Documentation Verification Report

Basic

πŸ“ Source: Mathlib/MeasureTheory/OuterMeasure/Basic.lean

Statistics

MetricCount
Definitions0
Theoremscoe_fn_injective, ext, ext_iff, ext_nonempty, iUnion_nat_of_monotone_of_tsum_ne_top, iUnion_of_tendsto_zero, exists_mem_forall_mem_nhdsWithin_pos_measure, measure_biUnion_finset_le, measure_biUnion_le, measure_biUnion_null_iff, measure_diff_null, measure_empty, measure_eq_top_mono, measure_iUnion_fintype_le, measure_iUnion_le, measure_iUnion_null, measure_iUnion_null_iff, measure_iUnion_of_tendsto_zero, measure_le_inter_add_diff, measure_lt_top_mono, measure_mono, measure_mono_null, measure_null_iff_singleton, measure_null_of_locally_null, measure_pos_of_superset, measure_sUnion_null_iff, measure_union_le, measure_union_null, measure_union_null_iff, measure_univ_le_add_compl, pos_mono
31
Total31

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_forall_mem_nhdsWithin_pos_measure πŸ“–mathematicalβ€”Set
Set.instMembership
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
measure_null_of_locally_null
ENNReal.instCanonicallyOrderedAdd
measure_biUnion_finset_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Set.iUnion
Finset
Finset.instMembership
Finset.sum
ENNReal.instAddCommMonoid
β€”LE.le.trans_eq
measure_biUnion_le
Finset.countable_toSet
Finset.tsum_subtype
measure_biUnion_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Set.iUnion
Set.instMembership
tsum
Set.Elem
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”Set.Countable.to_subtype
Set.biUnion_eq_iUnion
measure_iUnion_le
measure_biUnion_null_iff πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Set.iUnion
Set.instMembership
instZeroENNReal
β€”measure_mono_null
Set.subset_biUnion_of_mem
Set.Countable.to_subtype
Set.iUnion_coe_set
Set.iUnion_congr_Prop
tsum_zero
ENNReal.instCanonicallyOrderedAdd
measure_iUnion_le
measure_diff_null πŸ“–mathematicalDFunLike.coe
Set
ENNReal
instZeroENNReal
Set.instSDiffβ€”LE.le.antisymm
measure_mono
Set.diff_subset
measure_le_inter_add_diff
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Set.inter_subset_right
zero_add
measure_empty πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Set.instEmptyCollection
instZeroENNReal
β€”OuterMeasureClass.measure_empty
measure_eq_top_mono πŸ“–β€”Set
Set.instHasSubset
DFunLike.coe
ENNReal
Top.top
instTopENNReal
β€”β€”eq_top_mono
measure_mono
measure_iUnion_fintype_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Set.iUnion
Finset.sum
ENNReal.instAddCommMonoid
Finset.univ
β€”Set.iUnion_congr_Prop
Set.iUnion_true
measure_biUnion_finset_le
measure_iUnion_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Set.iUnion
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”rel_iSup_tsum
measure_empty
iUnion_disjointed
OuterMeasureClass.measure_iUnion_nat_le
disjoint_disjointed
Summable.tsum_le_tsum
ENNReal.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
SummationFilter.instNeBotUnconditional
measure_mono
disjointed_subset
ENNReal.summable
measure_iUnion_null πŸ“–mathematicalDFunLike.coe
Set
ENNReal
instZeroENNReal
Set.iUnionβ€”measure_iUnion_null_iff
measure_iUnion_null_iff πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Set.iUnion
instZeroENNReal
β€”Set.sUnion_range
measure_sUnion_null_iff
Set.countable_range
Set.forall_mem_range
measure_iUnion_of_tendsto_zero πŸ“–mathematicalFilter.Tendsto
ENNReal
DFunLike.coe
Set
Set.instSDiff
Set.iUnion
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”le_antisymm
measure_le_inter_add_diff
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
measure_mono
Set.inter_subset_right
le_iSup
add_zero
Filter.Tendsto.add
ENNReal.instContinuousAdd
tendsto_const_nhds
ge_of_tendsto'
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
iSup_le
Set.subset_iUnion
measure_le_inter_add_diff πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set.instInter
Set.instSDiff
β€”Set.inter_union_diff
measure_union_le
measure_lt_top_mono πŸ“–β€”Set
Set.instHasSubset
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Top.top
instTopENNReal
β€”β€”LE.le.trans_lt
measure_mono
measure_mono πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
β€”OuterMeasureClass.measure_mono
measure_mono_null πŸ“–β€”Set
Set.instHasSubset
DFunLike.coe
ENNReal
instZeroENNReal
β€”β€”eq_bot_mono
measure_mono
measure_null_iff_singleton πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
instZeroENNReal
Set.instSingletonSet
β€”measure_biUnion_null_iff
Set.biUnion_of_singleton
measure_null_of_locally_null πŸ“–β€”Set
Filter
Filter.instMembership
nhdsWithin
DFunLike.coe
ENNReal
instZeroENNReal
β€”β€”measure_mono_null
measure_biUnion_null_iff
TopologicalSpace.countable_cover_nhdsWithin
Function.sometimes_spec
measure_pos_of_superset πŸ“–mathematicalSet
Set.instHasSubset
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
β€”LT.lt.trans_le
Ne.bot_lt
measure_mono
measure_sUnion_null_iff πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Set.sUnion
instZeroENNReal
β€”Set.sUnion_eq_biUnion
measure_biUnion_null_iff
measure_union_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Set.instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”Set.union_eq_iUnion
Finset.sum_insert
Finset.sum_singleton
measure_iUnion_fintype_le
measure_union_null πŸ“–mathematicalDFunLike.coe
Set
ENNReal
instZeroENNReal
Set.instUnionβ€”β€”
measure_union_null_iff πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Set.instUnion
instZeroENNReal
β€”Set.union_eq_iUnion
Bool.countable
measure_univ_le_add_compl πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Set.univ
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Compl.compl
Set.instCompl
β€”measure_union_le
Set.union_compl_self
pos_mono πŸ“–β€”Set
Set.instHasSubset
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
DFunLike.coe
β€”β€”LT.lt.trans_le
measure_mono

