Documentation Verification Report

UpperLower

📁 Source: Mathlib/MeasureTheory/Order/UpperLower.lean

Statistics

MetricCount
Definitions0
Theoremsvolume_eq_zero, null_frontier, null_frontier, nullMeasurableSet, null_frontier
5
Total5

IsAntichain

Theorems

NameKindAssumesProvesValidatesDepends On
volume_eq_zero 📖mathematicalIsAntichain
Pi.hasLe
Real
Real.instLE
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
instZeroENNReal
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
closure_diff_interior
interior_eq_empty
Pi.instNeBotNhdsWithinIio
nhdsLT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Set.diff_empty
subset_closure
Set.OrdConnected.null_frontier
ordConnected

IsLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
null_frontier 📖mathematicalIsLowerSet
Pi.hasLe
Real
Real.instLE
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
frontier
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instZeroENNReal
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
Set.indicator_of_mem
IsUpperSet.exists_subset_ball
compl
frontier_subset_closure
frontier_compl
Set.indicator_of_notMem
exists_subset_ball
Besicovitch.ae_tendsto_measure_inter_div_of_measurableSet
Pi.borelSpace
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyForallOfCountable
Besicovitch.instHasBesicovitchCovering
FiniteDimensional.finiteDimensional_pi'
FiniteDimensional.rclike_to_real
MeasureTheory.Measure.instIsLocallyFiniteMeasureForallVolumeOfSigmaFinite
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Real.locallyFinite_volume
IsClosed.measurableSet
Pi.opensMeasurableSpace
BorelSpace.opensMeasurable
isClosed_closure

IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
null_frontier 📖mathematicalIsUpperSet
Pi.hasLe
Real
Real.instLE
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
frontier
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instZeroENNReal
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
Set.indicator_of_mem
IsLowerSet.exists_subset_ball
compl
frontier_subset_closure
frontier_compl
Set.indicator_of_notMem
exists_subset_ball
Besicovitch.ae_tendsto_measure_inter_div_of_measurableSet
Pi.borelSpace
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyForallOfCountable
Besicovitch.instHasBesicovitchCovering
FiniteDimensional.finiteDimensional_pi'
FiniteDimensional.rclike_to_real
MeasureTheory.Measure.instIsLocallyFiniteMeasureForallVolumeOfSigmaFinite
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Real.locallyFinite_volume
IsClosed.measurableSet
Pi.opensMeasurableSpace
BorelSpace.opensMeasurable
isClosed_closure

Set.OrdConnected

Theorems

NameKindAssumesProvesValidatesDepends On
nullMeasurableSet 📖mathematicalMeasureTheory.NullMeasurableSet
MeasurableSpace.pi
Real
Real.measurableSpace
MeasureTheory.MeasureSpace.volume
MeasureTheory.MeasureSpace.pi
Real.measureSpace
nullMeasurableSet_of_null_frontier
Pi.opensMeasurableSpace
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
null_frontier
null_frontier 📖mathematicalDFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.pi
Real
Real.measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
frontier
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instZeroENNReal
upperClosure_inter_lowerClosure
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
frontier_inter_subset
MeasureTheory.measure_union_null
MeasureTheory.measure_inter_null_of_null_left
IsUpperSet.null_frontier
UpperSet.upper
MeasureTheory.measure_inter_null_of_null_right
IsLowerSet.null_frontier
LowerSet.lower

---

← Back to Index