Documentation Verification Report

PiSystem

πŸ“ Source: Mathlib/MeasureTheory/PiSystem.lean

Statistics

MetricCount
DefinitionsIsPiSystem, DynkinSystem, GenerateHas, Has, generate, instInhabited, instLEDynkinSystem, instPartialOrder, ofMeasurableSpace, restrictOn, toMeasurableSpace, generatePiSystem, piiUnionInter
13
TheoremsbiInter_mem, comap, insert_empty, insert_univ, prod, singleton, ext, ext_iff, generateFrom_eq, generateHas_compl, generateHas_def, generate_has_subset_generate_measurable, generate_inter, generate_le, has_compl, has_compl_iff, has_diff, has_empty, has_iUnion, has_iUnion_nat, has_union, has_univ, le_def, ofMeasurableSpace_le_ofMeasurableSpace_iff, ofMeasurableSpace_toMeasurableSpace, induction_on_inter, isPiSystem_measurableSet, generateFrom_generatePiSystem_eq, generateFrom_measurableSet_of_generatePiSystem, generateFrom_piiUnionInter_le, generateFrom_piiUnionInter_measurableSet, generateFrom_piiUnionInter_singleton_left, generatePiSystem_eq, generatePiSystem_measurableSet, generatePiSystem_mono, generatePiSystem_subset_self, isPiSystem_Icc, isPiSystem_Icc_mem, isPiSystem_Ici, isPiSystem_Ico, isPiSystem_Ico_mem, isPiSystem_Iic, isPiSystem_Iio, isPiSystem_Ioc, isPiSystem_Ioc_mem, isPiSystem_Ioi, isPiSystem_Ioo, isPiSystem_Ioo_mem, isPiSystem_Ixx, isPiSystem_Ixx_mem, isPiSystem_generatePiSystem, isPiSystem_iUnion_of_directed_le, isPiSystem_iUnion_of_monotone, isPiSystem_image_Ici, isPiSystem_image_Iic, isPiSystem_image_Iio, isPiSystem_image_Ioi, isPiSystem_piiUnionInter, le_generateFrom_piiUnionInter, measurableSet_iSup_of_mem_piiUnionInter, mem_generatePiSystem_iUnion_elim, mem_generatePiSystem_iUnion_elim', mem_piiUnionInter_of_measurableSet, piiUnionInter_mono_left, piiUnionInter_mono_right, piiUnionInter_singleton, piiUnionInter_singleton_left, subset_generatePiSystem_self, subset_piiUnionInter
69
Total82

IsPiSystem

Theorems

NameKindAssumesProvesValidatesDepends On
biInter_mem πŸ“–β€”IsPiSystem
Finset.Nonempty
Set
Set.instMembership
Set.Nonempty
Set.iInter
Finset
Finset.instMembership
β€”β€”Finset.Nonempty.cons_induction
Set.iInter_congr_Prop
Set.iInter_iInter_eq_left
Finset.cons_eq_insert
Set.iInter_iInter_eq_or_left
Set.Nonempty.right
comap πŸ“–mathematicalIsPiSystemsetOf
Set
Set.instMembership
Set.preimage
β€”Set.preimage_inter
Set.nonempty_of_nonempty_preimage
insert_empty πŸ“–mathematicalIsPiSystemSet
Set.instInsert
Set.instEmptyCollection
β€”Set.empty_inter
Set.inter_empty
Set.mem_insert_of_mem
insert_univ πŸ“–mathematicalIsPiSystemSet
Set.instInsert
Set.univ
β€”Set.inter_self
Set.univ_inter
Set.inter_univ
Set.mem_insert_of_mem
prod πŸ“–mathematicalIsPiSystemSet.image2
Set
SProd.sprod
Set.instSProd
β€”Set.prod_inter_prod
Set.mem_image2_of_mem
Set.prod_nonempty_iff
singleton πŸ“–mathematicalβ€”IsPiSystem
Set
Set.instSingletonSet
β€”Set.mem_singleton_iff
Set.inter_self

MeasurableSpace

Definitions

NameCategoryTheorems
DynkinSystem πŸ“–CompData
3 mathmath: DynkinSystem.generate_le, DynkinSystem.le_def, DynkinSystem.ofMeasurableSpace_le_ofMeasurableSpace_iff

