| Metric | Count |
DefinitionstoENNRealVectorMeasure, toSignedMeasure, SignedMeasure, toMeasureOfLEZero, toMeasureOfZeroLE, toMeasureOfZeroLE', VectorMeasure, add, coeFnAddMonoidHom, dirac, ennrealToMeasure, equivMeasure, instAdd, instAddCommGroup, instAddCommMonoid, instCoeFun, instDistribMulAction, instInhabited, instModule, instNeg, instPartialOrder, instSMul, instSub, instZero, map, mapGm, mapRange, mapRangeHom, mapRangeₗ, mapₗ, measureOf', neg, restrict, restrictGm, restrictₗ, smul, sub, trim, «term_≤[_]_», «term_≪ᵥ_», «term_⟂ᵥ_» | 41 |
TheoremstoENNRealVectorMeasure_add, toENNRealVectorMeasure_apply, toENNRealVectorMeasure_apply_measurable, toENNRealVectorMeasure_ennrealToMeasure, toENNRealVectorMeasure_zero, toSignedMeasure_add, toSignedMeasure_apply, toSignedMeasure_apply_measurable, toSignedMeasure_congr, toSignedMeasure_eq_toSignedMeasure_iff, toSignedMeasure_le_toSignedMeasure_iff, toSignedMeasure_restrict_eq_restrict_toSignedMeasure, toSignedMeasure_smul, toSignedMeasure_sub_apply, toSignedMeasure_toMeasureOfZeroLE, toSignedMeasure_zero, zero_le_toSignedMeasure, toMeasureOfLEZero_apply, toMeasureOfLEZero_finite, toMeasureOfLEZero_real_apply, toMeasureOfLEZero_toSignedMeasure, toMeasureOfZeroLE_apply, toMeasureOfZeroLE_finite, toMeasureOfZeroLE_real_apply, toMeasureOfZeroLE_toSignedMeasure, add, ennrealToMeasure, eq, map, mk, neg_left, neg_right, refl, smul, sub, trans, zero, add_left, add_right, mk, neg_left, neg_left_iff, neg_right, neg_right_iff, smul_left, smul_right, zero_left, zero_right, add_apply, coeFnAddMonoidHom_apply, coe_add, coe_injective, coe_neg, coe_smul, coe_sub, coe_zero, dirac_apply_of_mem, dirac_apply_of_notMem, empty, empty', ennrealToMeasure_apply, ennrealToMeasure_toENNRealVectorMeasure, equivMeasure_apply, equivMeasure_symm_apply, exists_pos_measure_of_not_restrict_le_zero, ext, ext_iff, ext_iff', hasSum_of_disjoint_iUnion, instAddLeftMono, le_iff, le_iff', le_restrict_empty, le_restrict_univ_iff_le, m_iUnion, m_iUnion', mapGm_apply, mapRange_add, mapRange_apply, mapRange_id, mapRange_zero, map_add, map_apply, map_id, map_not_measurable, map_smul, map_zero, mapₗ_apply, measurable_of_not_restrict_le_zero, measurable_of_not_zero_le_restrict, neg_apply, neg_le_neg, neg_le_neg_iff, nonneg_of_zero_le_restrict, nonpos_of_restrict_le_zero, not_measurable, not_measurable', of_add_of_diff, of_biUnion_finset, of_compl, of_diff, of_diff_of_diff_eq_zero, of_disjoint_iUnion, of_iUnion_nonneg, of_iUnion_nonpos, of_nonneg_disjoint_union_eq_zero, of_nonpos_disjoint_union_eq_zero, of_union, restrictGm_apply, restrict_add, restrict_add_restrict_compl, restrict_apply, restrict_empty, restrict_eq_self, restrict_le_restrict_countable_iUnion, restrict_le_restrict_iUnion, restrict_le_restrict_iff, restrict_le_restrict_of_subset_le, restrict_le_restrict_subset, restrict_le_restrict_union, restrict_le_zero_of_not_measurable, restrict_le_zero_subset, restrict_neg, restrict_not_measurable, restrict_smul, restrict_sub, restrict_trim, restrict_univ, restrict_zero, restrictₗ_apply, smul_apply, sub_apply, subset_le_of_restrict_le_restrict, tendsto_vectorMeasure_iInter_atTop_nat, tendsto_vectorMeasure_iUnion_atTop_nat, trim_apply, trim_eq_self, trim_measurableSet_eq, zero_apply, zero_le_restrict_not_measurable, zero_le_restrict_subset, zero_trim | 142 |
| Total | 183 |
| Name | Category | Theorems |
add 📖 | CompOp | — |
