Documentation Verification Report

DirectLimit

๐Ÿ“ Source: Mathlib/ModelTheory/DirectLimit.lean

Statistics

MetricCount
DefinitionsDirectLimit, DirectLimit, DirectLimit, Equiv_iSup, equiv_lift, instStructureDirectLimit, liftInclusion, of, prestructure, setoid, sigmaStructure, unify, natLERec, mk, instInhabitedDirectLimitOfDefault, DirectLimit, DirectLimit
17
TheoremsEquiv_isup_of_apply, Equiv_isup_symm_inclusion, Equiv_isup_symm_inclusion_apply, cg, cg', comp_unify, equiv_iff, equiv_lift_of, exists_fg_substructure_in_Sigma, exists_of, exists_quotient_mk'_sigma_mk'_eq, exists_unify_eq, funMap_equiv_unify, funMap_quotient_mk'_sigma_mk', funMap_unify_equiv, iSup_range_of_eq_top, inductionOn, liftInclusion_of, lift_of, lift_quotient_mk'_sigma_mk', lift_unique, of_apply, of_f, rangeLiftInclusion, range_lift, relMap_equiv_unify, relMap_quotient_mk'_sigma_mk', relMap_unify_equiv, unify_sigma_mk_self, coe_natLERec, map_map, map_self, directedSystem, instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
34
Total51

AddCommGroup

Definitions

NameCategoryTheorems
DirectLimit ๐Ÿ“–CompOp
11 mathmath: DirectLimit.lift_of', DirectLimit.of_f, DirectLimit.congr_apply_of, DirectLimit.congr_symm_apply_of, DirectLimit.lift_comp_of, DirectLimit.lift_of, DirectLimit.lift_injective, DirectLimit.map_id, DirectLimit.map_comp, DirectLimit.hom_ext_iff, DirectLimit.map_apply_of

FirstOrder.Language

Definitions

NameCategoryTheorems
DirectLimit ๐Ÿ“–CompOp
17 mathmath: DirectLimit.of_f, DirectLimit.lift_unique, DirectLimit.liftInclusion_of, DirectLimit.cg, DirectLimit.Equiv_isup_symm_inclusion, DirectLimit.lift_quotient_mk'_sigma_mk', DirectLimit.lift_of, DirectLimit.of_apply, age_directLimit, DirectLimit.equiv_lift_of, DirectLimit.Equiv_isup_of_apply, DirectLimit.iSup_range_of_eq_top, DirectLimit.Equiv_isup_symm_inclusion_apply, DirectLimit.cg', DirectLimit.exists_of, DirectLimit.range_lift, DirectLimit.rangeLiftInclusion
instInhabitedDirectLimitOfDefault ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion ๐Ÿ“–mathematicalโ€”DirectedSystem
Substructure
SetLike.instMembership
Substructure.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Substructure.instPartialOrder
OrderHom.instFunLike
Embedding
Substructure.inducedStructure
Embedding.funLike
Substructure.inclusion
OrderHom.monotone
โ€”OrderHom.monotone
le_rfl

FirstOrder.Language.DirectLimit

Definitions

NameCategoryTheorems
Equiv_iSup ๐Ÿ“–CompOp
3 mathmath: Equiv_isup_symm_inclusion, Equiv_isup_of_apply, Equiv_isup_symm_inclusion_apply
equiv_lift ๐Ÿ“–CompOp
1 mathmath: equiv_lift_of
instStructureDirectLimit ๐Ÿ“–CompOp
17 mathmath: of_f, lift_unique, liftInclusion_of, cg, Equiv_isup_symm_inclusion, lift_quotient_mk'_sigma_mk', lift_of, of_apply, FirstOrder.Language.age_directLimit, equiv_lift_of, Equiv_isup_of_apply, iSup_range_of_eq_top, Equiv_isup_symm_inclusion_apply, cg', exists_of, range_lift, rangeLiftInclusion
liftInclusion ๐Ÿ“–CompOp
2 mathmath: liftInclusion_of, rangeLiftInclusion
of ๐Ÿ“–CompOp
12 mathmath: of_f, lift_unique, liftInclusion_of, exists_fg_substructure_in_Sigma, Equiv_isup_symm_inclusion, lift_of, of_apply, equiv_lift_of, Equiv_isup_of_apply, iSup_range_of_eq_top, Equiv_isup_symm_inclusion_apply, exists_of
prestructure ๐Ÿ“–CompOp
2 mathmath: funMap_quotient_mk'_sigma_mk', relMap_quotient_mk'_sigma_mk'
setoid ๐Ÿ“–CompOp
8 mathmath: funMap_quotient_mk'_sigma_mk', exists_quotient_mk'_sigma_mk'_eq, funMap_equiv_unify, relMap_quotient_mk'_sigma_mk', equiv_iff, lift_quotient_mk'_sigma_mk', of_apply, funMap_unify_equiv
sigmaStructure ๐Ÿ“–CompOp
2 mathmath: funMap_equiv_unify, relMap_equiv_unify
unify ๐Ÿ“–CompOp
7 mathmath: unify_sigma_mk_self, exists_unify_eq, funMap_equiv_unify, relMap_unify_equiv, relMap_equiv_unify, comp_unify, funMap_unify_equiv