MeasureTheory.OuterMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
coe_fn_injective πŸ“–mathematicalβ€”MeasureTheory.OuterMeasure
DFunLike.coe
Set
ENNReal
instFunLikeSetENNReal
β€”DFunLike.coe_injective
ext πŸ“–β€”DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
instFunLikeSetENNReal
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
instFunLikeSetENNReal
β€”ext
ext_nonempty πŸ“–β€”DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
instFunLikeSetENNReal
β€”β€”ext
Set.eq_empty_or_nonempty
MeasureTheory.measure_empty
instOuterMeasureClass
iUnion_nat_of_monotone_of_tsum_ne_top πŸ“–mathematicalSet
Set.instHasSubset
DFunLike.coe
MeasureTheory.OuterMeasure
ENNReal
instFunLikeSetENNReal
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”MeasureTheory.measure_iUnion_of_tendsto_zero
instOuterMeasureClass
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_nhds_bot_mono'
ENNReal.instOrderTopology
ENNReal.tendsto_sum_nat_add
LE.le.trans
mono
monotone_nat_of_le_succ
le_or_gt
Set.mem_iUnion
le_refl
MeasureTheory.measure_iUnion_le
instCountableNat
iUnion_of_tendsto_zero πŸ“–mathematicalFilter.Tendsto
ENNReal
DFunLike.coe
MeasureTheory.OuterMeasure
Set
instFunLikeSetENNReal
Set.instSDiff
Set.iUnion
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”MeasureTheory.measure_iUnion_of_tendsto_zero
instOuterMeasureClass

---

← Back to Index