Documentation Verification Report

AE

📁 Source: Mathlib/MeasureTheory/OuterMeasure/AE.lean

Statistics

MetricCount
Definitionsae, «term_=ᵐ[_]_», «term_≤ᵐ[_]_», «term∀ᵐ_∂_,_», «term∃ᵐ_∂_,_»
5
Theoremsmeasure_eq, measure_le, ae_all_iff, ae_ball_iff, ae_eq_comm, ae_eq_empty, ae_eq_refl, ae_eq_rfl, ae_eq_set, ae_eq_set_compl, ae_eq_set_compl_compl, ae_eq_set_diff, ae_eq_set_inter, ae_eq_set_symmDiff, ae_eq_set_union, ae_eq_symm, ae_eq_top, ae_eq_trans, ae_eq_univ, ae_iff, ae_iff_of_countable, ae_le_of_ae_lt, ae_le_set, ae_le_set_inter, ae_le_set_union, ae_of_all, all_ae_of, compl_mem_ae_iff, diff_ae_eq_self, diff_null_ae_eq_self, frequently_ae_iff, frequently_ae_mem_iff, instCountableInterFilter, inter_ae_eq_empty_of_ae_eq_empty_left, inter_ae_eq_empty_of_ae_eq_empty_right, inter_ae_eq_left_of_ae_eq_univ, inter_ae_eq_right_of_ae_eq_univ, measure_congr, measure_eq_zero_iff_ae_notMem, measure_mono_ae, measure_mono_null_ae, measure_symmDiff_eq_zero_iff, measure_zero_iff_ae_notMem, mem_ae_iff, union_ae_eq_left_of_ae_eq_empty, union_ae_eq_right, union_ae_eq_right_of_ae_eq_empty, union_ae_eq_univ_of_ae_eq_univ_left, union_ae_eq_univ_of_ae_eq_univ_right, indicator_ae_eq_zero, mulIndicator_ae_eq_one
51
Total56

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
measure_eq 📖mathematicalFilter.EventuallyEq
MeasureTheory.ae
DFunLike.coe
Set
ENNReal
MeasureTheory.measure_congr

Filter.EventuallyLE

Theorems

NameKindAssumesProvesValidatesDepends On
measure_le 📖mathematicalFilter.EventuallyLE
Prop.le
MeasureTheory.ae
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
MeasureTheory.measure_mono_ae

