| Name | Category | Theorems |
add π | CompOp | β |
const π | CompOp | 2 mathmath: const_apply, measure_const
|
id π | CompOp | 4 mathmath: Real.volume_val, id_leftLim, Real.volume_eq_stieltjes_id, id_apply
|
instAddCommMonoid π | CompOp | 3 mathmath: add_apply, measure_add, measure_smul
|
instAddZeroClass π | CompOp | 3 mathmath: measure_zero, zero_apply, measure_smul
|
instCoeFun π | CompOp | β |
instInhabited π | CompOp | β |
instModuleNNReal π | CompOp | 1 mathmath: measure_smul
|
length π | CompOp | 7 mathmath: length_diff_botSet, length_eq_of_isEmpty, length_empty, length_eq, outer_le_length, length_mono, length_Ioc
|
measure π | CompOp | 47 mathmath: ProbabilityTheory.cdf_measure_stieltjesFunction, measure_univ_of_tendsto_atBot_atBot, measure_botSet, measure_zero, measure_Ioi_of_tendsto_atTop_atTop, measure_Ici_of_tendsto_atTop_atTop, measure_Ioo, Real.volume_val, instIsLocallyFiniteMeasure, measure_singleton, measure_univ, ProbabilityTheory.IsMeasurableRatCDF.instIsProbabilityMeasure_stieltjesFunction, Real.volume_eq_stieltjes_id, measure_Iic_of_tendsto_atBot_atBot, measure_univ_of_tendsto_atTop_atTop, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_univ, Monotone.ae_hasDerivAt, measurable_measure, isFiniteMeasure_of_forall_abs_le, measure_Ici, ProbabilityTheory.measurable_measure_stieltjesOfMeasurableRat, isProbabilityMeasure, measure_Ioi, ProbabilityTheory.instIsProbabilityMeasureCondCDF, ProbabilityTheory.measure_cdf, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_Iic, ProbabilityTheory.measure_stieltjesOfMeasurableRat_univ, measure_Icc, measure_def, isFiniteMeasure, ProbabilityTheory.measure_stieltjesOfMeasurableRat_Iic, measure_add, measure_Ioc, measure_Iio, measure_smul, ae_hasDerivAt, ProbabilityTheory.measure_condCDF_Iic, ProbabilityTheory.measurable_measure_condCDF, ProbabilityTheory.instIsProbabilityMeasure_stieltjesOfMeasurableRat, ProbabilityTheory.IsMeasurableRatCDF.measurable_measure_stieltjesFunction, ProbabilityTheory.measure_condCDF_univ, measure_Ico, measure_Iic, measure_Iio_of_tendsto_atBot_atBot, ProbabilityTheory.IsCondKernelCDF.toKernel_apply, ProbabilityTheory.instIsProbabilityMeasurecdf, measure_const
|
outer π | CompOp | 5 mathmath: borel_le_measurable, measurableSet_Ioi, outer_le_length, outer_Ioc, outer_trim
|
toFun π | CompOp | 96 mathmath: ProbabilityTheory.stieltjesOfMeasurableRat_ae_eq, ProbabilityTheory.paretoCDFReal_eq_lintegral, ProbabilityTheory.condCDF_ae_eq, ProbabilityTheory.lintegral_condCDF, ProbabilityTheory.condCDF_nonneg, ProbabilityTheory.IsCondKernelCDF.toKernel_Iic, ProbabilityTheory.IsCondKernelCDF.le_one, rightLim_eq, ProbabilityTheory.unitInterval.cdf_eq_real, ProbabilityTheory.gammaCDFReal_eq_lintegral, ProbabilityTheory.tendsto_condCDF_atBot, ProbabilityTheory.setIntegral_condCDF, ProbabilityTheory.IsCondKernelCDF.tendsto_atTop_one, measure_Ioo, ProbabilityTheory.cdf_paretoMeasure_eq_integral, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat_rat, ProbabilityTheory.IsCondKernelCDF.nonneg, ProbabilityTheory.cdf_