coeFnAddMonoidHom 📖 | CompOp | 1 mathmath: coeFnAddMonoidHom_apply
|
dirac 📖 | CompOp | 2 mathmath: dirac_apply_of_notMem, dirac_apply_of_mem
|
ennrealToMeasure 📖 | CompOp | 6 mathmath: equivMeasure_apply, ennrealToMeasure_toENNRealVectorMeasure, MeasureTheory.SignedMeasure.mutuallySingular_ennreal_iff, MeasureTheory.SignedMeasure.absolutelyContinuous_ennreal_iff, ennrealToMeasure_apply, MeasureTheory.Measure.toENNRealVectorMeasure_ennrealToMeasure
|
equivMeasure 📖 | CompOp | 2 mathmath: equivMeasure_apply, equivMeasure_symm_apply
|
instAdd 📖 | CompOp | 18 mathmath: restrict_add, mapRange_add, MeasureTheory.withDensityᵥ_add', MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq, AbsolutelyContinuous.add, MeasureTheory.SignedMeasure.singularPart_add, MeasureTheory.Measure.toSignedMeasure_add, MeasureTheory.Measure.toENNRealVectorMeasure_add, map_add, coe_add, instAddLeftMono, MeasureTheory.withDensityᵥ_add, MeasureTheory.SignedMeasure.singularPart_add_withDensity_rnDeriv_eq, MutuallySingular.add_left, restrict_add_restrict_compl, add_apply, MutuallySingular.add_right, MeasureTheory.SignedMeasure.rnDeriv_add
|
instAddCommGroup 📖 | CompOp | 1 mathmath: MeasureTheory.SignedMeasure.toMeasureOfLEZero_apply
|
instAddCommMonoid 📖 | CompOp | 16 mathmath: coeFnAddMonoidHom_apply, mapₗ_apply, MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart, restrictₗ_apply, restrictGm_apply, MeasureTheory.ComplexMeasure.equivSignedMeasure_apply, MeasureTheory.SignedMeasure.re_toComplexMeasure, MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart, mapGm_apply, MeasureTheory.ComplexMeasure.im_apply, MeasureTheory.ComplexMeasure.equivSignedMeasureₗ_symm_apply, MeasureTheory.ComplexMeasure.absolutelyContinuous_ennreal_iff, MeasureTheory.ComplexMeasure.re_apply, MeasureTheory.ComplexMeasure.toComplexMeasure_to_signedMeasure, MeasureTheory.ComplexMeasure.equivSignedMeasureₗ_apply, MeasureTheory.SignedMeasure.im_toComplexMeasure
|
instCoeFun 📖 | CompOp | — |
instDistribMulAction 📖 | CompOp | — |
instInhabited 📖 | CompOp | — |
instModule 📖 | CompOp | 13 mathmath: mapₗ_apply, MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart, restrictₗ_apply, MeasureTheory.ComplexMeasure.equivSignedMeasure_apply, MeasureTheory.SignedMeasure.re_toComplexMeasure, MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart, MeasureTheory.ComplexMeasure.im_apply, MeasureTheory.ComplexMeasure.equivSignedMeasureₗ_symm_apply, MeasureTheory.ComplexMeasure.absolutelyContinuous_ennreal_iff, MeasureTheory.ComplexMeasure.re_apply, MeasureTheory.ComplexMeasure.toComplexMeasure_to_signedMeasure, MeasureTheory.ComplexMeasure.equivSignedMeasureₗ_apply, MeasureTheory.SignedMeasure.im_toComplexMeasure
|
instNeg 📖 | CompOp | 21 mathmath: MutuallySingular.neg_right_iff, neg_apply, MutuallySingular.neg_left_iff, MeasureTheory.withDensityᵥ_neg', coe_neg, AbsolutelyContinuous.neg_right, MeasureTheory.SignedMeasure.toMeasureOfLEZero_toSignedMeasure, MutuallySingular.neg_right, neg_le_neg_iff, AbsolutelyContinuous.neg_left, MeasureTheory.SignedMeasure.toJordanDecomposition_neg, MeasureTheory.SignedMeasure.singularPart_neg, MeasureTheory.withDensityᵥ_neg, MutuallySingular.neg_left, MeasureTheory.SignedMeasure.toMeasureOfLEZero_apply, MeasureTheory.SignedMeasure.totalVariation_neg, MeasureTheory.JordanDecomposition.toSignedMeasure_neg, MeasureTheory.SignedMeasure.haveLebesgueDecomposition_neg, MeasureTheory.SignedMeasure.rnDeriv_neg, restrict_neg, neg_le_neg