Theorems

NameKindAssumesProvesValidatesDepends On
induction_on_inter πŸ“–β€”generateFrom
IsPiSystem
Set
Set.instEmptyCollection
MeasurableSet.empty
MeasurableSpace
MeasurableSet
GenerateMeasurable.basic
Compl.compl
Set.instCompl
MeasurableSet.compl
Set.iUnion
MeasurableSet.iUnion
instCountableNat
β€”β€”MeasurableSet.empty
MeasurableSet.compl
MeasurableSet.iUnion
instCountableNat
DynkinSystem.generate_inter
DynkinSystem.generateFrom_eq
isPiSystem_measurableSet πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
MeasurableSet
β€”MeasurableSet.inter

MeasurableSpace.DynkinSystem

Definitions

NameCategoryTheorems
GenerateHas πŸ“–CompData
2 mathmath: generateHas_compl, generateHas_def
Has πŸ“–MathDef
6 mathmath: ext_iff, has_compl_iff, has_univ, has_empty, le_def, generateHas_def
generate πŸ“–CompOp
3 mathmath: generate_le, generateFrom_eq, generateHas_def
instInhabited πŸ“–CompOpβ€”
instLEDynkinSystem πŸ“–CompOp
3 mathmath: generate_le, le_def, ofMeasurableSpace_le_ofMeasurableSpace_iff
instPartialOrder πŸ“–CompOpβ€”
ofMeasurableSpace πŸ“–CompOp
2 mathmath: ofMeasurableSpace_toMeasurableSpace, ofMeasurableSpace_le_ofMeasurableSpace_iff
restrictOn πŸ“–CompOpβ€”
toMeasurableSpace πŸ“–CompOp
2 mathmath: ofMeasurableSpace_toMeasurableSpace, generateFrom_eq

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”Hasβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”Hasβ€”ext
generateFrom_eq πŸ“–mathematicalIsPiSystemMeasurableSpace.generateFrom
toMeasurableSpace
generate
generate_inter
β€”le_antisymm
generate_inter
MeasurableSpace.generateFrom_le
ofMeasurableSpace_le_ofMeasurableSpace_iff
ofMeasurableSpace_toMeasurableSpace
generate_le
MeasurableSpace.measurableSet_generateFrom
generateHas_compl πŸ“–mathematicalβ€”GenerateHas
Compl.compl
Set
Set.instCompl
β€”compl_compl
generateHas_def πŸ“–mathematicalβ€”Has
generate
GenerateHas
β€”β€”
generate_has_subset_generate_measurable πŸ“–mathematicalHas
generate
MeasurableSet
MeasurableSpace.generateFrom
β€”generate_le
MeasurableSpace.measurableSet_generateFrom
generate_inter πŸ“–mathematicalIsPiSystem
Has
generate
Set
Set.instInter
β€”generate_le
Set.eq_empty_or_nonempty
Set.inter_comm
generate_le πŸ“–mathematicalHasMeasurableSpace.DynkinSystem
instLEDynkinSystem
generate
β€”has_empty
has_compl
has_iUnion
instCountableNat
has_compl πŸ“–mathematicalHasCompl.compl
Set
Set.instCompl
β€”β€”
has_compl_iff πŸ“–mathematicalβ€”Has
Compl.compl
Set
Set.instCompl
β€”compl_compl
has_compl
has_diff πŸ“–mathematicalHas
Set
Set.instHasSubset
Set.instSDiffβ€”has_compl_iff
Set.compl_inter
compl_compl
has_union
has_compl
Disjoint.mono_right
disjoint_compl_left
has_empty πŸ“–mathematicalβ€”Has
Set
Set.instEmptyCollection
β€”β€”
has_iUnion πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Has
Set.iUnionβ€”nonempty_encodable
Encodable.iUnion_decodeβ‚‚
has_iUnion_nat
Encodable.iUnion_decodeβ‚‚_disjoint_on
Encodable.iUnion_decodeβ‚‚_cases
has_empty
has_iUnion_nat πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Has
Set.iUnionβ€”β€”
has_union πŸ“–mathematicalHas
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instUnionβ€”Set.union_eq_iUnion
has_iUnion
Bool.countable
pairwise_disjoint_on_bool
has_univ πŸ“–mathematicalβ€”Has
Set.univ
β€”Set.compl_empty
has_compl
has_empty
le_def πŸ“–mathematicalβ€”MeasurableSpace.DynkinSystem
instLEDynkinSystem
Pi.hasLe
Set
Prop.le
Has
β€”β€”
ofMeasurableSpace_le_ofMeasurableSpace_iff πŸ“–mathematicalβ€”MeasurableSpace.DynkinSystem
instLEDynkinSystem
ofMeasurableSpace
MeasurableSpace
MeasurableSpace.instLE
β€”β€”
ofMeasurableSpace_toMeasurableSpace πŸ“–mathematicalHas
Set
Set.instInter
ofMeasurableSpace
toMeasurableSpace
β€”ext

