Documentation Verification Report

BorelCantelli

πŸ“ Source: Mathlib/MeasureTheory/OuterMeasure/BorelCantelli.lean

Statistics

MetricCount
Definitions0
Theoremsae_eventually_notMem, ae_finite_setOf_mem, liminf_ae_eq_of_forall_ae_eq, limsup_ae_eq_of_forall_ae_eq, measure_liminf_atTop_eq_zero, measure_liminf_cofinite_eq_zero, measure_limsup_atTop_eq_zero, measure_limsup_cofinite_eq_zero, measure_setOf_frequently_eq_zero
9
Total9

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
ae_eventually_notMem πŸ“–mathematicalβ€”Filter.Eventually
Set
Set.instMembership
Filter.atTop
Nat.instPreorder
ae
β€”measure_setOf_frequently_eq_zero
ae_finite_setOf_mem πŸ“–mathematicalβ€”Filter.Eventually
Set.Finite
setOf
Set
Set.instMembership
ae
β€”ae_iff
measure_limsup_cofinite_eq_zero
Set.ext
liminf_ae_eq_of_forall_ae_eq πŸ“–mathematicalFilter.EventuallyEq
ae
Filter.liminf
Set
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.atTop
Nat.instPreorder
β€”Filter.eventuallyEq_set
Filter.Eventually.mono
instCountableInterFilter
instCountableNat
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
limsup_ae_eq_of_forall_ae_eq πŸ“–mathematicalFilter.EventuallyEq
ae
Filter.limsup
Set
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.atTop
Nat.instPreorder
β€”Filter.eventuallyEq_set
Filter.Eventually.mono
instCountableInterFilter
instCountableNat
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
measure_liminf_atTop_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Filter.liminf
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.atTop
Nat.instPreorder
instZeroENNReal
β€”Nat.cofinite_eq_atTop
measure_liminf_cofinite_eq_zero
instCountableNat
instInfiniteNat
measure_liminf_cofinite_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Filter.liminf
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.cofinite
instZeroENNReal
β€”nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
measure_limsup_cofinite_eq_zero
measure_mono
Filter.liminf_le_limsup
Filter.cofinite_neBot
Filter.isBounded_le_of_top
Filter.isBounded_ge_of_bot
measure_limsup_atTop_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Filter.limsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.atTop
Nat.instPreorder
instZeroENNReal
β€”Nat.cofinite_eq_atTop
measure_limsup_cofinite_eq_zero
instCountableNat
measure_limsup_cofinite_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
Filter.limsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.cofinite
instZeroENNReal
β€”bot_unique
ge_of_tendsto'
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Filter.atTop_neBot
Finset.isDirected_le
ENNReal.tendsto_tsum_compl_atTop_zero
measure_mono
Filter.HasBasis.limsup_eq_iInf_iSup
Filter.hasBasis_cofinite
Set.iUnion_subtype
Set.iInterβ‚‚_subset
Finset.finite_toSet
measure_iUnion_le
Subtype.countable
measure_setOf_frequently_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
Set
ENNReal
setOf
Filter.Frequently
Filter.atTop
Nat.instPreorder
instZeroENNReal
β€”instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Set.setOf_forall
Set.setOf_exists
Filter.limsup_eq_iInf_iSup_of_nat
measure_limsup_atTop_eq_zero

---

← Back to Index