|
instPartialOrder 📖 | CompOp | 17 mathmath: MeasureTheory.Measure.toSignedMeasure_le_toSignedMeasure_iff, MeasureTheory.SignedMeasure.exists_compl_positive_negative, restrict_le_restrict_of_subset_le, MeasureTheory.SignedMeasure.exists_isCompl_positive_negative, restrict_le_zero_of_not_measurable, neg_le_neg_iff, MeasureTheory.JordanDecomposition.exists_compl_positive_negative, le_iff', MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE, le_iff, le_restrict_empty, zero_le_restrict_not_measurable, instAddLeftMono, MeasureTheory.SignedMeasure.exists_subset_restrict_nonpos, le_restrict_univ_iff_le, restrict_le_restrict_iff, MeasureTheory.Measure.zero_le_toSignedMeasure
|
instSMul 📖 | CompOp | 18 mathmath: coe_smul, smul_apply, MeasureTheory.SignedMeasure.singularPart_smul, MeasureTheory.SignedMeasure.toJordanDecomposition_smul_real, map_smul, MutuallySingular.smul_right, MeasureTheory.Measure.toSignedMeasure_smul, MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul_real, restrict_smul, MeasureTheory.SignedMeasure.rnDeriv_smul, MeasureTheory.SignedMeasure.haveLebesgueDecomposition_smul, MeasureTheory.SignedMeasure.singularPart_smul_nnreal, MeasureTheory.JordanDecomposition.toSignedMeasure_smul, MutuallySingular.smul_left, MeasureTheory.withDensityᵥ_smul, MeasureTheory.withDensityᵥ_smul', AbsolutelyContinuous.smul, MeasureTheory.SignedMeasure.toJordanDecomposition_smul
|
instSub 📖 | CompOp | 14 mathmath: MeasureTheory.withDensityᵥ_sub, MeasureTheory.Measure.toJordanDecomposition_toSignedMeasure_sub, MeasureTheory.Measure.jordanDecompositionOfToSignedMeasureSub_toSignedMeasure, MeasureTheory.Measure.sub_toSignedMeasure_eq_toSignedMeasure_sub, MeasureTheory.withDensityᵥ_eq_withDensity_pos_part_sub_withDensity_neg_part, coe_sub, AbsolutelyContinuous.sub, MeasureTheory.SignedMeasure.singularPart_sub, MeasureTheory.withDensityᵥ_sub', MeasureTheory.Measure.toSignedMeasure_sub_apply, MeasureTheory.Measure.toSignedMeasure_restrict_sub, sub_apply, restrict_sub, MeasureTheory.SignedMeasure.rnDeriv_sub
|
instZero 📖 | CompOp | 27 mathmath: restrict_empty, MeasureTheory.SignedMeasure.exists_compl_positive_negative, MeasureTheory.SignedMeasure.toJordanDecomposition_zero, coe_zero, MeasureTheory.SignedMeasure.exists_isCompl_positive_negative, MutuallySingular.zero_left, restrict_le_zero_of_not_measurable, mapRange_zero, MutuallySingular.zero_right, restrict_not_measurable, MeasureTheory.SignedMeasure.totalVariation_zero, zero_apply, AbsolutelyContinuous.zero, MeasureTheory.JordanDecomposition.exists_compl_positive_negative, MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE, MeasureTheory.SignedMeasure.singularPart_zero, zero_le_restrict_not_measurable, zero_trim, MeasureTheory.SignedMeasure.exists_subset_restrict_nonpos, MeasureTheory.withDensityᵥ_zero, MeasureTheory.JordanDecomposition.toSignedMeasure_zero, map_zero, map_not_measurable, MeasureTheory.Measure.toSignedMeasure_zero, MeasureTheory.Measure.toENNRealVectorMeasure_zero, restrict_zero, MeasureTheory.Measure.zero_le_toSignedMeasure
|
map 📖 | CompOp | 9 mathmath: mapₗ_apply, AbsolutelyContinuous.map, map_smul, map_add, mapGm_apply, map_apply, map_zero, map_not_measurable, map_id
|
mapGm 📖 | CompOp | 1 mathmath: mapGm_apply
|
mapRange 📖 | CompOp | 6 mathmath: mapRange_id, mapRange_add, mapRange_zero, mapRange_apply, MeasureTheory.ComplexMeasure.im_apply, MeasureTheory.ComplexMeasure.re_apply