(root)

Definitions

NameCategoryTheorems
IsPiSystem πŸ“–MathDef
32 mathmath: isPiSystem_Ixx, isPiSystem_prod, isPiSystem_image_Iic, MeasurableSpace.isPiSystem_measurableSet, isPiSystem_Ioi, isPiSystem_image_Ioi, Real.isPiSystem_Iic_rat, MeasureTheory.IsSetSemiring.isPiSystem, isPiSystem_generatePiSystem, isPiSystem_Ioc, isPiSystem_Ico_mem, Real.isPiSystem_Iio_rat, Real.isPiSystem_Ioi_rat, Real.isPiSystem_Ici_rat, isPiSystem_isClosed, isPiSystem_Ico, IsPiSystem.singleton, isPiSystem_image_Iio, isPiSystem_Iio, isPiSystem_Ixx_mem, isPiSystem_Ioc_mem, isPiSystem_Icc, isPiSystem_Ici, isPiSystem_isOpen, isPiSystem_Ioo, MeasureTheory.isPiSystem_measurableCylinders, isPiSystem_pi, isPiSystem_Icc_mem, isPiSystem_Iic, isPiSystem_Ioo_mem, isPiSystem_image_Ici, Real.isPiSystem_Ioo_rat
generatePiSystem πŸ“–CompData
6 mathmath: generatePiSystem_subset_self, isPiSystem_generatePiSystem, subset_generatePiSystem_self, generateFrom_generatePiSystem_eq, generatePiSystem_eq, generatePiSystem_mono
piiUnionInter πŸ“–CompOp
17 mathmath: ProbabilityTheory.iIndepSets.piiUnionInter_of_notMem, ProbabilityTheory.indepSets_piiUnionInter_of_disjoint, ProbabilityTheory.iCondIndepSets.piiUnionInter_of_notMem, generateFrom_piiUnionInter_singleton_left, ProbabilityTheory.condIndepSets_piiUnionInter_of_disjoint, ProbabilityTheory.Kernel.indepSets_piiUnionInter_of_disjoint, le_generateFrom_piiUnionInter, generateFrom_piiUnionInter_measurableSet, generateFrom_piiUnionInter_le, piiUnionInter_mono_right, mem_piiUnionInter_of_measurableSet, isPiSystem_piiUnionInter, piiUnionInter_mono_left, subset_piiUnionInter, piiUnionInter_singleton, ProbabilityTheory.Kernel.iIndepSets.piiUnionInter_of_notMem, piiUnionInter_singleton_left