expMeasure_eq, ProbabilityTheory.IsCondKernelCDF.integral, mono', ProbabilityTheory.stieltjesOfMeasurableRat_nonneg, ProbabilityTheory.gammaCDFReal_eq_integral, ProbabilityTheory.monotone_cdf, measure_singleton, ProbabilityTheory.integral_stieltjesOfMeasurableRat, ProbabilityTheory.integrable_condCDF, ProbabilityTheory.tendsto_stieltjesOfMeasurableRat_atTop, const_apply, ProbabilityTheory.stieltjesOfMeasurableRat_le_one, id_leftLim, ProbabilityTheory.cdf_eq_real, ProbabilityTheory.cdf_nonneg, iInf_rat_gt_eq, ProbabilityTheory.IsMeasurableRatCDF.stronglyMeasurable_stieltjesFunction, ProbabilityTheory.ofReal_condCDF_ae_eq, ProbabilityTheory.IsCondKernelCDF.setIntegral, length_subadditive_Icc_Ioo, ProbabilityTheory.IsCondKernelCDF.setLIntegral, ProbabilityTheory.cdf_le_one, countable_leftLim_ne, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat, ProbabilityTheory.cdf_gammaMeasure_eq_lintegral, zero_apply, add_apply, ProbabilityTheory.stronglyMeasurable_stieltjesOfMeasurableRat, mono, ProbabilityTheory.IsCondKernelCDF.measurable, ProbabilityTheory.tendsto_stieltjesOfMeasurableRat_atBot, ProbabilityTheory.measurable_stieltjesOfMeasurableRat, ProbabilityTheory.exponentialCDFReal_eq_integral, ProbabilityTheory.stieltjesOfMeasurableRat_eq, ProbabilityTheory.cdf_expMeasure_eq_integral, ProbabilityTheory.paretoCDFReal_eq_integral, ProbabilityTheory.IsCondKernelCDF.integrable, ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunction_eq, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_Iic, ProbabilityTheory.IsCondKernelCDF.tendsto_atBot_zero, ext_iff, ProbabilityTheory.exponentialCDFReal_eq, measure_Icc, ProbabilityTheory.IsMeasurableRatCDF.measurable_stieltjesFunction, length_eq, ProbabilityTheory.integral_condCDF, ProbabilityTheory.condCDF_le_one, ProbabilityTheory.measure_stieltjesOfMeasurableRat_Iic, ProbabilityTheory.tendsto_cdf_atTop, measure_Ioc, ProbabilityTheory.cdf_expMeasure_eq_lintegral, ProbabilityTheory.stronglyMeasurable_condCDF, iInf_Ioi_eq, ae_hasDerivAt, ProbabilityTheory.measure_condCDF_Iic, id_apply, outer_Ioc, ProbabilityTheory.setLIntegral_condCDF, ProbabilityTheory.lintegral_stieltjesOfMeasurableRat, measure_Ico, ProbabilityTheory.measurable_condCDF, ProbabilityTheory.IsMeasurableRatCDF.tendsto_stieltjesFunction_atTop, ProbabilityTheory.IsCondKernelCDF.lintegral, length_Ioc, ProbabilityTheory.cdf_paretoMeasure_eq_lintegral, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat_rat, ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunction_le_one, Monotone.stieltjesFunction_eq, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat, right_continuous, ProbabilityTheory.tendsto_cdf_atBot, ProbabilityTheory.tendsto_condCDF_atTop, ProbabilityTheory.exponentialCDFReal_eq_lintegral, ProbabilityTheory.IsMeasurableRatCDF.stieltjesFunction_nonneg, ProbabilityTheory.cdf_gammaMeasure_eq_integral, ProbabilityTheory.ofReal_cdf, ProbabilityTheory.IsMeasurableRatCDF.tendsto_stieltjesFunction_atBot, ProbabilityTheory.integrable_stieltjesOfMeasurableRat, right_continuous'
|