Documentation Verification Report

Trim

πŸ“ Source: Mathlib/MeasureTheory/Measure/Trim.lean

Statistics

MetricCount
Definitionstrim
1
Theoremstrim, ae_eq_of_ae_eq_trim, ae_le_of_ae_le_trim, ae_map_iff_ae_trim, ae_of_ae_trim, isFiniteMeasure_trim, le_trim, map_trim_comap, measure_eq_zero_of_trim_eq_zero, measure_trim_toMeasurable_eq_zero, restrict_trim, sigmaFiniteTrim_mono, sigmaFinite_trim_bot_iff, toOuterMeasure_trim_eq_trim_toOuterMeasure, trim_add, trim_comap_apply, trim_eq_map, trim_eq_self, trim_measurableSet_eq, trim_trim, zero_trim, ae_eq_trim_of_measurable
22
Total23

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eq_of_ae_eq_trim πŸ“–β€”MeasurableSpace
MeasurableSpace.instLE
Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.trim
β€”β€”Measure.instOuterMeasureClass
measure_eq_zero_of_trim_eq_zero
ae_le_of_ae_le_trim πŸ“–β€”MeasurableSpace
MeasurableSpace.instLE
Filter.EventuallyLE
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.trim
β€”β€”Measure.instOuterMeasureClass
measure_eq_zero_of_trim_eq_zero
ae_map_iff_ae_trim πŸ“–mathematicalMeasurable
MeasurableSet
setOf
Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.map
MeasurableSpace.comap
Measure.trim
Measurable.comap_le
β€”Measure.instOuterMeasureClass
Measurable.comap_le
map_trim_comap
ae_map_iff
Measurable.aemeasurable
Measurable.of_comap_le
le_rfl
ae_of_ae_trim πŸ“–β€”MeasurableSpace
MeasurableSpace.instLE
Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Measure.trim
β€”β€”Measure.instOuterMeasureClass
measure_eq_zero_of_trim_eq_zero
isFiniteMeasure_trim πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
IsFiniteMeasure
Measure.trim
β€”trim_measurableSet_eq
MeasurableSet.univ
measure_lt_top
le_trim πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Measure
Set
Measure.instFunLike
Measure.trim
β€”le_toMeasure_apply
map_trim_comap πŸ“–mathematicalMeasurableMeasure.map
MeasurableSpace.comap
Measure.trim
Measurable.comap_le
β€”Measure.ext
Measurable.comap_le
Measure.map_apply
Measurable.of_comap_le
le_rfl
trim_measurableSet_eq
measure_eq_zero_of_trim_eq_zero πŸ“–β€”MeasurableSpace
MeasurableSpace.instLE
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.trim
instZeroENNReal
β€”β€”le_antisymm
LE.le.trans
le_trim
le_of_eq
zero_le
ENNReal.instCanonicallyOrderedAdd
measure_trim_toMeasurable_eq_zero πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.trim
instZeroENNReal
toMeasurableβ€”measure_eq_zero_of_trim_eq_zero
measure_toMeasurable
restrict_trim πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasurableSet
Measure.restrict
Measure.trim
β€”Measure.ext
Measure.restrict_apply
trim_measurableSet_eq
MeasurableSet.inter
sigmaFiniteTrim_mono πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
SigmaFinite
Measure.trim
β€”LE.le.trans
Set.mem_univ
trim_measurableSet_eq
measurableSet_spanningSets
trim_trim
measure_spanningSets_lt_top
iUnion_spanningSets
sigmaFinite_trim_bot_iff πŸ“–mathematicalβ€”SigmaFinite
Bot.bot
MeasurableSpace
OrderBot.toBot
MeasurableSpace.instLE
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
MeasurableSpace.instCompleteLattice
Measure.trim
bot_le
IsFiniteMeasure
β€”bot_le
sigmaFinite_bot_iff
IsFiniteMeasure.measure_univ_lt_top
trim_measurableSet_eq
MeasurableSet.univ
toOuterMeasure_trim_eq_trim_toOuterMeasure πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Measure.toOuterMeasure
Measure.trim
OuterMeasure.trim
β€”Measure.trim.eq_1
toMeasure_toOuterMeasure
trim_add πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Measure.trim
Measure
Measure.instAdd
β€”Measure.ext
trim_measurableSet_eq
trim_comap_apply πŸ“–mathematicalMeasurable
MeasurableSet
DFunLike.coe
Measure
MeasurableSpace.comap
Set
ENNReal
Measure.instFunLike
Measure.trim
Measurable.comap_le
Set.preimage
Measure.map
β€”Measurable.comap_le
map_trim_comap
Measure.map_apply
Measurable.of_comap_le
le_rfl
trim_eq_map πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Measure.trim
Measure.map
β€”Measure.ext
Measure.map_apply
measurable_id''
trim_measurableSet_eq
Set.preimage_id
trim_eq_self πŸ“–mathematicalβ€”Measure.trim
le_rfl
MeasurableSpace
PartialOrder.toPreorder
MeasurableSpace.instPartialOrder
β€”le_rfl
toOuterMeasure_toMeasure
trim_measurableSet_eq πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasurableSet
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
Measure.trim
β€”Measure.trim.eq_1
toMeasure_apply
Measure.coe_toOuterMeasure
trim_trim πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Measure.trim
LE.le.trans
PartialOrder.toPreorder
MeasurableSpace.instPartialOrder
β€”Measure.ext
LE.le.trans
trim_measurableSet_eq
zero_trim πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Measure.trim
Measure
Measure.instZero
β€”OuterMeasure.toMeasure_zero