Theorems

NameKindAssumesProvesValidatesDepends On
generateFrom_generatePiSystem_eq πŸ“–mathematicalβ€”MeasurableSpace.generateFrom
generatePiSystem
β€”le_antisymm
MeasurableSpace.generateFrom_le
generateFrom_measurableSet_of_generatePiSystem
MeasurableSpace.measurableSet_generateFrom
generateFrom_measurableSet_of_generatePiSystem πŸ“–mathematicalSet
Set.instMembership
generatePiSystem
MeasurableSet
MeasurableSpace.generateFrom
β€”generatePiSystem_measurableSet
MeasurableSpace.measurableSet_generateFrom
generateFrom_piiUnionInter_le πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.generateFrom
piiUnionInterβ€”MeasurableSpace.generateFrom_le
Finset.measurableSet_biInter
MeasurableSpace.measurableSet_generateFrom
generateFrom_piiUnionInter_measurableSet πŸ“–mathematicalβ€”MeasurableSpace.generateFrom
piiUnionInter
setOf
Set
MeasurableSet
iSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Set.instMembership
β€”le_antisymm
MeasurableSpace.generateFrom_measurableSet
MeasurableSpace.generateFrom_mono
measurableSet_iSup_of_mem_piiUnionInter
iSupβ‚‚_le
mem_piiUnionInter_of_measurableSet
generateFrom_piiUnionInter_singleton_left πŸ“–mathematicalβ€”MeasurableSpace.generateFrom
piiUnionInter
Set
Set.instSingletonSet
setOf
Set.instMembership
β€”le_antisymm
MeasurableSpace.generateFrom_le
Finset.measurableSet_biInter
MeasurableSpace.measurableSet_generateFrom
MeasurableSpace.generateFrom_mono
Finset.mem_singleton
Finset.mem_coe
Set.mem_singleton
Set.iInter_congr_Prop
Set.iInter_iInter_eq_left
generatePiSystem_eq πŸ“–mathematicalIsPiSystemgeneratePiSystemβ€”Set.Subset.antisymm
generatePiSystem_subset_self
subset_generatePiSystem_self
generatePiSystem_measurableSet πŸ“–β€”MeasurableSet
Set
Set.instMembership
generatePiSystem
β€”β€”MeasurableSet.inter
generatePiSystem_mono πŸ“–mathematicalSet
Set.instHasSubset
generatePiSystemβ€”Set.mem_of_subset_of_mem
isPiSystem_generatePiSystem
generatePiSystem_subset_self πŸ“–mathematicalIsPiSystemSet
Set.instHasSubset
generatePiSystem
β€”β€”
isPiSystem_Icc πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Icc
β€”isPiSystem_Ixx
Set.nonempty_Icc
Set.Icc_inter_Icc
isPiSystem_Icc_mem πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Icc
β€”isPiSystem_Ixx_mem
Set.nonempty_Icc
Set.Icc_inter_Icc
isPiSystem_Ici πŸ“–mathematicalβ€”IsPiSystem
Set.range
Set
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isPiSystem_image_Ici
Set.image_univ
isPiSystem_Ico πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ico
β€”isPiSystem_Ixx
LE.le.trans_lt
Set.Ico_inter_Ico
isPiSystem_Ico_mem πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ico
β€”isPiSystem_Ixx_mem
LE.le.trans_lt
Set.Ico_inter_Ico
isPiSystem_Iic πŸ“–mathematicalβ€”IsPiSystem
Set.range
Set
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isPiSystem_image_Iic
Set.image_univ
isPiSystem_Iio πŸ“–mathematicalβ€”IsPiSystem
Set.range
Set
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isPiSystem_image_Iio
Set.image_univ
isPiSystem_Ioc πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioc
β€”isPiSystem_Ixx
LT.lt.trans_le
Set.Ioc_inter_Ioc
isPiSystem_Ioc_mem πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioc
β€”isPiSystem_Ixx_mem
LT.lt.trans_le
Set.Ioc_inter_Ioc
isPiSystem_Ioi πŸ“–mathematicalβ€”IsPiSystem
Set.range
Set
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isPiSystem_image_Ioi
Set.image_univ
isPiSystem_Ioo πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioo
β€”isPiSystem_Ixx
LT.lt.trans
Set.Ioo_inter_Ioo
isPiSystem_Ioo_mem πŸ“–mathematicalβ€”IsPiSystem
setOf
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioo
β€”isPiSystem_Ixx_mem
LT.lt.trans
Set.Ioo_inter_Ioo
isPiSystem_Ixx πŸ“–mathematicalSet
Set.instInter
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeInf.toMin
