_nhds
tendsto_nhds_unique
ENNReal.instT2Space
measure_smul πŸ“–mathematicalβ€”measure
NNReal
StieltjesFunction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
AddCommMonoid.toAddMonoid
instAddCommMonoid
Module.toDistribMulAction
instModuleNNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal
instCommSemiringNNReal
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instAlgebraNNReal
Algebra.id
IsScalarTower.right
β€”MeasureTheory.Measure.ext_of_Icc
IsScalarTower.right
instIsLocallyFiniteMeasure
measure_Icc
Filter.eq_or_neBot
leftLim_eq_of_eq_bot
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Monotone.tendsto_leftLim
instOrderTopologyReal
mono
Filter.Tendsto.const_smul
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
mul_sub
ENNReal.ofReal_mul
NNReal.zero_le_coe
ENNReal.ofReal_coe_nnreal
smul_eq_mul
measure_univ πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Filter.atTop
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.univ
ENNReal.ofReal
Real.instSub
β€”tendsto_nhds_unique
ENNReal.instT2Space
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
MeasureTheory.tendsto_measure_Iic_atTop
instIsCountablyGenerated_atTop
TopologicalSpace.SecondCountableTopology.to_separableSpace
measure_Iic
ENNReal.tendsto_ofReal
Filter.Tendsto.sub_const
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
measure_univ_of_tendsto_atBot_atBot πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.univ
Top.top
instTopENNReal
β€”top_le_iff
measure_Iio_of_tendsto_atBot_atBot
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.subset_univ
measure_univ_of_tendsto_atTop_atTop πŸ“–mathematicalFilter.Tendsto
Real
toFun
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
measure
Set.univ
Top.top
instTopENNReal
β€”top_le_iff
measure_Ioi_of_tendsto_atTop_atTop
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.subset_univ
measure_zero πŸ“–mathematicalβ€”measure
StieltjesFunction
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”measure_const
mono πŸ“–mathematicalβ€”Monotone
Real
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
toFun
β€”mono'
mono' πŸ“–mathematicalβ€”Monotone
Real
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
toFun
β€”β€”
outer_Ioc πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
outer
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ENNReal.ofReal
Real
Real.instSub
toFun
β€”le_antisymm
length_Ioc
outer_le_length
le_or_gt
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
mono
ENNReal.instCanonicallyOrderedAdd
le_iInfβ‚‚
ENNReal.le_of_forall_pos_le_add
Nat.instAtLeastTwoHAddOfNat
ENNReal.coe_div
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
LT.lt.ne'
ENNReal.exists_pos_sum_of_countable
instCountableNat
ContinuousWithinAt.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
ContinuousWithinAt.mono
right_continuous
Set.Ioi_subset_Ici_self
continuousWithinAt_const
sub_self
NNReal.coe_pos
ENNReal.coe_pos
nhdsGT_neBot_of_exists_gt
Filter.Eventually.exists
Filter.Eventually.and
tendsto_order
instOrderTopologyReal
self_mem_nhdsWithin
ENNReal.lt_add_right
LT.lt.ne
LE.le.trans_lt
ENNReal.le_tsum
ENNReal.coe_ne_zero
length_eq
notMem_botSet_of_lt
LT.lt.trans_le
ContinuousAt.comp_continuousWithinAt
Continuous.continuousAt
ENNReal.continuous_ofReal
ENNReal.instOrderTopology
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioc_subset_Ioo_right
Ioo_subset_Iotop
Set.inter_subset_inter
subset_refl
Set.instReflSubset
Set.inter_iUnion
Set.iUnion_mono
sub_add_sub_cancel
ENNReal.ofReal_add_le
add_le_add
ENNReal.instIsOrderedAddMonoid
length_subadditive_Icc_Ioo
ENNReal.ofReal_le_ofReal
LT.lt.le
ENNReal.tsum_le_tsum
ENNReal.ofReal_coe_nnreal
ENNReal.tsum_add
le_rfl
add_assoc
ENNReal.add_halves
outer_le_length πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.OuterMeasure
Set
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
outer
length
β€”MeasureTheory.OuterMeasure.ofFunction_le
length_empty
outer_trim πŸ“–mathematicalβ€”MeasureTheory.OuterMeasure.trim
outer
β€”le_antisymm
MeasureTheory.OuterMeasure.trim_eq_iInf
le_iInf
ENNReal.le_of_forall_pos_le_add
ENNReal.exists_pos_sum_of_countable
LT.lt.ne'
ENNReal.coe_pos
instCountableNat
le_imp_le_of_le_of_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
le_of_lt
ENNReal.tsum_add
iInf_le_of_le
HasSubset.Subset.trans
Set.instIsTransSubset
Set.iUnion_mono
ENNReal.ofReal_coe_nnreal
MeasurableSet.iUnion
le_trans
MeasureTheory.measure_iUnion_le
MeasureTheory.OuterMeasure.instOuterMeasureClass
ENNReal.tsum_le_tsum
isEmpty_or_nonempty
Set.eq_empty_of_isEmpty
instIsEmptySubtype
MeasurableSet.empty
MeasureTheory.measure_empty
ENNReal.instCanonicallyOrderedAdd
ENNReal.lt_add_right
LT.lt.ne
LE.le.trans_lt
ENNReal.le_tsum
length_eq
Set.diff_subset_iff
MeasurableSet.union
measurableSet_botSet
OpensMeasurableSpace.toMeasurableSingletonClass
BorelSpace.opensMeasurable
T5Space.toT1Space
OrderTopology.t5Space
measurableSet_Ioc
instClosedIicTopology
OrderTopology.to_orderClosedTopology
MeasureTheory.measure_union_le
add_le_add_left
covariant_swap_add_of_covariant_add
outer_le_length
sdiff_self
Set.empty_diff
outer_Ioc
zero_add
length_empty
MeasureTheory.OuterMeasure.le_trim
rightLim_eq πŸ“–mathematicalβ€”Function.rightLim
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toFun
β€”Monotone.continuousWithinAt_Ioi_iff_rightLim_eq
instOrderTopologyReal
mono
continuousWithinAt_Ioi_iff_Ici
right_continuous'
right_continuous πŸ“–mathematicalβ€”ContinuousWithinAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toFun
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”right_continuous'
right_continuous' πŸ“–mathematicalβ€”ContinuousWithinAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toFun
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”
zero_apply πŸ“–mathematicalβ€”toFun
StieltjesFunction
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
Real
Real.instZero
β€”β€”