|
mapRangeHom 📖 | CompOp | — |
mapRangeₗ 📖 | CompOp | — |
mapₗ 📖 | CompOp | 1 mathmath: mapₗ_apply
|
measureOf' 📖 | CompOp | 66 mathmath: MeasureTheory.SignedMeasure.toMeasureOfZeroLE_apply, coeFnAddMonoidHom_apply, restrict_eq_self, coe_smul, not_measurable', empty, trim_measurableSet_eq, MeasureTheory.SignedMeasure.toComplexMeasure_apply, smul_apply, neg_apply, MeasureTheory.Measure.toENNRealVectorMeasure_apply, coe_injective, coe_neg, coe_zero, hasSum_of_disjoint_iUnion, not_measurable, coe_sub, ext_iff', subset_le_of_restrict_le_restrict, zero_apply, mapRange_apply, restrict_apply, isSigmaSubadditiveSetFun_enorm, nonpos_of_restrict_le_zero, m_iUnion', ennrealToMeasure_apply, le_iff', of_union, MeasureTheory.SignedMeasure.toMeasureOfZeroLE_real_apply, AbsolutelyContinuous.ennrealToMeasure, le_iff, MeasureTheory.Measure.toSignedMeasure_apply, of_diff, exists_extension_of_isSetSemiring_of_le_measure_of_generateFrom, empty', of_biUnion_finset, of_disjoint_iUnion, coe_add, MeasureTheory.SignedMeasure.toComplexMeasure_apply_re, MeasureTheory.SignedMeasure.toMeasureOfLEZero_apply, MeasureTheory.withDensityᵥ_apply, MeasureTheory.Integrable.withDensityᵥ_trim_eq_integral, nonneg_of_zero_le_restrict, dirac_apply_of_notMem, tendsto_vectorMeasure_iInter_atTop_nat, ext_iff, MeasureTheory.SignedMeasure.toMeasureOfLEZero_real_apply, MeasureTheory.SignedMeasure.of_symmDiff_compl_positive_negative, map_apply, MeasureTheory.Measure.toSignedMeasure_apply_measurable, exists_extension_of_isSetSemiring_of_le_measure_of_dense, MeasureTheory.Measure.toSignedMeasure_sub_apply, add_apply, MeasureTheory.SignedMeasure.toComplexMeasure_apply_im, MeasureTheory.SignedMeasure.null_of_totalVariation_zero, m_iUnion, MeasureTheory.Measure.toENNRealVectorMeasure_apply_measurable, exists_extension_of_isSetRing_of_le_measure_of_dense, tendsto_vectorMeasure_iUnion_atTop_nat, dirac_apply_of_mem, trim_apply, restrict_le_restrict_iff, sub_apply, of_compl, exists_pos_measure_of_not_restrict_le_zero, of_add_of_diff
|
neg 📖 | CompOp | — |
restrict 📖 | CompOp | 28 mathmath: restrict_empty, restrict_eq_self, MeasureTheory.SignedMeasure.exists_compl_positive_negative, restrict_le_restrict_of_subset_le, restrict_add, restrictₗ_apply, MeasureTheory.SignedMeasure.exists_isCompl_positive_negative, restrict_le_zero_of_not_measurable, restrict_not_measurable, restrictGm_apply, restrict_trim, restrict_apply, neg_le_neg_iff, MeasureTheory.JordanDecomposition.exists_compl_positive_negative, MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE, le_restrict_empty, zero_le_restrict_not_measurable, restrict_univ, restrict_smul, MeasureTheory.SignedMeasure.exists_subset_restrict_nonpos, restrict_neg, restrict_add_restrict_compl, MeasureTheory.Measure.toSignedMeasure_restrict_eq_restrict_toSignedMeasure, le_restrict_univ_iff_le, MeasureTheory.Measure.toSignedMeasure_restrict_sub, restrict_zero, restrict_le_restrict_iff, restrict_sub
|
restrictGm 📖 | CompOp | 1 mathmath: restrictGm_apply
|
restrictₗ 📖 | CompOp | 1 mathmath: restrictₗ_apply
|
smul 📖 | CompOp | — |
sub 📖 | CompOp | — |
trim 📖 | CompOp | 8 mathmath: trim_eq_self, trim_measurableSet_eq, restrict_trim, MeasureTheory.rnDeriv_ae_eq_condExp, zero_trim, MeasureTheory.Integrable.withDensityᵥ_trim_absolutelyContinuous, MeasureTheory.Integrable.withDensityᵥ_trim_eq_integral, trim_apply
|