MeasureTheory

Definitions

NameCategoryTheorems
ae 📖CompOp
973 mathmath: predictablePart_add_ae_eq, exists_lt_lowerSemicontinuous_integral_gt_nnreal, AEEqFun.coeFn_smul, Measure.univ_pi_Ioc_ae_eq_Icc, LpToLpRestrictCLM_coeFn, ProbabilityTheory.stieltjesOfMeasurableRat_ae_eq, ProbabilityTheory.Kernel.tendsto_m_density, ProbabilityTheory.absolutelyContinuous_posterior_iff, llr_self, ContDiffBump.ae_convolution_tendsto_right_of_locallyIntegrable, ProbabilityTheory.condIndepFun_iff_condExp_inter_preimage_eq_mul, ProbabilityTheory.condCDF_ae_eq, ProbabilityTheory.Kernel.iIndepSet_iff_meas_biInter, ae_withDensity_iff_ae_restrict, Measure.rnDeriv_zero, MonotoneOn.ae_differentiableWithinAt_of_mem, Martingale.stoppedValue_ae_eq_restrict_eq, ProbabilityTheory.condDistrib_ae_eq_condExp, aeconst_of_dense_aestabilizer_smul, condExpInd_ae_eq_condExpIndSMul, Measure.ae_ennreal_smul_measure_eq, condExp_bilin_of_stronglyMeasurable_left, ae_eq_rfl, AEEqFun.comp₂Measurable_toGerm, Integrable.toL1_eq_toL1_iff, Measure.rnDeriv_smul_right', Submartingale.upcrossings_ae_lt_top, ProbabilityTheory.condIndep_iff, Integrable.withDensityᵥ_eq_iff, ContinuousMap.coeFn_toAEEqFun, Lp.simpleFunc.toSimpleFunc_indicatorConst, lintegral_eq_zero_iff, ProbabilityTheory.Kernel.iIndep.meas_biInter, vadd_ae, ProbabilityTheory.IsRatCondKernelCDF.iInf_rat_gt_eq, ProbabilityTheory.Kernel.density_fst_univ, AbsolutelyContinuousOnInterval.ae_differentiableAt, ContinuousLinearMap.comp_condExp_comm, Measure.rnDeriv_add_right_of_absolutelyContinuous_of_mutuallySingular, LipschitzOnWith.ae_differentiableWithinAt_of_mem, Iio_ae_eq_Iic', ae_le_const_iff_forall_gt_measure_zero, Measure.rnDeriv_mul_rnDeriv', MeasurableEmbedding.rnDeriv_map, AEEqFun.toGerm_injective, ProbabilityTheory.Kernel.condExp_traj', Lp.coeFn_add, Measure.pi_Ioc_ae_eq_pi_Icc, Measure.AbsolutelyContinuous.kernel_of_compProd, ProbabilityTheory.IsRatCondKernelCDFAux.tendsto_one_of_monotone, Measure.rnDeriv_add_of_mutuallySingular, Measure.inv_rnDeriv', Lp.eq_zero_iff_ae_eq_zero, LocallyIntegrable.ae_hasDerivAt_integral, Measure.mutuallySingular_tfae, ae_eq_const_or_exists_average_ne_compl, Ico_ae_eq_Icc', Lp.ext_iff, ae_restrict_mem, condLExp_add_right, UniformIntegrable.uniformIntegrable_of_ae_tendsto, LipschitzWith.ae_lineDeriv_sum_eq, ProbabilityTheory.condExp_ae_eq_integral_condDistrib_id, Lp.coeFn_const, ProbabilityTheory.rnDeriv_gaussianReal, ae_eq_set_compl, ae_eq_zero_restrict_of_forall_setIntegral_eq_zero_real, Measure.ae_mem_finset_iff, mem_ae_map_iff, AEEqFun.mk_le_mk, AEEqFun.coeFn_inf, exp_llr_of_ac', ProbabilityTheory.Kernel.IndepSets.indep_aux, AEEqFun.coeFn_mul, LipschitzWith.ae_exists_fderiv_of_countable, AEEqFun.neg_toGerm, Besicovitch.ae_tendsto_measure_inter_div_of_measurableSet, ContinuousLinearMap.comp_condExp_add_const_comm, Measure.ae_ne, ae_restrict_biUnion_iff, toReal_rnDeriv_tilted_left, ProbabilityTheory.Kernel.ae_null_of_compProd_null, AEEqFun.coeFn_comp₂, Measure.le_ae_join, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_forall_memLp_exp_mul, ProbabilityTheory.IsRatCondKernelCDFAux.bddBelow_range, ite_ae_eq_of_measure_zero, lpMeasSubgroupToLpTrim_ae_eq, MulAction.mem_aestabilizer, ProbabilityTheory.Kernel.apply_eq_measure_condKernel_of_compProd_eq, ae_uIoc_iff, condLExp_smul, MemLp.toLp_eq_toLp_iff, ae_eq_zero_of_integral_contMDiff_smul_eq_zero, hasFiniteIntegral_prod_iff', Measure.rnDeriv_smul_right, Measure.rnDeriv_smul_left_of_ne_top', Measure.ae_mem_finset_iff_map_eq_sum_dirac, LocallyBoundedVariationOn.ae_differentiableWithinAt, ProbabilityTheory.Kernel.compProd_null, ae_restrict_biUnion_eq, pdf.eq_of_map_eq_withDensity, eventuallyConst_inv_set_ae, Measure.rnDeriv_restrict, ProbabilityTheory.Kernel.IsCondKernel.isProbabilityMeasure_ae, ProbabilityTheory.Kernel.measure_zero_or_one_of_measurableSet_limsup_atTop, ProbabilityTheory.Kernel.rnDeriv_eq_one_iff_eq, ae_eq_zero_of_forall_setIntegral_eq_of_sigmaFinite, condLExp_add_left, withDensity_eq_zero_iff, ae_measure_preimage_mul_right_lt_top, enorm_ae_le_eLpNormEssSup, ProbabilityTheory.Kernel.ae_compProd_iff, NullMeasurableSet.compl_toMeasurable_compl_ae_eq, condExp_bilin_of_aestronglyMeasurable_right, Lp.ae_eq_zero_of_forall_setIntegral_eq_zero', Ioo_ae_eq_Icc, LocallyBoundedVariationOn.ae_differentiableAt, AEStronglyMeasurable.ae_integrable_condKernel_iff, AEFinStronglyMeasurable.ae_eq_zero_of_forall_setIntegral_eq_zero, MemLp.condExpL2_ae_eq_condExp, PreErgodic.ae_eq_const_of_ae_eq_comp, ae_eq_restrict_of_forall_setIntegral_eq, Measure.univ_pi_Ioo_ae_eq_Icc, div_ae_eq_one, meas_le_ae_eq_meas_lt, Supermartingale.le_zero_of_predictable, Measure.rnDeriv_eq_one_iff_eq, ae_nonneg_of_forall_setIntegral_nonneg_of_sigmaFinite, Measure.support_mem_ae_of_isLindelof, Measure.ae_sum_iff, union_ae_eq_right, SignedMeasure.eq_rnDeriv, Continuous.ae_eq_iff_eq, ProbabilityTheory.condExp_ae_eq_integral_condDistrib, ae_isMeasurablyGenerated, ProbabilityTheory.Kernel.measure_eq_zero_or_one_of_indepSet_self, ApproximatesLinearOn.norm_fderiv_sub_le, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, LipschitzOnWith.ae_differentiableWithinAt_of_mem_real, ProbabilityTheory.posterior_boolKernel_apply_true, condExp_stopping_time_ae_eq_restrict_eq, indicatorConstLp_coeFn_mem, eventuallyConst_smul_set_ae, condExpL1_of_aestronglyMeasurable', map_mul_left_ae, IsUnifLocDoublingMeasure.ae_tendsto_measure_inter_div, ProbabilityTheory.IsRatCondKernelCDFAux.tendsto_atBot_zero, blimsup_thickening_mul_ae_eq_aux, AEEqFun.coeFn_neg, ProbabilityTheory.ae_eq_posterior_of_compProd_eq_swap_comp, ProbabilityTheory.Kernel.iIndepSet.meas_biInter, Monotone.ae_differentiableAt, ProbabilityTheory.iCondIndep_iff, condExpL2_indicator_ae_eq_smul, ProbabilityTheory.iCondIndepFun_iff_condExp_inter_preimage_eq_mul, Filtration.condExp_condExp, ae_eq_set_compl_compl, ae_eq_condLExp, curveIntegralFun_trans_aeeq_right, AEStronglyMeasurable.prodMk_right, AEEqFun.coeFn_sub, AEEqFun.coeFn_le, map_add_left_ae, Integrable.ae_of_compProd, rnDeriv_conv, ProbabilityTheory.Kernel.tendsto_density_atTop_ae_of_antitone, ae_add_measure_iff, ae_eq_top, ae_zero, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_forall_integrable_exp_mul, Lp.simpleFunc.sub_toSimpleFunc, Measure.rnDeriv_smul_left_of_ne_top, integral_eq_zero_iff_of_nonneg, condExp_smul_of_aestronglyMeasurable_right, ae_finite_setOf_mem, inv_ae, union_ae_eq_left_iff_ae_subset, MulAction.aeconst_of_aestabilizer_eq_top, diff_null_ae_eq_self, ProbabilityTheory.Kernel.indepSet_iff_measure_inter_eq_mul, AEEqFun.coeFn_comp, ProbabilityTheory.Kernel.rnDeriv_singularPart, AEEqFun.toGerm_eq, ProbabilityTheory.condIndepSets_singleton_iff, BoundedVariationOn.ae_differentiableAt_of_mem_uIcc, Lp.simpleFunc.smul_toSimpleFunc, AEEqFun.coeFn_const, ae_differentiableAt_norm, ProbabilityTheory.iIndepSet.condExp_indicator_filtrationOfSet_ae_eq, VitaliFamily.ae_tendsto_lintegral_div, VitaliFamily.ae_tendsto_measure_inter_div_of_measurableSet, AEMeasurable.ae_of_bind, AEFinStronglyMeasurable.ae_nonneg_of_forall_setIntegral_nonneg, ProbabilityTheory.Kernel.rnDeriv_eq_rnDeriv_measure, llr_tilted_right, pdf.uniformPDF_eq_pdf, condExp_mul_of_aestronglyMeasurable_right, AEStronglyMeasurable.comp, sub_ae_eq_zero, eLpNorm_eq_zero_iff, ProbabilityTheory.strong_law_ae, Martingale.eq_zero_of_predictable, AEFinStronglyMeasurable.ae_eq_of_forall_setIntegral_eq, aestronglyMeasurable_iff_aemeasurable_separable, Measure.ae_sum_eq, Measure.mutuallySingular_of_mutuallySingular_compProd, ProbabilityTheory.Kernel.HasSubgaussianMGF.measure_pos_eq_zero_of_hasSubGaussianMGF_zero, map_sub_right_ae, LipschitzWith.ae_lineDifferentiableAt, ae_eq_set, ProbabilityTheory.condDistrib_ae_eq_iff_measure_eq_compProd, ae_eq_of_forall_setIntegral_eq_of_sigmaFinite, Measure.rnDeriv_mul_rnDeriv, Integrable.tendsto_ae_condExp, Measure.mutuallySingular_compProd_right_iff, blimsup_cthickening_ae_le_of_eventually_mul_le_aux, ae_ball_iff, ProbabilityTheory.Kernel.ae_lt_top_of_comp_ne_top, Martingale.stoppedValue_ae_eq_condExp_of_le_of_countable_range, aeconst_of_dense_setOf_preimage_smul_eq, ae_toFinite, Lp.ae_eq_zero_of_forall_setIntegral_eq_zero, AEEqFun.compMeasurable_toGerm, map_restrict_ae_le_map_indicator_ae, mem_ae_dirac_iff, Measure.rnDeriv_lt_top, ProbabilityTheory.Kernel.indepFun_iff_measure_inter_preimage_eq_mul, Besicovitch.ae_tendsto_rnDeriv, ProbabilityTheory.condDistrib_ae_eq_of_measure_eq_compProd, ProbabilityTheory.condVar_smul, map_add_right_ae, ae_withDensity_iff_ae_restrict', ae_restrict_iUnion_eq, Measure.ae_prod_iff_ae_ae, condExp_finset_sum, Measure.eq_rnDeriv, AEEqFun.liftRel_mk_mk, Measure.map_div_left_ae, ae_eq_comm, ae_mono, ae_restrict_mem₀, ProbabilityTheory.ofReal_condCDF_ae_eq, ProbabilityTheory.Kernel.aestronglyMeasurable_traj, condExp_neg, condExp_mul_of_stronglyMeasurable_right, ProbabilityTheory.Kernel.iIndepSets.meas_biInter, ProbabilityTheory.condExpKernel_ae_eq_condExp', ae_withDensity_iff, Integrable.condKernel_ae, ProbabilityTheory.Kernel.measure_zero_or_one_of_measurableSet_limsup, Measure.ae_eq_or_eq_iff_map_eq_dirac_add_dirac, lintegral_eq_zero_iff', ae_restrict_eq_bot, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_map_map, Lp.coeFn_compMeasurePreserving, ae_eq_zero_restrict_of_forall_setIntegral_eq_zero, MeasurableEmbedding.rnDeriv_map_aux, ae_ae_add_linearMap_mem_iff, ProbabilityTheory.HasLaw.ae_iff, instCountableInterFilter, Monotone.ae_hasDerivAt, condExp_bilin_of_aestronglyMeasurable_left, condExp_condExp_of_le, AEEqFun.coeFn_abs, ProbabilityTheory.condExp_ae_eq_trim_integral_condExpKernel_of_stronglyMeasurable, ProbabilityTheory.Kernel.ae_kernel_lt_top, vadd_set_ae_le, Measure.absolutelyContinuous_comp_of_countable, VitaliFamily.ae_tendsto_limRatio, ProbabilityTheory.HasCondSubgaussianMGF.ae_condExp_le, ProbabilityTheory.condExp_ae_eq_trim_integral_condExpKernel, ProbabilityTheory.Kernel.rnDeriv_ne_top, condExp_ofNat, BoxIntegral.Box.coe_ae_eq_Icc, Lp.coeFn_smul, AEEqFun.coeFn_compQuasiMeasurePreserving, ae_eventually_notMem, ProbabilityTheory.IsAEKolmogorovProcess.ae_eq_mk, AEMeasurable.ae_inf_principal_eq_mk, ae_restrict_of_forall_mem, eventually_mul_left_iff, Set.Countable.ae_notMem, condExp_stronglyMeasurable_simpleFunc_mul, ProbabilityTheory.IsRatCondKernelCDFAux.mono, Measure.ae_prod_mem_iff_ae_ae_mem, Measure.map_sub_left_ae, blimsup_cthickening_ae_le_of_eventually_mul_le, BoxIntegral.Box.Ioo_ae_eq_Icc, AEDisjoint.diff_ae_eq_right, Lp.coeFn_le, ProbabilityTheory.IndepFun.pdf_add_eq_lconvolution_pdf', ProbabilityTheory.condIndepSet_iff, Lp.simpleFunc.add_toSimpleFunc, ae_le_toMeasurable, ProbabilityTheory.condDistrib_apply_ae_eq_condExpKernel_map, UnitAddTorus.coeFn_mFourierLp, Ioi_ae_eq_Ici, ae_eq_of_forall_setLIntegral_eq_of_sigmaFinite, AEEqFun.ext_iff, ProbabilityTheory.IsRatCondKernelCDFAux.nonneg, Measure.rnDeriv_smul_left', ae_eq_zero_of_forall_setIntegral_isCompact_eq_zero', condExp_mul_of_aestronglyMeasurable_left, indicator_meas_zero, ae_nonneg_restrict_of_forall_setIntegral_nonneg, ProbabilityTheory.ae_cond_mem, eventually_sub_right_iff, ae_map_iff, Lp.coeFn_negPart_eq_max, Ico_ae_eq_Ioc, IsFundamentalDomain.iUnion_smul_ae_eq, ae_measure_preimage_mul_right_lt_top_of_ne_zero, ae_eq_refl, ProbabilityTheory.Kernel.condKernel_apply_eq_condKernel, ProbabilityTheory.Kernel.rnDeriv_toReal_pos, VitaliFamily.ae_tendsto_average_norm_sub, ae_neBot, Lp.ae_eq_of_forall_setIntegral_eq', ae_eq_trim_iff_of_aestronglyMeasurable, Set.mulIndicator_ae_eq_one, ProbabilityTheory.preCDF_le_one, Measure.pi_Ico_ae_eq_pi_Icc, Martingale.condExp_stoppedValue_stopping_time_ae_eq_restrict_le, tendsto_smul_ae, AEMeasurable.ae_of_join, Measure.rnDeriv_smul_right_of_ne_top', ProbabilityTheory.Kernel.condDistrib_trajMeasure, ae_eq_zero_of_integral_contDiff_smul_eq_zero, ProbabilityTheory