Documentation Verification Report

Support

πŸ“ Source: Mathlib/MeasureTheory/Measure/Support.lean

Statistics

MetricCount
Definitionssupport
1
Theoremsmem_measureSupport, notMem_measureSupport, support_mono, compl_support_eq_sUnion, interior_inter_support, isClosed_support, isOpen_compl_support, measure_compl_support, mem_support_iff, mem_support_iff_forall, mem_support_restrict, nonempty_inter_support_of_pos, nonempty_support, nonempty_support_iff, notMem_support_iff, notMem_support_iff_exists, nullMeasurableSet_compl_support, nullMeasurableSet_support, subset_compl_support_of_isOpen, support_add, support_eq_forall_isOpen, support_eq_sInter, support_eq_univ, support_mem_ae, support_mem_ae_of_isLindelof, support_mono, support_restrict_subset, support_subset_of_isClosed, support_zero
29
Total30

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
mem_measureSupport πŸ“–mathematicalFilter.HasBasis
nhds
Set
Set.instMembership
MeasureTheory.Measure.support
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
β€”frequently_smallSets
MeasureTheory.pos_mono
MeasureTheory.Measure.instOuterMeasureClass
notMem_measureSupport πŸ“–mathematicalFilter.HasBasis
nhds
Set
Set.instMembership
MeasureTheory.Measure.support
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
β€”mem_measureSupport
ENNReal.instCanonicallyOrderedAdd

MeasureTheory.Measure

Definitions

NameCategoryTheorems
support πŸ“–CompOp
28 mathmath: Filter.HasBasis.notMem_measureSupport, nonempty_support_iff, nonempty_inter_support_of_pos, mem_support_iff, notMem_support_iff, interior_inter_support, nonempty_support, compl_support_eq_sUnion, measure_compl_support, mem_support_iff_forall, support_mono, notMem_support_iff_exists, support_eq_forall_isOpen, support_mem_ae, mem_support_restrict, subset_compl_support_of_isOpen, nullMeasurableSet_support, isOpen_compl_support, support_eq_sInter, support_zero, nullMeasurableSet_compl_support, support_eq_univ, isClosed_support, Filter.HasBasis.mem_measureSupport, support_subset_of_isClosed, support_add, support_restrict_subset, AbsolutelyContinuous.support_mono

