Documentation Verification Report

Basic

πŸ“ Source: Mathlib/ModelTheory/Algebra/Field/Basic.lean

Statistics

MetricCount
DefinitionsFieldAxiom, toProp, toSentence, compatibleRingOfModelField, fieldOfModelField
5
Theoremsrealize_toSentence_iff_toProp, toProp_of_model, instModelField
3
Total8

FirstOrder.Field

Definitions

NameCategoryTheorems
FieldAxiom πŸ“–CompDataβ€”
compatibleRingOfModelField πŸ“–CompOpβ€”
fieldOfModelField πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instModelField πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Model
FirstOrder.Language.ring
FirstOrder.Ring.CompatibleRing.toStructure
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Distrib.toMul
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
FirstOrder.Language.Theory.field
β€”FieldAxiom.realize_toSentence_iff_toProp
add_assoc
zero_add
neg_add_cancel
mul_assoc
mul_comm
one_mul
mul_inv_cancelβ‚€
mul_add
Distrib.leftDistribClass
exists_pair_ne
DivisionRing.toNontrivial

FirstOrder.Field.FieldAxiom

Definitions

NameCategoryTheorems
toProp πŸ“–MathDef
2 mathmath: realize_toSentence_iff_toProp, toProp_of_model
toSentence πŸ“–CompOp
1 mathmath: realize_toSentence_iff_toProp

Theorems

NameKindAssumesProvesValidatesDepends On
realize_toSentence_iff_toProp πŸ“–mathematicalβ€”FirstOrder.Language.Sentence.Realize
FirstOrder.Language.ring
FirstOrder.Ring.CompatibleRing.toStructure
toSentence
toProp
β€”Empty.instIsEmpty
Fin.isEmpty'
FirstOrder.Ring.realize_add
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.instAtLeastTwoHAddOfNat
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instCharZero
Fin.castPred_one
FirstOrder.Ring.realize_zero
FirstOrder.Ring.realize_neg
Zero.instNonempty
FirstOrder.Ring.realize_mul
FirstOrder.Ring.realize_one
toProp_of_model πŸ“–mathematicalβ€”toPropβ€”realize_toSentence_iff_toProp
FirstOrder.Language.Theory.realize_sentence_of_mem
Set.mem_range_self

---

← Back to Index