.Kernel.eq_rnDeriv_measure, Martingale.eq_zero_of_predictable', ProbabilityTheory.HasSubgaussianMGF.ae_eq_zero_of_hasSubgaussianMGF_zero, Measure.everywherePosSubset_ae_eq, condExp_stronglyMeasurable_simpleFunc_bilin, DomMulAct.smul_aeeqFun_aeeq, ProbabilityTheory.IsRatCondKernelCDF.tendsto_atTop_one, ProbabilityTheory.Kernel.ae_comp_iff, Supermartingale.le_zero_of_predictable', piecewise_ae_eq_restrict_compl, ae_eq_empty, ProbabilityTheory.Kernel.HasSubgaussianMGF.cgf_le, condExp_indicator, setLIntegral_eq_zero_iff, ProbabilityTheory.IndepFun.pdf_mul_eq_mlconvolution_pdf, Measure.rnDeriv_add, Ioo_ae_eq_Ico, ergodicSMul_iff, SchwartzMap.coeFn_toLp, aeconst_of_dense_aestabilizer_vadd, AEEqFun.coeFn_mk, ProbabilityTheory.iCondIndepSets_singleton_iff, ProbabilityTheory.hasFiniteIntegral_compProd_iff', Ioc_ae_eq_Icc, UnifIntegrable.unifIntegrable_of_ae_tendsto, ProbabilityTheory.ae_cond_mem₀, Integrable.ae_eq_zero_of_forall_setIntegral_eq_zero, PreErgodic.ae_empty_or_univ, ProbabilityTheory.Kernel.ae_eq_of_compProd_eq, IsAddFundamentalDomain.iUnion_vadd_ae_eq, aeconst_of_dense_setOf_preimage_vadd_eq, Measure.measure_ae_null_of_prod_null, Ioo_ae_eq_Ico', ProbabilityTheory.IndepFun.pdf_add_eq_lconvolution_pdf, ae_restrict_neBot, Measure.pi_Ioi_ae_eq_pi_Ici, ae_eq_restrict_biUnion_finset_iff, ProbabilityTheory.Kernel.densityProcess_fst_univ_ae, Submartingale.ae_tendsto_limitProcess_of_uniformIntegrable, ae_eq_zero_of_integral_smooth_smul_eq_zero, ProbabilityTheory.condExp_set_generateFrom_singleton, ae_dirac_iff, ProbabilityTheory.IsAEKolmogorovProcess.edist_eq_zero_of_const_eq_zero, Measure.eq_rnDeriv₀, Lp.coeFn_sup, Measure.ae_eq_or_eq_iff_eq_dirac_add_dirac, pdf.IsUniform.pdf_toReal_ae_eq, ProbabilityTheory.condExp_generateFrom_singleton, ProbabilityTheory.condDistrib_comp, AEEqFun.liftRel_iff_coeFn, condExp_smul, integrable_prod_iff, ae_eq_restrict_biUnion_iff, Martingale.stoppedValue_min_ae_eq_condExp, ProbabilityTheory.condExp_ae_eq_integral_condExpKernel, Submartingale.zero_le_of_predictable, Measure.rnDeriv_add_right_of_mutuallySingular', Measure.univ_pi_Ico_ae_eq_Icc, ProbabilityTheory.monotone_preCDF, Measure.rnDeriv_ne_top, ProbabilityTheory.Kernel.condExp_traj, ProbabilityTheory.Kernel.HasSubgaussianMGF.isFiniteMeasure, Measure.ae_smul_measure_iff, ProbabilityTheory.Kernel.compProd_eq_zero_iff, Real.disjoint_residual_ae, Measure.ae_completion, Integrable.ae_eq_of_withDensityᵥ_eq, Measure.pi_Ioo_ae_eq_pi_Icc, ae_restrict_union_iff, mem_map_restrict_ae_iff, TendstoInMeasure.exists_seq_tendsto_ae, AEEqFun.smul_toGerm, withDensity_eq_iff, ProbabilityTheory.condKernel_compProd, ProbabilityTheory.Kernel.HasSubgaussianMGF.mgf_le, ProbabilityTheory.Kernel.rnDeriv_pos, ProbabilityTheory.Kernel.density_ae_eq_limitProcess, smul_ae, integrable_conv_iff, Measure.inv_rnDeriv, ProbabilityTheory.IsRatCondKernelCDFAux.mono', AEEqFun.coeFn_sup, ae_restrict_iff₀, ProbabilityTheory.strong_law_aux6, tendsto_sum_indicator_atTop_iff', ProbabilityTheory.Kernel.rnDerivAux_le_one, ae_bdd_liminf_atTop_rpow_of_eLpNorm_bdd, limsup_trim, ae_le_eLpNormEssSup, Measure.univ_pi_Ioi_ae_eq_Ici, Measure.integrable_compProd_iff, ProbabilityTheory.IsKolmogorovProcess.edist_eq_zero_of_const_eq_zero, Integrable.condDistrib_ae, rnDeriv_mconv, ProbabilityTheory.condIndepSets_iff, IsOpen.ae_eq_empty_iff_eq, log_rnDeriv_tilted_left_self, ProbabilityTheory.iCondIndepSet_iff, AEEqFun.coeFn_comp₂Measurable, condExp_add, ProbabilityTheory.condExpKernel_singleton_ae_eq_cond, mem_ae_iff_prob_eq_one, ae_eq_dirac', ProbabilityTheory.Kernel.iIndepFun.measure_inter_preimage_eq_mul, condExp_ae_eq_condExpL1, ae_eq_univ_iff_measure_eq, ProbabilityTheory.condVar_ae_le_condExp_sq, ProbabilityTheory.condDistrib_snd_prod, AEEqFun.pow_toGerm, ae_eq_bot, DomAddAct.vadd_aeeqFun_aeeq, AEStronglyMeasurable.compProd_mk_left, ae_nonneg_restrict_of_forall_setIntegral_nonneg_inter, vadd_mem_ae, ae_restrict_iff_subtype, ProbabilityTheory.condExp_prod_ae_eq_integral_condDistrib, ProbabilityTheory.condExp_ae_eq_integral_condExpKernel', pdf.IsUniform.pdf_eq_zero_of_measure_eq_zero_or_top, AEEqFun.toGermMonoidHom_apply, Integrable.ae_eq_of_forall_setIntegral_eq, DomAddAct.vadd_Lp_ae_eq, Lp.ae_tendsto_of_cauchy_eLpNorm', AddAction.coe_aestabilizer, Ico_ae_eq_Ioc', rnDeriv_mconv', Lp.simpleFunc.neg_toSimpleFunc, ProbabilityTheory.Kernel.IndepFun.meas_inter, Set.indicator_ae_eq_zero, ProbabilityTheory.IsRatCondKernelCDFAux.le_one', VitaliFamily.ae_tendsto_div, withDensity_eq_zero, VitaliFamily.ae_tendsto_measure_inter_div, ae_le_lpNorm_exponent_top, StronglyMeasurable.ae_le_trim_iff, condExp_ae_eq_condExpL1CLM, BoundedContinuousFunction.coeFn_toLp, ProbabilityTheory.condDistrib_ae_eq_of_measure_eq_compProd_of_measurable, frequently_ae_mem_iff, indicatorConstLp_inj, LocallyBoundedVariationOn.ae_differentiableWithinAt_of_mem, Measure.ae_ennreal_smul_measure_iff, tendsto_ae_condExp, Measure.everywherePosSubset_ae_eq_of_measure_ne_top, ProbabilityTheory.IsRatCondKernelCDFAux.tendsto_zero_of_antitone, ae_restrict_le, AEStronglyMeasurable.ae_eq_mk, ae_finsetSum_measure_iff, AEEqFun.one_toGerm, Measure.rnDeriv_eq_zero_of_mutuallySingular, Measure.tendsto_ae_map, Measure.mutuallySingular_iff_disjoint_ae, Measure.ae_comp_iff, ProbabilityTheory.condExp_zero_or_one_of_measurableSet_limsup, rnDeriv_ae_eq_condExp, VitaliFamily.ae_eventually_measure_zero_of_singular, Besicovitch.ae_tendsto_measure_inter_div, ergodicVAdd_iff, Measure.rnDeriv_pos, ProbabilityTheory.hasFiniteIntegral_comp_iff', ae_restrict_biUnion_finset_iff, pdf.IsUniform.pdf_eq, sub_nonneg_ae, Integrable.ae_convolution_exists, AEStronglyMeasurable.ae_of_compProd, ProbabilityTheory.IsRatCondKernelCDF.tendsto_atBot_zero, L1.SimpleFunc.negPart_toSimpleFunc, ae_le_of_forall_setLIntegral_le_of_sigmaFinite₀, condExp_stopping_time_ae_eq_restrict_eq_of_countable, ProbabilityTheory.condExpKernel_ae_eq_condExp, LipschitzWith.ae_differentiableAt, VitaliFamily.ae_tendsto_lintegral_div', ProbabilityTheory.IndepFun.pdf_mul_eq_mlconvolution_pdf', ProbabilityTheory.hasFiniteIntegral_comp_iff, ProbabilityTheory.aestronglyMeasurable_trim_condExpKernel, AEEqFun.coeFn_compMeasurable, Measure.pi_Ioo_ae_eq_pi_Ioc, union_ae_eq_right_iff_ae_subset, condExp_stopping_time_ae_eq_restrict_eq_of_countable_range, Lp.simpleFunc.coeFn_le, pdf.indepFun_iff_pdf_prod_eq_pdf_mul_pdf, condLExp_smul_le, Measure.QuasiMeasurePreserving.ae_map_le, Martingale.condExp_stopping_time_ae_eq_restrict_eq_const_of_le_const, Lp.ae_tendsto_of_cauchy_eLpNorm, condExp_of_aestronglyMeasurable', isClosed_setOf_preimage_ae_eq, Lp.simpleFunc.toSimpleFunc_toLp, Lp.coeFn_nonneg, ProbabilityTheory.condExpKernel_ae_eq_trim_condExp, Measure.ae_le_iff_absolutelyContinuous, ae_eq_dirac, Conservative.ae_mem_imp_frequently_image_mem, condExp_min_stopping_time_ae_eq_restrict_le_const, ae_iff, ProbabilityTheory.integrable_compProd_iff, vadd_set_ae_eq, ae_restrict_biUnion_finset_eq, toMeasurable_def, Supermartingale.condExp_ae_le, Martingale.stoppedValue_ae_eq_condExp_of_le_const, Lp.coeFn_lpSMul, exists_lt_lowerSemicontinuous_integral_lt, Lp.simpleFunc.coeFn_zero, L1.SimpleFunc.posPart_toSimpleFunc, ProbabilityTheory.iCondIndepSets_iff, Measure.QuasiMeasurePreserving.tendsto_ae, condExpIndSMul_nonneg, ProbabilityTheory.Kernel.ae_null_of_comp_null, AEEqFun.compQuasiMeasurePreserving_toGerm, exp_neg_llr, ae_restrict_eq, MeasurePreserving.rnDeriv_comp_aeEq, ProbabilityTheory.IsRatCondKernelCDFAux.iInf_rat_gt_eq, ProbabilityTheory.condExp_prod_ae_eq_integral_condDistrib₀, exp_neg_llr', condExp_smul_of_aestronglyMeasurable_left, Measure.rnDeriv_singularPart, AEEqFun.coeFn_add, ContinuousLinearMap.coeFn_compLpL, insert_ae_eq_self, mem_ae_iff_prob_eq_one₀, Measure.support_mem_ae, LipschitzOnWith.ae_differentiableWithinAt_of_mem_of_real, ProbabilityTheory.IsRatCondKernelCDFAux.le_one, ae_restrict_le_codiscreteWithin, condLExp_bot_ae_eq, diff_ae_eq_self, tendsto_vadd_ae, LocallyBoundedVariationOn.ae_differentiableWithinAt_of_mem_pi, SignedMeasure.rnDeriv_smul, ProbabilityTheory.Kernel.rnDeriv_lt_top, rnDeriv_tilted_left, pdf_of_not_aemeasurable, MulAction.coe_aestabilizer, ae_eq_of_integral_contMDiff_smul_eq, smul_mem_ae, Measure.AbsolutelyContinuous.ae_le, indicator_ae_eq_restrict_compl, ProbabilityTheory.Kernel.iIndep.meas_iInter, ae_restrict_uIoc_iff, Measure.cofinite_le_ae, measure_zero_iff_ae_notMem, Submartingale.zero_le_of_predictable', ProbabilityTheory.posterior_boolKernel_apply_false, Measure.rnDeriv_withDensity, LipschitzOnWith.ae_differentiableWithinAt_real, AEStronglyMeasurable.ae_integrable_condDistrib_map_iff, MeasurePreserving.aeconst_preimage, ae_measure_preimage_add_right_lt_top_of_ne_zero, AECover.ae_tendsto_indicator, Measure.ae_count_iff, AEEqFun.comp₂_toGerm, AEEqFun.sub_toGerm, AEFinStronglyMeasurable.ae_eq_zero_compl, Ioc_ae_eq_Icc', Ioo_ae_eq_Ioc, ae_mem_iff_measure_eq, ProbabilityTheory.condDistrib_self, ae_of_all, ProbabilityTheory.strong_law_aux7, ae_eq_zero_of_forall_setIntegral_eq_of_finStronglyMeasurable_trim, integrable_prod_iff', MeasurePreserving.aeconst_comp, ProbabilityTheory.condExp_ae_eq_integral_condDistrib', IsUnifLocDoublingMeasure.ae_tendsto_average, ProbabilityTheory.Kernel.condExp_densityProcess, ProbabilityTheory.Kernel.tendsto_densityProcess_limitProcess, IsUnifLocDoublingMeasure.ae_tendsto_average_norm_sub, MemLp.condExpL2_ae_eq_condExp', map_mul_right_ae, ae_lt_top', indicatorConstLp_coeFn_notMem, interior_ae_eq_of_null_frontier, Conservative.ae_frequently_mem_of_mem_nhds, Martingale.condExp_ae_eq, ContinuousMap.coeFn_toLp, AEEqFun.coeFn_star, AddCircle.addWellApproximable_ae_empty_or_univ, Lp.simpleFunc.exists_simpleFunc_nonneg_ae_eq, ae_dirac_eq, AECover.ae_eventually_mem, AEEqFun.coeFn_zero, ite_ae_eq_of_measure_compl_zero, AEEqFun.toGermAddMonoidHom_apply, ProbabilityTheory.eq_condKernel_of_measure_eq_compProd_real, ProbabilityTheory.condDistrib_comp_self, lpTrimToLpMeas_ae_eq, rnDeriv_conv', AEEqFun.coeFn_compMeasurePreserving, ae_bdd_liminf_atTop_of_eLpNorm_bdd, exists_subordinate_pairwise_disjoint, VitaliFamily.ae_tendsto_rnDeriv_of_absolutelyContinuous, ProbabilityTheory.iCondIndepFun_iff, ProbabilityTheory.HasCondSubgaussianMGF.cgf_le, Ioo_ae_eq_Icc', IsAddFundamentalDomain.ae_covers, ae_mem_limsup_atTop_iff, setLIntegral_eq_zero_iff', Measure.univ_pi_Iio_ae_eq_Iic, AEEqFun.coeFn_inv, Conservative.ae_forall_image_mem_imp_frequently_image_mem, neg_ae, martingalePart_add_ae_eq, AEMeasurable.ae_eq_of_forall_setLIntegral_eq, ae_nonneg_of_forall_setIntegral_nonneg, VitaliFamily.ae_tendsto_rnDeriv, DomMulAct.smul_Lp_ae_eq, Measure.FiniteAtFilter.inf_ae_iff, MonotoneOn.exists_tendsto_deriv_liminf_lintegral_enorm_le, AEEqFun.div_toGerm, ProbabilityTheory.Kernel.tendsto_densityProcess_fst_atTop_ae_of_monotone, ae_const_le_iff_forall_lt_measure_zero, ProbabilityTheory.strong_law_aux4, ProbabilityTheory.condExp_zero_or_one_of_measurableSet_limsup_atTop, ProbabilityTheory.condVar_neg, ProbabilityTheory.Kernel.integrable_traj, Integrable.coeFn_toL1, ProbabilityTheory.eq_condKernel_of_measure_eq_compProd', Measure.ae_measure_lt_top, ProbabilityTheory.condVar_bot_ae_eq, Measure.inv_rnDeriv_aux, tendstoInMeasure_ae_unique, LipschitzWith.ae_differentiableAt_of_real, Submartingale.ae_tendsto_limitProcess, ae_eq_of_setLIntegral_prod_eq, Measure.integrable_comp_iff, condExp_restrict_ae_eq_restrict, smul_set_ae_eq, ProbabilityTheory.Kernel.measure_zero_or_one_of_measurableSet_limsup_atBot, hasFiniteIntegral_prod_iff, Conservative.inter_frequently_image_mem_ae_eq, ProbabilityTheory.iIndepFun.condExp_natural_ae_eq_of_lt, Measure.absolutelyContinuous_compProd_iff', pdf.eq_of_map_eq_withDensity', Lp.coeFn_negPart, Integrable.prod_left_ae, Measure.ae_smul_measure_le, ProbabilityTheory.condVar_of_aestronglyMeasurable, ProbabilityTheory.IsSetBernoulli.ae_subset, ProbabilityTheory.IsRatCondKernelCDFAux.isRatStieltjesPoint_ae, Measure.rnDeriv_withDensity₀, AEEqFun.coeFn_posPart, ae_restrict_iff, llr_tilted_left, AEFinStronglyMeasurable.ae_eq_mk, ae_withDensity_iff', eLpNorm'_eq_zero_iff, Submartingale.exists_ae_tendsto_of_bdd, Measure.MutuallySingular.disjoint_ae, ProbabilityTheory.posterior_id, ProbabilityTheory.Kernel.measure_eq_zero_or_one_or_top_of_indepSet_self, Submartingale.upcrossings_ae_lt_top', AEEqFun.mk_toGerm, ProbabilityTheory.IsRatCondKernelCDFAux.nonneg', eLpNormEssSup_lt_top_iff_isBoundedUnder, blimsup_cthickening_ae_eq_blimsup_thickening, MemLp.coeFn_toLp, IsProbabilityMeasure.ae_neBot, exists_seq_tendstoInMeasure_atTop_iff, ProbabilityTheory.Kernel.iIndep.ae_isProbabilityMeasure, ae_restrict_iff', NumberField.mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, Measure.rnDeriv_smul_left, curveIntegralFun_trans_aeeq_left, piecewise_ae_eq_restrict, polarCoord_source_ae_eq_univ, Measure.rnDeriv_restrict_self, Lp.coeFn_zero, ProbabilityTheory.ae_cond_of_forall_mem, mem_ae_iff, Measure.ae_integrable_of_integrable_comp, StieltjesFunction.ae_hasDerivAt, le_ae_restrict, ProbabilityTheory.strong_law_aux1, ProbabilityTheory.condExp_zero_or_one_of_measurableSet_limsup_atBot, AEEqFun.mk_eq_mk, MeasurableEmbedding.ae_map_iff, condExpIndL1Fin_ae_eq_condExpIndSMul, Measure.rnDeriv_withDensity_left_of_absolutelyContinuous, aestronglyMeasurable_iff_nullMeasurable_separable, LipschitzWith.coeFn_compLp, ProbabilityTheory.hasFiniteIntegral_compProd_iff, Measure.ae_mono', ProbabilityTheory.strong_law_ae_simpleFunc_comp, ProbabilityTheory.Kernel.HasSubgaussianMGF.measure_ge_le, SignedMeasure.rnDeriv_neg, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkRight, submartingale_iff_condExp_sub_nonneg, Lp.coeFn_neg, condExp_bilin_of_stronglyMeasurable_right, Martingale.condExp_stopping_time_ae_eq_restrict_eq_const, Lp.coeFn_abs, VitaliFamily.ae_eventually_measure_pos, ProbabilityTheory.posterior_posterior, AEEqFun.mul_toGerm, AEStronglyMeasurable.isSeparable_ae_range, ProbabilityTheory.condDistrib_const, AEEqFun.zpow_toGerm, AEEqFun.comp_toGerm, ae_eq_of_forall_setLIntegral_eq_of_sigmaFinite₀, Measure.measure_prod_null, ProbabilityTheory.evariance_eq_zero_iff, blimsup_thickening_mul_ae_eq, ProbabilityTheory.Kernel.iIndepFun.meas_iInter, Measure.measure_support_eq_zero_iff, eventually_add_left_iff, exp_llr_of_ac, ae_eq_condLExp₀, Lp.coeFn_sub, ProbabilityTheory.strong_law_aux2, eventually_mul_right_iff, AEEqFun.coeFn_zpow, condLExp_smul', ProbabilityTheory.condDistrib_fst_prod, ProbabilityTheory.IsRatCondKernelCDFAux.tendsto_atTop_one, mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem, ContinuousLinearMap.coeFn_compLp, ProbabilityTheory.Kernel.iIndepFun.meas_biInter, ProbabilityTheory.Kernel.IndepFun.measure_inter_preimage_eq_mul, AEDisjoint.diff_ae_eq_left, ProbabilityTheory.posterior_eq_withDensity_of_countable, ae_not_liouville, withDensity_eq_iff_of_sigmaFinite, AEEqFun.zero_toGerm, Measure.compProd_eq_zero_iff, closure_ae_eq_of_null_frontier, Martingale.ae_eq_condExp_limitProcess, ae_eq_zero_of_forall_setIntegral_isCompact_eq_zero, ProbabilityTheory.strong_law_ae_real, ae_restrict_iff'₀, ProbabilityTheory.strong_law_aux5, NumberField.mixedEmbedding.fundamentalCone.compactSet_ae, Lp.coeFn_posPart, Measure.MutuallySingular.rnDeriv_ae_eq_zero, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkLeft, pi_polarCoord_symm_target_ae_eq_univ, ProbabilityTheory.IsRatCondKernelCDF.isRatStieltjesPoint_ae, Measure.tendsto_eval_ae_ae, AEEqFun.coeFn_pow, measure_eq_zero_iff_ae_notMem, eLpNormEssSup_eq_zero_iff, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_eq_zero_of_hasSubgaussianMGF_zero', ProbabilityTheory.Kernel.iIndepSets_singleton_iff, ProbabilityTheory.setBernoulli_ae_subset, ae_eq_of_forall_setIntegral_eq_of_sigmaFinite', AddAction.aeconst_of_aestabilizer_eq_top, IsOpen.ae_eq_zero_of_integral_contMDiff_smul_eq_zero, ProbabilityTheory.condDistrib_map, blimsup_cthickening_mul_ae_eq, ProbabilityTheory.Kernel.eq_rnDeriv, ae_all_iff, ProbabilityTheory.Kernel.compProd_eq_iff, Lp.ae_eq_of_forall_setIntegral_eq, llr_smul_right, Measure.ae.neBot, IsOpen.ae_eq_zero_of_integral_smooth_smul_eq_zero, condExp_indep_eq, ae_map_mem_range, ae_le_of_forall_setIntegral_le, ae_eq_univ, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_aestronglyMeasurable, Measure.rnDeriv_withDensity_rnDeriv, lpMeasToLpTrim_ae_eq, AEStronglyMeasurable.prodMk_left, Martingale.eq_condExp_of_tendsto_eLpNorm, AEMeasurable.ae_mem_imp_eq_mk, ae_le_of_forall_setLIntegral_le_of_sigmaFinite, NullMeasurableSet.toMeasurable_ae_eq, Measure.exists_ae_subset_biUnion_countable, ProbabilityTheory.Kernel.rnDeriv_add, AEMeasurable.ae_eq_mk, AddCircle.closedBall_ae_eq_ball, IntervalIntegrable.ae_hasDerivAt_integral, ProbabilityTheory.eq_condKernel_of_kernel_eq_compProd, ae_eq_zero_of_eLpNorm'_eq_zero, AddAction.mem_aestabilizer, rnDeriv_tilted_right, eventuallyConst_neg_set_ae, Measure.ae_compProd_iff, ProbabilityTheory.Kernel.IndepSet.measure_inter_eq_mul, smul_set_ae_le, ae_eq_restrict_iff_indicator_ae_eq, ae_iff_of_countable, ProbabilityTheory.strong_law_ae_of_measurable, Measure.absolutelyContinuous_compProd_right_iff, ProbabilityTheory.condVar_ae_eq_condExp_sq_sub_sq_condExp, condExp_sub, ProbabilityTheory.Kernel.iIndepFun.ae_isProbabilityMeasure, condExpIndSMul_ae_eq_smul, PreErgodic.ae_mem_or_ae_notMem, Measure.ae_pi_le_pi, Lp.dense_hasCompactSupport_contDiff, IsFundamentalDomain.ae_covers, ProbabilityTheory.condIndepFun_iff, Measure.rnDeriv_self, lpMeas.ae_fin_strongly_measurable', ae_eq_condExp_of_forall_setIntegral_eq, VitaliFamily.ae_tendsto_limRatioMeas, ProbabilityTheory.Kernel.rnDeriv_self, AEEqFun.compMeasurePreserving_toGerm, Submartingale.exists_ae_trim_tendsto_of_bdd, Martingale.stoppedValue_ae_eq_condExp_of_le_const_of_countable_range, eventually_add_right_iff, IsOpen.ae_eq_zero_of_integral_smooth_smul_eq_zero', Measure.pi_Iio_ae_eq_pi_Iic, ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero, ProbabilityTheory.IsRatCondKernelCDF.mono, ProbabilityTheory.condExp_eq_zero_or_one_of_condIndepSet_self, StronglyMeasurable.ae_eq_trim_iff, VitaliFamily.ae_tendsto_average, lpTrimToLpMeasSubgroup_ae_eq, ae_restrict_iUnion_iff, indicator_ae_eq_restrict, Lp.coeFn_inf, Ioi_ae_eq_Ici', ProbabilityTheory.Kernel.HasSubgaussianMGF.measure_univ_le_one, NullMeasurableSet.exists_measurable_superset_ae_eq, ProbabilityTheory.Kernel.HasSubgaussianMGF.measure_ge_le_exp_add, exists_upperSemicontinuous_lt_integral_gt, eventuallyConst_vadd_set_ae, ProbabilityTheory.condKernel_const, Measure.rnDeriv_add', AEEqFun.coeFn_div, Integrable.condDistrib_ae_map, integrable_mconv_iff, ProbabilityTheory.condExp_prod_ae_eq_integral_condDistrib', rnDeriv_tilted_left_self, eventually_div_right_iff, lpNorm_eq_zero, Lp.simpleFunc.toSimpleFunc_eq_toFun, Integrable.condExpKernel_ae, Measure.ae_ae_comm, measure_symmDiff_eq_zero_iff, uIoc_ae_eq_interval, ae_not_liouvilleWith, MeasurableEquiv.map_ae, LipschitzOnWith.ae_differentiableWithinAt_of_mem_pi, Ico_ae_eq_Icc, Measure.rnDeriv_pos', PreErgodic.aeconst_set, Measure.rnDeriv_le_one_of_le, NullMeasurableSet.exists_measurable_subset_ae_eq, LipschitzOnWith.ae_differentiableWithinAt, condLExp_add_le, lpMeas.ae_eq_zero_of_forall_setIntegral_eq_zero, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_integrable_exp_mul, Measure.rnDeriv_eq_zero, ae_restrict_uIoc_eq, VitaliFamily.ae_tendsto_lintegral_enorm_sub_div_of_integrable, ae_eq_of_subset_of_measure_ge, ProbabilityTheory.HasCondSubgaussianMGF.mgf_le, VitaliFamily.ae_tendsto_lintegral_enorm_sub_div, LocallyBoundedVariationOn.ae_differentiableWithinAt_of_mem_real, exp_llr, ae_toFiniteAux, ProbabilityTheory.HasCondSubgaussianMGF.ae_trim_condExp_le, indicatorConstLp_coeFn, VitaliFamily.ae_tendsto_lintegral_enorm_sub_div'_of_integrable, ProbabilityTheory.Kernel.iIndepSets.meas_iInter, ProbabilityTheory.Kernel.rnDeriv_withDensity, Lp.simpleFunc.coeFn_nonneg, ProbabilityTheory.IsAEKolmogorovProcess.edist_eq_zero, ProbabilityTheory.eq_condKernel_of_measure_eq_compProd, memLp_trim_of_mem_lpMeasSubgroup, AEStronglyMeasurable.ae_mem_imp_eq_mk, IntegrableAtFilter.inf_ae_iff, IsClosed.ae_eq_univ_iff_eq, ProbabilityTheory.ae_eq_posterior_of_compProd_eq, IsOpen.ae_eq_zero_of_integral_contMDiff_smul_eq_zero', ae_eq_restrict_iUnion_iff, ProbabilityTheory.integrable_comp_iff, Measure.ae_sum_iff', Integrable.ae_of_comp, ENNReal.essSup_eq_zero_iff, condExp_min_stopping_time_ae_eq_restrict_le, ENNReal.ae_le_essSup, condExpL2_comp_continuousLinearMap, Lp.coeFn_star, map_div_right_ae, Submartingale.ae_le_condExp, ae_restrict_union_eq, toReal_rnDeriv_tilted_right, ae_map_iff_ae_trim, Measure.ae_eval_ne, TendstoInMeasure.exists_seq_tendsto_ae', llr_smul_left, MonotoneOn.ae_differentiableWithinAt, condExpL2_const_inner, ProbabilityTheory.IsKolmogorovProcess.edist_eq_zero, Ioo_ae_eq_Ioc', ae_measure_preimage_add_right_lt_top, Submartingale.condExp_sub_nonneg, coeFn_fourierLp, ae_iff_measure_eq, self_mem_ae_restrict, LipschitzWith.ae_differentiableAt_real, ProbabilityTheory.Kernel.tendsto_density_fst_atTop_ae_of_monotone, pdf.ofReal_toReal_ae_eq, ProbabilityTheory.Kernel.indepSets_singleton_iff, mem_map_indicator_ae_iff_of_zero_notMem, AEFinStronglyMeasurable.exists_set_sigmaFinite, condExp_mul_of_stronglyMeasurable_left, ae_le_set, Lp.simpleFunc.zero_toSimpleFunc, Martingale.stoppedValue_ae_eq_condExp_of_le, Measure.rnDeriv_smul_right_of_ne_top, frequently_ae_iff, IsOpen.ae_eq_zero_of_integral_contDiff_smul_eq_zero, condExp_bot_ae_eq, AEEqFun.inv_toGerm, ProbabilityTheory.Kernel.iIndepSets.ae_isProbabilityMeasure, condExp_ae_eq_restrict_of_measurableSpace_eq_on, ProbabilityTheory.Kernel.comp_null, ContinuousLinearMap.coeFn_holder, Integrable.prod_right_ae, ae_lt_top, condExpL2_indicator_nonneg, ae_comp_linearMap_mem_iff, ae_eq_of_integral_contDiff_smul_eq, ProbabilityTheory.deterministic_comp_posterior, ae_eq_of_integral_smooth_smul_eq, ZSpan.fundamentalDomain_ae_parallelepiped, compl_mem_ae_iff, ae_iff_prob_eq_one, Measure.rnDeriv_le_one_iff_le, Measure.ae_smul_measure_eq, one_le_div_ae, ae_eq_zero_of_forall_setIntegral_isClosed_eq_zero, AEEqFun.coeFn_pair, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_eq_zero_of_hasSubgaussianMGF_zero_of_measurable, SignedMeasure.rnDeriv_add, AEEqFun.add_toGerm, neg_llr, AEEqFun.coeFn_one, pdf.ae_lt_top, ContinuousLinearMap.coeFn_compLp', Conservative.frequently_ae_mem_and_frequently_image_mem, Measure.rnDeriv_add_right_of_mutuallySingular, Iio_ae_eq_Iic, NumberField.mixedEmbedding.fundamentalCone.closure_paramSet_ae_interior, SignedMeasure.rnDeriv_sub, ProbabilityTheory.posterior_comp, ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_eq_zero_of_hasSubgaussianMGF_zero, ProbabilityTheory.Kernel.iIndepFun_iff_measure_inter_preimage_eq_mul
«term_=ᵐ[_]_» 📖CompOp
«term_≤ᵐ[_]_» 📖CompOp
«term∀ᵐ_∂_,_» 📖CompOp
«term∃ᵐ_∂_,_» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ae_all_iff 📖mathematicalFilter.Eventually
ae
eventually_countable_forall
instCountableInterFilter
ae_ball_iff 📖mathematicalFilter.Eventually
ae
eventually_countable_ball
instCountableInterFilter
ae_eq_comm 📖mathematicalFilter.EventuallyEq
ae
Filter.eventuallyEq_comm
ae_eq_empty 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instEmptyCollection
DFunLike.coe
ENNReal
instZeroENNReal
Filter.eventuallyEq_empty
ae_eq_refl 📖mathematicalFilter.EventuallyEq
ae
Filter.EventuallyEq.rfl
ae_eq_rfl 📖mathematicalFilter.EventuallyEq
ae
Filter.EventuallyEq.rfl
ae_eq_set 📖mathematicalFilter.EventuallyEq
ae
DFunLike.coe
Set
ENNReal
Set.instSDiff
instZeroENNReal
ae_eq_set_compl 📖mathematicalFilter.EventuallyEq
ae
Compl.compl
Pi.instCompl
Prop.instCompl
ae_eq_set_compl_compl
compl_compl
