Documentation Verification Report

Caratheodory

πŸ“ Source: Mathlib/MeasureTheory/OuterMeasure/Caratheodory.lean

Statistics

MetricCount
DefinitionsIsCaratheodory, caratheodory, caratheodoryDynkin
3
TheoremsbiUnion_of_finite, boundedBy_caratheodory, dirac_caratheodory, f_iUnion, iUnion_eq_of_caratheodory, isCaratheodory_compl, isCaratheodory_compl_iff, isCaratheodory_diff, isCaratheodory_disjointed, isCaratheodory_empty, isCaratheodory_iUnion, isCaratheodory_iUnion_lt, isCaratheodory_iUnion_of_disjoint, isCaratheodory_iff, isCaratheodory_iff_le, isCaratheodory_iff_le', isCaratheodory_inter, isCaratheodory_partialSups, isCaratheodory_sum, isCaratheodory_union, le_add_caratheodory, le_smul_caratheodory, le_sum_caratheodory, measure_inter_union, ofFunction_caratheodory, top_caratheodory, zero_caratheodory
27
Total30

MeasureTheory.OuterMeasure

Definitions

NameCategoryTheorems
IsCaratheodory πŸ“–MathDef
6 mathmath: MeasureTheory.AddContent.isCaratheodory_ofFunction_of_mem, isCaratheodory_iff_le', MeasureTheory.AddContent.isCaratheodory_inducedOuterMeasure_of_mem, isCaratheodory_empty, MeasureTheory.AddContent.isCaratheodory_inducedOuterMeasure, isCaratheodory_compl_iff
caratheodory πŸ“–CompOp
23 mathmath: IsMetric.borel_le_caratheodory, IsMetric.le_caratheodory, boundedBy_caratheodory, MeasureTheory.inducedOuterMeasure_caratheodory, MeasureTheory.Measure.sInf_caratheodory, le_sum_caratheodory, isCaratheodory_iff, PMF.toOuterMeasure_caratheodory, StieltjesFunction.borel_le_measurable, le_add_caratheodory, StieltjesFunction.measurableSet_Ioi, zero_caratheodory, top_caratheodory, MeasureTheory.Measure.pi_caratheodory, isCaratheodory_iff_le, le_smul_caratheodory, MeasureTheory.Content.outerMeasure_caratheodory, MeasureTheory.Content.borel_le_caratheodory, MeasureTheory.AddContent.measureCaratheodory_eq_inducedOuterMeasure, MeasureTheory.le_toOuterMeasure_caratheodory, ofFunction_caratheodory, dirac_caratheodory, MeasureTheory.AddContent.measureCaratheodory_eq
caratheodoryDynkin πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
boundedBy_caratheodory πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set
Set.instInter
Set.instSDiff
MeasurableSet
caratheodory
boundedBy
β€”ofFunction_caratheodory
Set.eq_empty_or_nonempty
iSup_congr_Prop
Set.empty_inter
iSup_neg
bot_eq_zero'
ENNReal.instCanonicallyOrderedAdd
Set.empty_diff
add_zero
iSup_pos
le_trans
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
iSup_const_le
dirac_caratheodory πŸ“–mathematicalβ€”caratheodory
dirac
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”top_unique
Set.indicator_of_mem
Set.indicator_of_notMem
add_zero
zero_add
f_iUnion πŸ“–mathematicalIsCaratheodory
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
DFunLike.coe
MeasureTheory.OuterMeasure
ENNReal
instFunLikeSetENNReal
Set.iUnion
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”le_antisymm
MeasureTheory.measure_iUnion_le
instOuterMeasureClass
instCountableNat
ENNReal.tsum_eq_iSup_nat
iSup_le
isCaratheodory_sum
Finset.sum_congr
Set.inter_comm
Set.inter_univ
Set.univ_inter
mono
Set.iUnionβ‚‚_subset
Set.subset_iUnion
iUnion_eq_of_caratheodory πŸ“–mathematicalMeasurableSet
caratheodory
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
DFunLike.coe
MeasureTheory.OuterMeasure
ENNReal
instFunLikeSetENNReal
Set.iUnion
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”f_iUnion
isCaratheodory_compl πŸ“–mathematicalIsCaratheodoryCompl.compl
Set
Set.instCompl
β€”Set.inter_comm
sdiff_compl
add_comm
isCaratheodory_compl_iff πŸ“–mathematicalβ€”IsCaratheodory
Compl.compl
Set
Set.instCompl
β€”compl_compl
isCaratheodory_compl
isCaratheodory_diff πŸ“–mathematicalIsCaratheodorySet
Set.instSDiff
β€”isCaratheodory_inter
isCaratheodory_compl
isCaratheodory_disjointed πŸ“–mathematicalIsCaratheodorydisjointed
Set
BooleanAlgebra.toGeneralizedBooleanAlgebra
Set.instBooleanAlgebra
β€”disjointedRec
isCaratheodory_diff
isCaratheodory_empty πŸ“–mathematicalβ€”IsCaratheodory
Set
Set.instEmptyCollection
β€”Set.inter_empty
MeasureTheory.measure_empty
instOuterMeasureClass
Set.diff_empty
zero_add
isCaratheodory_iUnion πŸ“–mathematicalIsCaratheodorySet.iUnionβ€”iUnion_disjointed
isCaratheodory_iUnion_of_disjoint
isCaratheodory_disjointed
disjoint_disjointed
isCaratheodory_iUnion_lt πŸ“–mathematicalIsCaratheodorySet.iUnionβ€”Set.iUnion_congr_Prop
Nat.instCanonicallyOrderedAdd
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.biUnion_lt_succ
isCaratheodory_union
lt_of_lt_of_le
le_refl
isCaratheodory_iUnion_of_disjoint πŸ“–mathematicalIsCaratheodory
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.iUnionβ€”isCaratheodory_iff_le'