(root)

Definitions

NameCategoryTheorems
Iotop πŸ“–CompOp
3 mathmath: isOpen_Iotop, Iotop_subset_Ioc, Ioo_subset_Iotop
StieltjesFunction πŸ“–CompData
5 mathmath: StieltjesFunction.measure_zero, StieltjesFunction.zero_apply, StieltjesFunction.add_apply, StieltjesFunction.measure_add, StieltjesFunction.measure_smul
botSet πŸ“–CompOp
8 mathmath: StieltjesFunction.measure_botSet, Ioc_diff_botSet, StieltjesFunction.length_diff_botSet, StieltjesFunction.length_eq, subsingleton_botSet, measurableSet_botSet, botSet_eq_singleton_of_isBot, notMem_botSet_of_lt

Theorems

NameKindAssumesProvesValidatesDepends On
Ioc_diff_botSet πŸ“–mathematicalβ€”Set
Set.instSDiff
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
botSet
β€”sdiff_eq_left
Set.disjoint_iff_forall_ne
LE.le.not_gt
Ioo_subset_Iotop πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Iotop
β€”Set.instReflSubset
Iotop_subset_Ioc πŸ“–mathematicalβ€”Set
Set.instHasSubset
Iotop
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.instReflSubset
botSet_eq_singleton_of_isBot πŸ“–mathematicalIsBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
botSet
Set
Set.instSingletonSet
β€”Set.Subsingleton.eq_singleton_of_mem
subsingleton_botSet
isOpen_Iotop πŸ“–mathematicalβ€”IsOpen
Iotop
β€”Set.Subset.antisymm
instClosedIicTopology
OrderTopology.to_orderClosedTopology
measurableSet_botSet πŸ“–mathematicalβ€”MeasurableSet
botSet
β€”Set.Subsingleton.measurableSet
subsingleton_botSet
notMem_botSet_of_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
botSet
β€”Mathlib.Tactic.Contrapose.contrapose₃
subsingleton_botSet πŸ“–mathematicalβ€”Set.Subsingleton
botSet
β€”Set.subsingleton_isBot

---

← Back to Index