Theorems

NameKindAssumesProvesValidatesDepends On
compl_support_eq_sUnion πŸ“–mathematicalβ€”Compl.compl
Set
Set.instCompl
support
Set.sUnion
setOf
IsOpen
ENNReal
DFunLike.coe
MeasureTheory.Measure
instFunLike
instZeroENNReal
β€”Set.ext
Filter.HasBasis.notMem_measureSupport
nhds_basis_opens
interior_inter_support πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instInter
interior
support
restrict
β€”mem_support_restrict
Filter.HasBasis.frequently_smallSets
nhdsWithin_basis_open
MeasureTheory.pos_mono
instOuterMeasureClass
LT.lt.trans_le
Filter.HasBasis.mem_measureSupport
nhds_basis_opens
IsOpen.inter
isOpen_interior
MeasureTheory.measure_mono
Set.inter_subset_inter
subset_refl
Set.instReflSubset
interior_subset
isClosed_support πŸ“–mathematicalβ€”IsClosed
support
β€”Filter.HasBasis.mem_measureSupport
nhds_basis_opens
Filter.HasBasis.frequently_iff
isOpen_compl_support πŸ“–mathematicalβ€”IsOpen
Compl.compl
Set
Set.instCompl
support
β€”isOpen_compl_iff
isClosed_support
measure_compl_support πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
Compl.compl
Set.instCompl
support
instZeroENNReal
β€”support_mem_ae
mem_support_iff πŸ“–mathematicalβ€”Set
Set.instMembership
support
Filter.Frequently
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
instFunLike
Filter.smallSets
nhds
β€”β€”
mem_support_iff_forall πŸ“–mathematicalβ€”Set
Set.instMembership
support
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
instFunLike
β€”Filter.HasBasis.mem_measureSupport
Filter.basis_sets
mem_support_restrict πŸ“–mathematicalβ€”Set
Set.instMembership
support
restrict
Filter.Frequently
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
instFunLike
Filter.smallSets
nhdsWithin
β€”Filter.HasBasis.mem_measureSupport
nhds_basis_opens
Filter.HasBasis.frequently_smallSets
nhdsWithin_basis_open
MeasureTheory.pos_mono
instOuterMeasureClass
nonempty_inter_support_of_pos πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
MeasureTheory.Measure
Set
instFunLike
Set.Nonempty
Set.instInter
support
β€”Set.not_disjoint_iff_nonempty_inter
Mathlib.Tactic.Contrapose.contrapose₃
LE.le.trans
MeasureTheory.OuterMeasure.mono
Disjoint.subset_compl_right
measure_compl_support
nonempty_support πŸ“–mathematicalβ€”Set.Nonempty
support
β€”Set.Nonempty.right
nonempty_inter_support_of_pos
measure_univ_pos
nonempty_support_iff πŸ“–mathematicalβ€”Set.Nonempty
support
β€”Set.not_nonempty_iff_eq_empty
support_zero
nonempty_support
notMem_support_iff πŸ“–mathematicalβ€”Set
Set.instMembership
support
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
instFunLike
instZeroENNReal
Filter.smallSets
nhds
β€”ENNReal.instCanonicallyOrderedAdd
notMem_support_iff_exists πŸ“–mathematicalβ€”Set
Set.instMembership
support
Filter
Filter.instMembership
nhds
DFunLike.coe
MeasureTheory.Measure
ENNReal
instFunLike
instZeroENNReal
β€”ENNReal.instCanonicallyOrderedAdd
nullMeasurableSet_compl_support πŸ“–mathematicalβ€”MeasureTheory.NullMeasurableSet
Compl.compl
Set
Set.instCompl
support
β€”MeasureTheory.NullMeasurableSet.of_null
measure_compl_support
nullMeasurableSet_support πŸ“–mathematicalβ€”MeasureTheory.NullMeasurableSet
support
β€”MeasureTheory.NullMeasurableSet.compl_iff
nullMeasurableSet_compl_support
subset_compl_support_of_isOpen πŸ“–mathematicalIsOpen
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
instFunLike
instZeroENNReal
Set.instHasSubset
Compl.compl
Set.instCompl
support
β€”notMem_support_iff_exists
IsOpen.mem_nhds
support_add πŸ“–mathematicalβ€”support
MeasureTheory.Measure
instAdd
Set
Set.instUnion
β€”Set.ext
ENNReal.instCanonicallyOrderedAdd
support_eq_forall_isOpen πŸ“–mathematicalβ€”support
setOf
β€”Filter.HasBasis.mem_measureSupport
nhds_basis_opens
support_eq_sInter πŸ“–mathematicalβ€”support
Set.sInter
setOf
Set
IsClosed
ENNReal
DFunLike.coe
MeasureTheory.Measure
instFunLike
Compl.compl
Set.instCompl
instZeroENNReal
β€”compl_compl
Set.compl_sUnion
Function.Involutive.image_eq_preimage_symm
compl_involutive
compl_support_eq_sUnion
support_eq_univ πŸ“–mathematicalβ€”support
Set.univ
β€”measure_pos_of_mem_nhds
support_mem_ae πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
support
β€”support_mem_ae_of_isLindelof
HereditarilyLindelofSpace.isLindelof
support_mem_ae_of_isLindelof πŸ“–mathematicalIsLindelof
Compl.compl
Set
Set.instCompl
support
Filter
Filter.instMembership
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
β€”instOuterMeasureClass
IsLindelof.compl_mem_sets_of_nhdsWithin
MeasureTheory.instCountableInterFilter
IsOpen.nhdsWithin_eq
isOpen_compl_support
notMem_support_iff_exists
compl_compl
support_mono πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instHasSubset
support
β€”AbsolutelyContinuous.support_mono
LE.le.absolutelyContinuous
support_restrict_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
support
restrict
Set.instInter
closure
β€”Set.subset_inter
support_subset_of_isClosed
isClosed_closure
instOuterMeasureClass
MeasureTheory.mem_ae_iff
restrict_apply
IsOpen.measurableSet
IsClosed.isOpen_compl
Disjoint.eq_bot
HasSubset.Subset.disjoint_compl_left
subset_closure
MeasureTheory.OuterMeasure.empty
support_mono
restrict_le_self
support_subset_of_isClosed πŸ“–mathematicalSet
Filter
Filter.instMembership
MeasureTheory.ae
MeasureTheory.Measure
instFunLike
instOuterMeasureClass
Set.instHasSubset
support
β€”instOuterMeasureClass
Set.compl_subset_compl
subset_compl_support_of_isOpen
IsClosed.isOpen_compl
support_zero πŸ“–mathematicalβ€”support
MeasureTheory.Measure
instZero
Set
Set.instEmptyCollection
β€”β€”

MeasureTheory.Measure.AbsolutelyContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
support_mono πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuousSet
Set.instHasSubset
MeasureTheory.Measure.support
β€”Filter.Frequently.mp
Filter.Eventually.of_forall
pos_mono

---

← Back to Index