Set.inter_iUnion
ENNReal.tsum_eq_iSup_nat
isCaratheodory_sum
MeasureTheory.measure_iUnion_le
instOuterMeasureClass
instCountableNat
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
le_refl
ENNReal.iSup_add
iSup_le
isCaratheodory_iUnion_lt
add_le_add_right
MeasureTheory.measure_mono
Set.diff_subset_diff
subset_refl
Set.instReflSubset
Set.iUnion_mono''
Set.iUnion_subset
Set.Subset.rfl
isCaratheodory_iff πŸ“–mathematicalβ€”MeasurableSet
caratheodory
DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
instFunLikeSetENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set.instInter
Set.instSDiff
β€”β€”
isCaratheodory_iff_le πŸ“–mathematicalβ€”MeasurableSet
caratheodory
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.OuterMeasure
Set
instFunLikeSetENNReal
Set.instInter
Set.instSDiff
β€”isCaratheodory_iff_le'
isCaratheodory_iff_le' πŸ“–mathematicalβ€”IsCaratheodory
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.OuterMeasure
Set
instFunLikeSetENNReal
Set.instInter
Set.instSDiff
β€”le_antisymm_iff
MeasureTheory.measure_le_inter_add_diff
instOuterMeasureClass
isCaratheodory_inter πŸ“–mathematicalIsCaratheodorySet
Set.instInter
β€”isCaratheodory_compl_iff
Set.compl_inter
isCaratheodory_union
isCaratheodory_compl
isCaratheodory_partialSups πŸ“–mathematicalIsCaratheodoryDFunLike.coe
OrderHom
Set
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
OrderHom.instFunLike
partialSups
β€”Finset.nonempty_Iic
Finset.sup'_eq_sup
Finset.sup_set_eq_biUnion
Set.iUnion_congr_Prop
Finset.coe_Iic
IsCaratheodory.biUnion_of_finite
Set.finite_Iic
isCaratheodory_sum πŸ“–mathematicalIsCaratheodory
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Finset.sum
ENNReal
ENNReal.instAddCommMonoid
Finset.range
DFunLike.coe
MeasureTheory.OuterMeasure
instFunLikeSetENNReal
Set.instInter
Set.iUnion
β€”Set.iUnion_congr_Prop
Nat.instCanonicallyOrderedAdd
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.inter_empty
MeasureTheory.measure_empty
instOuterMeasureClass
Set.biUnion_lt_succ
Finset.sum_range_succ
Set.union_comm
measure_inter_union
Disjoint.le_bot
ne_of_gt
add_comm
isCaratheodory_union πŸ“–mathematicalIsCaratheodorySet
Set.instUnion
β€”Set.inter_diff_assoc
Set.inter_assoc
Set.inter_eq_self_of_subset_right
Set.subset_union_left
Set.union_diff_left
Set.inter_comm
Set.inter_left_comm
add_assoc
Set.compl_union
le_add_caratheodory πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
caratheodory
MeasureTheory.OuterMeasure
instAdd
β€”add_left_comm
add_assoc
le_smul_caratheodory πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
caratheodory
ENNReal
MeasureTheory.OuterMeasure
instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
β€”IsScalarTower.right
isCaratheodory_iff
mul_add
Distrib.leftDistribClass
le_sum_caratheodory πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
caratheodory
sum
β€”MeasurableSpace.measurableSet_iInf
ENNReal.tsum_add
measure_inter_union πŸ“–mathematicalSet
Set.instHasSubset
Set.instInter
Set.instEmptyCollection
IsCaratheodory
DFunLike.coe
MeasureTheory.OuterMeasure
ENNReal
instFunLikeSetENNReal
Set.instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”Set.inter_assoc
Set.union_inter_cancel_left
Set.inter_diff_assoc
Set.union_diff_cancel_left
ofFunction_caratheodory πŸ“–mathematicalSet
Set.instEmptyCollection
ENNReal
instZeroENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Set.instInter
Set.instSDiff
MeasurableSet
caratheodory
ofFunction
β€”isCaratheodory_iff_le
le_iInf
le_trans
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
iInf_le_of_le
iInf_le
Set.iUnion_inter
Set.inter_subset_inter_left
Set.iUnion_diff
Set.diff_subset_diff_left
ENNReal.tsum_add
ENNReal.tsum_le_tsum
top_caratheodory πŸ“–mathematicalβ€”caratheodory
Top.top
MeasureTheory.OuterMeasure
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
MeasurableSpace
MeasurableSpace.instCompleteLattice
β€”top_unique
isCaratheodory_iff_le
Set.eq_empty_or_nonempty
Set.empty_inter
MeasureTheory.measure_empty
instOuterMeasureClass
Set.empty_diff
add_zero
top_apply
zero_caratheodory πŸ“–mathematicalβ€”caratheodory
MeasureTheory.OuterMeasure
instZero
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”top_unique
add_zero

MeasureTheory.OuterMeasure.IsCaratheodory

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_of_finite πŸ“–mathematicalMeasureTheory.OuterMeasure.IsCaratheodorySet.iUnion
Set
Set.instMembership
β€”CanLift.prf
Set.instCanLiftFinsetCoeFinite
Finset.induction_on
Set.iUnion_congr_Prop
Finset.coe_empty
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.iUnion_iUnion_eq_or_left
MeasureTheory.OuterMeasure.isCaratheodory_union

---

← Back to Index