MeasureTheory.Measure

Definitions

NameCategoryTheorems
trim πŸ“–CompOp
77 mathmath: MeasureTheory.lpMeasSubgroupToLpTrim_neg, MeasureTheory.lpMeasSubgroupToLpTrim_ae_eq, MeasureTheory.trim_eq_map, MeasureTheory.setLIntegral_trim, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_comp_trim, ProbabilityTheory.condExpKernel_comp_trim, MeasureTheory.condExpL1_measure_zero, MeasureTheory.condExp_congr_ae_trim, MeasureTheory.sigmaFiniteTrim_mono, MeasureTheory.setIntegral_trim, MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration, MeasureTheory.eLpNorm'_trim, ProbabilityTheory.HasSubgaussianMGF.trim, MeasureTheory.condLExp_congr_ae_trim, MeasureTheory.essSup_trim, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_map_map, ProbabilityTheory.condExp_ae_eq_trim_integral_condExpKernel_of_stronglyMeasurable, ProbabilityTheory.condExp_ae_eq_trim_integral_condExpKernel, MeasureTheory.zero_trim, MeasureTheory.lpMeasToLpTrimLie_symm_indicator, MeasureTheory.ae_eq_trim_iff_of_aestronglyMeasurable, ProbabilityTheory.condIndepFun_iff_compProd_map_prod_eq_compProd_prod_map_map, MeasureTheory.IsStoppingTime.sigmaFinite_stopping_time, MeasureTheory.IsStoppingTime.sigmaFinite_stopping_time_of_le, MeasureTheory.eLpNorm_trim, MeasureTheory.trim_eq_self, MeasureTheory.condExp_def, MeasureTheory.lpMeasSubgroupToLpTrim_sub, MeasureTheory.limsup_trim, MeasureTheory.lpMeasSubgroupToLpTrim_right_inv, MeasureTheory.eLpNormEssSup_trim, MeasureTheory.StronglyMeasurable.ae_le_trim_iff, MeasureTheory.mem_lpMeasSubgroup_toLp_of_trim, MeasureTheory.lpMeasSubgroupToLpTrim_add, MeasureTheory.lpMeasSubgroupToLpTrim_left_inv, MeasureTheory.SigmaFiniteFiltration.SigmaFinite, MeasureTheory.rnDeriv_ae_eq_condExp, MeasureTheory.lintegral_trim, ProbabilityTheory.aestronglyMeasurable_trim_condExpKernel, ProbabilityTheory.condExpKernel_ae_eq_trim_condExp, MeasureTheory.Integrable.withDensityα΅₯_trim_absolutelyContinuous, MeasureTheory.map_trim_comap, MeasureTheory.toOuterMeasure_trim_eq_trim_toOuterMeasure, MeasureTheory.le_trim, MeasureTheory.trim_measurableSet_eq, MeasureTheory.lpMeasSubgroupToLpTrim_norm_map, MeasureTheory.lpTrimToLpMeas_ae_eq, ProbabilityTheory.HasCondSubgaussianMGF.cgf_le, ProbabilityTheory.compProd_trim_condExpKernel, MeasureTheory.trim_trim, MeasureTheory.trim_withDensity, MeasureTheory.integral_trim_simpleFunc, MeasureTheory.restrict_trim, MeasureTheory.condLExp_def, MeasureTheory.sigmaFinite_trim_bot_iff, AbsolutelyContinuous.trim, ae_eq_trim_of_measurable, MeasureTheory.isometry_lpMeasSubgroupToLpTrim, MeasureTheory.lpMeasToLpTrim_ae_eq, MeasureTheory.lpMeasToLpTrim_smul, MeasureTheory.lpMeas.ae_fin_strongly_measurable', MeasureTheory.Submartingale.exists_ae_trim_tendsto_of_bdd, MeasureTheory.StronglyMeasurable.ae_eq_trim_iff, MeasureTheory.lpTrimToLpMeasSubgroup_ae_eq, MeasureTheory.StronglyMeasurable.ae_le_trim_of_stronglyMeasurable, ProbabilityTheory.HasCondSubgaussianMGF.mgf_le, ProbabilityTheory.HasCondSubgaussianMGF.ae_trim_condExp_le, MeasureTheory.memLp_trim_of_mem_lpMeasSubgroup, MeasureTheory.StronglyMeasurable.ae_eq_trim_of_stronglyMeasurable, MeasureTheory.condLExp_of_not_sub_sigma_measurable, MeasureTheory.ae_map_iff_ae_trim, MeasureTheory.trim_comap_apply, MeasureTheory.trim_add, MeasureTheory.isFiniteMeasure_trim, MeasureTheory.Integrable.trim, MeasureTheory.setLIntegral_condLExp_trim, MeasureTheory.integral_trim

MeasureTheory.Measure.AbsolutelyContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
trim πŸ“–mathematicalMeasureTheory.Measure.AbsolutelyContinuous
MeasurableSpace
MeasurableSpace.instLE
MeasureTheory.Measure.trimβ€”MeasureTheory.trim_measurableSet_eq

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eq_trim_of_measurable πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Measurable
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.trimβ€”MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyEq.eq_1
MeasureTheory.ae_iff
MeasureTheory.trim_measurableSet_eq
Measurable.not
Measurable.eq

---

← Back to Index