Documentation Verification Report

TightNormed

πŸ“ Source: Mathlib/MeasureTheory/Measure/TightNormed.lean

Statistics

MetricCount
Definitions0
TheoremsisTightMeasureSet_iff_inner_tendsto, isTightMeasureSet_iff_tendsto_measure_compl_closedBall, isTightMeasureSet_iff_tendsto_measure_norm_gt, isTightMeasureSet_of_forall_basis_tendsto, isTightMeasureSet_of_inner_tendsto, isTightMeasureSet_of_tendsto_measure_compl_closedBall, isTightMeasureSet_of_tendsto_measure_norm_gt, tendsto_measure_compl_closedBall_of_isTightMeasureSet, tendsto_measure_norm_gt_of_isTightMeasureSet
9
Total9

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isTightMeasureSet_iff_inner_tendsto πŸ“–mathematicalβ€”IsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
setOf
Real.instLT
Norm.norm
NormedField.toNorm
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
Inner.inner
InnerProductSpace.toInner
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”FiniteDimensional.proper
locallyCompact_of_proper
FiniteDimensional.proper_real
FiniteDimensional.rclike_to_real
iSup_congr_Prop
inner_zero_left
Filter.tendsto_congr'
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
norm_zero
not_lt
measure_empty
Measure.instOuterMeasureClass
ENNReal.iSup_zero
ciSup_const
tendsto_const_nhds
Filter.Tendsto.comp
isTightMeasureSet_iff_tendsto_measure_norm_gt
Filter.tendsto_mul_const_atTop_of_pos
Real.instIsStrictOrderedRing
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
norm_pos_iff
Filter.tendsto_id
tendsto_of_tendsto_of_tendsto_of_le_of_le
ENNReal.instOrderTopology
zero_le
ENNReal.instCanonicallyOrderedAdd
measure_mono
mul_inv_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_comm
LT.lt.trans_le
norm_inner_le_norm
iSupβ‚‚_le_iff
le_iSup_of_le
iSup_pos
isTightMeasureSet_of_inner_tendsto
isTightMeasureSet_iff_tendsto_measure_compl_closedBall πŸ“–mathematicalβ€”IsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Filter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
Compl.compl
Set.instCompl
Metric.closedBall
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”tendsto_measure_compl_closedBall_of_isTightMeasureSet
isTightMeasureSet_of_tendsto_measure_compl_closedBall
isTightMeasureSet_iff_tendsto_measure_norm_gt πŸ“–mathematicalβ€”IsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
setOf
Real.instLT
Norm.norm
NormedAddCommGroup.toNorm
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”tendsto_measure_norm_gt_of_isTightMeasureSet
isTightMeasureSet_of_tendsto_measure_norm_gt
isTightMeasureSet_of_forall_basis_tendsto πŸ“–mathematicalFilter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
setOf
Real.instLT
Norm.norm
NormedField.toNorm
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
Inner.inner
InnerProductSpace.toInner
NormedAddCommGroup.toSeminormedAddCommGroup
OrthonormalBasis
OrthonormalBasis.instFunLike
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
IsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”subsingleton_or_nontrivial
Filter.cocompact_eq_bot
TopologicalSpace.NoetherianSpace.compactSpace
TopologicalSpace.Finite.to_noetherianSpace
Finite.of_subsingleton
Filter.smallSets_bot
iSup_apply
iSup_congr_Prop
measure_empty
Measure.instOuterMeasureClass
ENNReal.iSup_zero
ciSup_const
tendsto_pure_nhds
Module.finrank_eq_card_basis
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Real.instIsOrderedRing
Real.instNontrivial
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
FiniteDimensional.proper
locallyCompact_of_proper
FiniteDimensional.proper_real
FiniteDimensional.rclike_to_real
isTightMeasureSet_of_tendsto_measure_norm_gt
iSup_mono
measure_mono
LT.lt.trans_le
OrthonormalBasis.norm_le_card_mul_iSup_norm_inner
lt_irrefl
div_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.sqrt_pos_of_pos
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Fintype.card_pos
ciSup_le
measure_iUnion_fintype_le
iSup_le
Finset.sum_le_sum
ENNReal.instIsOrderedAddMonoid
le_biSup
tendsto_of_tendsto_of_tendsto_of_le_of_le
ENNReal.instOrderTopology
tendsto_const_nhds
Finset.sum_const_zero
tendsto_finset_sum
ENNReal.instContinuousAdd
Filter.Tendsto.comp
Filter.Tendsto.atTop_div_const
Filter.tendsto_id
zero_le
ENNReal.instCanonicallyOrderedAdd
isTightMeasureSet_of_inner_tendsto πŸ“–mathematicalFilter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
setOf
Real.instLT
Norm.norm
NormedField.toNorm
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
Inner.inner
InnerProductSpace.toInner
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
IsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”isTightMeasureSet_of_forall_basis_tendsto
isTightMeasureSet_of_tendsto_measure_compl_closedBall πŸ“–mathematicalFilter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
Compl.compl
Set.instCompl
Metric.closedBall
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
IsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”isTightMeasureSet_iff_exists_isCompact_measure_compl_le
ENNReal.tendsto_atTop_zero
ProperSpace.isCompact_closedBall
le_rfl
isTightMeasureSet_of_tendsto_measure_norm_gt πŸ“–mathematicalFilter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
setOf
Real.instLT
Norm.norm
NormedAddCommGroup.toNorm
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
IsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”isTightMeasureSet_of_tendsto_measure_compl_closedBall
iSup_congr_Prop
Set.ext
dist_zero_right
tendsto_measure_compl_closedBall_of_isTightMeasureSet πŸ“–mathematicalIsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Filter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
Compl.compl
Set.instCompl
Metric.closedBall
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”Filter.Tendsto.comp
Filter.Tendsto.mono_right
Filter.HasAntitoneBasis.tendsto_smallSets
Metric.hasAntitoneBasis_cobounded_compl_closedBall
Filter.monotone_smallSets
Metric.cobounded_le_cocompact
iSup_apply
tendsto_measure_norm_gt_of_isTightMeasureSet πŸ“–mathematicalIsTightMeasureSet
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Tendsto
Real
ENNReal
iSup
Measure
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
Set
Set.instMembership
DFunLike.coe
Measure.instFunLike
setOf
Real.instLT
Norm.norm
NormedAddCommGroup.toNorm
Filter.atTop
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”tendsto_measure_compl_closedBall_of_isTightMeasureSet
iSup_congr_Prop
Set.ext
dist_zero_right

---

← Back to Index