ae_eq_set_compl_compl 📖mathematicalFilter.EventuallyEq
ae
Compl.compl
Pi.instCompl
Prop.instCompl
compl_symmDiff_compl
ae_eq_set_diff 📖mathematicalFilter.EventuallyEq
ae
Pi.sdiff
BooleanAlgebra.toSDiff
Prop.instBooleanAlgebra
Filter.EventuallyEq.diff
ae_eq_set_inter 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instInter
Filter.EventuallyEq.inter
ae_eq_set_symmDiff 📖mathematicalFilter.EventuallyEq
ae
symmDiff
Pi.instMaxForall_mathlib
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
Pi.sdiff
BooleanAlgebra.toSDiff
Prop.instBooleanAlgebra
Filter.EventuallyEq.symmDiff
ae_eq_set_union 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instUnion
Filter.EventuallyEq.union
ae_eq_symm 📖Filter.EventuallyEq
ae
Filter.EventuallyEq.symm
ae_eq_top 📖mathematicalae
Top.top
Filter
Filter.instTop
compl_compl
Set.compl_empty_iff
Set.not_nonempty_iff_eq_empty
measure_mono_null
Set.singleton_subset_iff
Set.compl_univ
measure_empty
ae_eq_trans 📖Filter.EventuallyEq
ae
Filter.EventuallyEq.trans
ae_eq_univ 📖mathematicalFilter.EventuallyEq
ae
Set.univ
DFunLike.coe
Set
ENNReal
Compl.compl
Set.instCompl
instZeroENNReal
Filter.eventuallyEq_univ
ae_iff 📖mathematicalFilter.Eventually
ae
DFunLike.coe
Set
ENNReal
setOf
instZeroENNReal
ae_iff_of_countable 📖mathematicalFilter.Eventually
ae
ae_iff
measure_null_iff_singleton
Set.to_countable
SetCoe.countable
not_imp_comm
ae_le_of_ae_lt 📖mathematicalFilter.Eventually
Preorder.toLT
ae
Filter.EventuallyLE
Preorder.toLE
Filter.Eventually.mono
le_of_lt
ae_le_set 📖mathematicalFilter.EventuallyLE
Prop.le
ae
DFunLike.coe
Set
ENNReal
Set.instSDiff
instZeroENNReal
ae_le_set_inter 📖mathematicalFilter.EventuallyLE
Prop.le
ae
Set
Set.instInter
Filter.EventuallyLE.inter
ae_le_set_union 📖mathematicalFilter.EventuallyLE
Prop.le
ae
Set
Set.instUnion
Filter.EventuallyLE.union
ae_of_all 📖mathematicalFilter.Eventually
ae
Filter.Eventually.of_forall
all_ae_of 📖Filter.Eventually
ae
Filter.mp_mem
Filter.univ_mem'
compl_mem_ae_iff 📖mathematicalSet
Filter
Filter.instMembership
ae
Compl.compl
Set.instCompl
DFunLike.coe
ENNReal
instZeroENNReal
compl_compl
diff_ae_eq_self 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instSDiff
DFunLike.coe
ENNReal
Set.instInter
instZeroENNReal
sdiff_sdiff_self
measure_empty
sdiff_sdiff_right_self
diff_null_ae_eq_self 📖mathematicalDFunLike.coe
Set
ENNReal
instZeroENNReal
Filter.EventuallyEq
ae
Set.instSDiff
diff_ae_eq_self
measure_mono_null
Set.inter_subset_right
frequently_ae_iff 📖mathematicalFilter.Frequently
ae
compl_mem_ae_iff
frequently_ae_mem_iff 📖mathematicalFilter.Frequently
Set
Set.instMembership
ae
compl_mem_ae_iff
instCountableInterFilter 📖mathematicalCountableInterFilter
ae
measure_mono_null
Filter.countableInter_ofCountableUnion
inter_ae_eq_empty_of_ae_eq_empty_left 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instEmptyCollection
Set.instInterSet.empty_inter
ae_eq_set_inter
ae_eq_refl
inter_ae_eq_empty_of_ae_eq_empty_right 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instEmptyCollection
Set.instInterSet.inter_empty
ae_eq_set_inter
ae_eq_refl
inter_ae_eq_left_of_ae_eq_univ 📖mathematicalFilter.EventuallyEq
ae
Set.univ
Set
Set.instInter
Set.inter_univ
ae_eq_set_inter
ae_eq_refl
inter_ae_eq_right_of_ae_eq_univ 📖mathematicalFilter.EventuallyEq
ae
Set.univ
Set
Set.instInter
Set.univ_inter
ae_eq_set_inter
ae_eq_refl
measure_congr 📖mathematicalFilter.EventuallyEq
ae
DFunLike.coe
Set
ENNReal
le_antisymm
Filter.EventuallyLE.measure_le
Filter.EventuallyEq.le
Filter.EventuallyEq.symm
measure_eq_zero_iff_ae_notMem 📖mathematicalDFunLike.coe
Set
ENNReal
instZeroENNReal
Filter.Eventually
Set.instMembership
ae
compl_mem_ae_iff
measure_mono_ae 📖mathematicalFilter.EventuallyLE
Prop.le
ae
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
measure_mono
Set.subset_union_left
Set.union_diff_self
Set.union_comm
measure_union_le
ae_le_set
add_zero
measure_mono_null_ae 📖Filter.EventuallyLE
Prop.le
ae
DFunLike.coe
Set
ENNReal
instZeroENNReal
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
Filter.EventuallyLE.measure_le
measure_symmDiff_eq_zero_iff 📖mathematicalDFunLike.coe
Set
ENNReal
symmDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instSDiff
instZeroENNReal
Filter.EventuallyEq
ae
measure_zero_iff_ae_notMem 📖mathematicalDFunLike.coe
Set
ENNReal
instZeroENNReal
Filter.Eventually
Set.instMembership
ae
measure_eq_zero_iff_ae_notMem
mem_ae_iff 📖mathematicalSet
Filter
Filter.instMembership
ae
DFunLike.coe
ENNReal
Compl.compl
Set.instCompl
instZeroENNReal
union_ae_eq_left_of_ae_eq_empty 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instEmptyCollection
Set.instUnionSet.union_empty
ae_eq_set_union
ae_eq_refl
union_ae_eq_right 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instUnion
DFunLike.coe
ENNReal
Set.instSDiff
instZeroENNReal
Set.union_diff_right
Set.diff_eq_empty
Set.subset_union_right
measure_empty
union_ae_eq_right_of_ae_eq_empty 📖mathematicalFilter.EventuallyEq
ae
Set
Set.instEmptyCollection
Set.instUnionSet.empty_union
ae_eq_set_union
ae_eq_refl
union_ae_eq_univ_of_ae_eq_univ_left 📖mathematicalFilter.EventuallyEq
ae
Set.univ
Set
Set.instUnion
Filter.EventuallyEq.trans
ae_eq_set_union
ae_eq_refl
Set.univ_union
Filter.EventuallyEq.refl
union_ae_eq_univ_of_ae_eq_univ_right 📖mathematicalFilter.EventuallyEq
ae
Set.univ
Set
Set.instUnion
Set.union_univ
ae_eq_set_union
ae_eq_refl

Set

Theorems

NameKindAssumesProvesValidatesDepends On
indicator_ae_eq_zero 📖mathematicalFilter.EventuallyEq
MeasureTheory.ae
indicator
Pi.instZero
DFunLike.coe
Set
ENNReal
instInter
Function.support
instZeroENNReal
MeasureTheory.measure_mono_null
indicator_apply_eq_zero
Filter.eventually_iff
Filter.mem_ofCountableUnion
mulIndicator_ae_eq_one 📖mathematicalFilter.EventuallyEq
MeasureTheory.ae
mulIndicator
Pi.instOne
DFunLike.coe
Set
ENNReal
instInter
Function.mulSupport
instZeroENNReal
MeasureTheory.measure_mono_null

---

← Back to Index