Lattice.toSemilatticeInf
IsPiSystem
setOf
β€”isPiSystem_Ixx_mem
isPiSystem_Ixx_mem πŸ“–mathematicalSet
Set.instInter
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SemilatticeInf.toMin
Lattice.toSemilatticeInf
IsPiSystem
setOf
Set.instMembership
β€”sup_ind
inf_ind
isPiSystem_generatePiSystem πŸ“–mathematicalβ€”IsPiSystem
generatePiSystem
β€”β€”
isPiSystem_iUnion_of_directed_le πŸ“–mathematicalIsPiSystem
Directed
Set
Set.instLE
Set.iUnionβ€”Set.mem_iUnion
isPiSystem_iUnion_of_monotone πŸ“–mathematicalIsPiSystem
Monotone
Set
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.iUnionβ€”isPiSystem_iUnion_of_directed_le
Monotone.directed_le
SemilatticeSup.instIsDirectedOrder
isPiSystem_image_Ici πŸ“–mathematicalβ€”IsPiSystem
Set.image
Set
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isPiSystem_image_Iic
isPiSystem_image_Iic πŸ“–mathematicalβ€”IsPiSystem
Set.image
Set
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”inf_ind
Set.Iic_inter_Iic
isPiSystem_image_Iio πŸ“–mathematicalβ€”IsPiSystem
Set.image
Set
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”inf_ind
Set.Iio_inter_Iio
isPiSystem_image_Ioi πŸ“–mathematicalβ€”IsPiSystem
Set.image
Set
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isPiSystem_image_Iio
isPiSystem_piiUnionInter πŸ“–mathematicalIsPiSystempiiUnionInterβ€”Finset.coe_union
Set.ext
Set.nonempty_iff_ne_empty
le_antisymm
Set.iInter_subset_of_subset
Set.empty_subset
Set.not_nonempty_iff_eq_empty
Set.inter_univ
Set.univ_inter
le_generateFrom_piiUnionInter πŸ“–mathematicalSet
Set.instMembership
MeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.generateFrom
piiUnionInter
β€”MeasurableSpace.generateFrom_mono
subset_piiUnionInter
measurableSet_iSup_of_mem_piiUnionInter πŸ“–mathematicalSet
Set.instMembership
piiUnionInter
setOf
MeasurableSet
iSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”Finset.measurableSet_biInter
le_iSupβ‚‚
mem_generatePiSystem_iUnion_elim πŸ“–mathematicalIsPiSystem
Set
Set.instMembership
generatePiSystem
Set.iUnion
Set.iInter
Finset
Finset.instMembership
β€”Set.iInter_congr_Prop
Set.iInter_iInter_eq_left
Set.ext
Set.Nonempty.mono
Set.inter_subset_inter
Set.biInter_subset_of_mem
Finset.mem_union
mem_generatePiSystem_iUnion_elim' πŸ“–mathematicalIsPiSystem
Set
Set.instMembership
generatePiSystem
Set.iUnion
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.iInter
Finset.instMembership
β€”Set.ext
mem_generatePiSystem_iUnion_elim
Finset.coe_image
Subtype.coe_preimage_self
Finset.set_biInter_finset_image
Function.Injective.extend_apply
Subtype.val_injective
mem_piiUnionInter_of_measurableSet πŸ“–mathematicalSet
Set.instMembership
MeasurableSet
piiUnionInter
setOf
β€”subset_piiUnionInter
piiUnionInter_mono_left πŸ“–mathematicalSet
Set.instHasSubset
piiUnionInterβ€”β€”
piiUnionInter_mono_right πŸ“–mathematicalSet
Set.instHasSubset
piiUnionInterβ€”HasSubset.Subset.trans
Set.instIsTransSubset
piiUnionInter_singleton πŸ“–mathematicalβ€”piiUnionInter
Set
Set.instSingletonSet
Set.instUnion
Set.univ
β€”Set.ext
Finset.ext
Finset.mem_singleton
Set.iInter_congr_Prop
Set.iInter_iInter_eq_left
Set.iInter_of_empty
instIsEmptyFalse
Set.iInter_univ
Set.mem_singleton
Finset.coe_singleton
subset_refl
Set.instReflSubset
Finset.coe_empty
Set.iInter_false
piiUnionInter_singleton_left πŸ“–mathematicalβ€”piiUnionInter
Set
Set.instSingletonSet
setOf
Finset
Set.instHasSubset
SetLike.coe
Finset.instSetLike
Set.iInter
Finset.instMembership
β€”Set.ext
subset_generatePiSystem_self πŸ“–mathematicalβ€”Set
Set.instHasSubset
generatePiSystem
β€”β€”
subset_piiUnionInter πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
piiUnionInter
β€”Set.mem_singleton_iff
Set.Subset.trans
piiUnionInter_singleton
Set.subset_union_left
piiUnionInter_mono_right

---

← Back to Index