Theorems

NameKindAssumesProvesValidatesDepends On
Equiv_isup_of_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
FirstOrder.Language.Equiv
FirstOrder.Language.DirectLimit
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
OrderHom
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
OrderHom.instFunLike
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.inclusion
OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
FirstOrder.Language.Substructure.instCompleteLattice
instStructureDirectLimit
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
Equiv_iSup
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
of
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
le_iSup
โ€”OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
Equiv_isup_symm_inclusion ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Embedding.comp
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
OrderHom.instFunLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
FirstOrder.Language.Substructure.instCompleteLattice
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.DirectLimit
FirstOrder.Language.Substructure.inclusion
OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
instStructureDirectLimit
FirstOrder.Language.Equiv.toEmbedding
FirstOrder.Language.Equiv.symm
Equiv_iSup
le_iSup
of
โ€”FirstOrder.Language.Embedding.ext
OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
le_iSup
Equiv_isup_symm_inclusion_apply
Equiv_isup_symm_inclusion_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
FirstOrder.Language.Equiv
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
FirstOrder.Language.Substructure.instCompleteLattice
OrderHom
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
OrderHom.instFunLike
FirstOrder.Language.DirectLimit
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.inclusion
OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
instStructureDirectLimit
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
FirstOrder.Language.Equiv.symm
Equiv_iSup
FirstOrder.Language.Embedding
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
FirstOrder.Language.Embedding.funLike
le_iSup
of
โ€”FirstOrder.Language.Equiv.injective
OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
le_iSup
FirstOrder.Language.Equiv.apply_symm_apply
cg ๐Ÿ“–mathematicalFirstOrder.Language.Structure.CGFirstOrder.Language.DirectLimit
instStructureDirectLimit
โ€”FirstOrder.Language.Structure.CG.out
Set.countable_iUnion
Set.Countable.image
eq_top_iff
FirstOrder.Language.Substructure.closure_iUnion
Set.image_congr
FirstOrder.Language.Substructure.closure_image
le_iSup_iff
Sigma.eta
Quotient.out_eq
cg' ๐Ÿ“–mathematicalFirstOrder.Language.Structure.CGFirstOrder.Language.DirectLimit
instStructureDirectLimit
โ€”cg
comp_unify ๐Ÿ“–mathematicalPreorder.toLE
Set
Set.instMembership
upperBounds
Set.range
DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
unify
trans
instIsTransLe
mem_upperBounds
โ€”trans
instIsTransLe
mem_upperBounds
LE.le.trans
FirstOrder.Language.DirectedSystem.map_map
equiv_iff ๐Ÿ“–mathematicalPreorder.toLEFirstOrder.Language.Structure.Sigma
setoid
DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
โ€”directed_of
FirstOrder.Language.Embedding.injective
LE.le.trans
FirstOrder.Language.DirectedSystem.map_map
equiv_lift_of ๐Ÿ“–mathematicalDFunLike.coe
FirstOrder.Language.Equiv
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.DirectLimit
instStructureDirectLimit
equiv_lift
of
โ€”โ€”
exists_fg_substructure_in_Sigma ๐Ÿ“–mathematicalFirstOrder.Language.Substructure.FG
FirstOrder.Language.DirectLimit
instStructureDirectLimit
FirstOrder.Language.Substructure.map
FirstOrder.Language.Embedding.toHom
of
โ€”exists_quotient_mk'_sigma_mk'_eq
Finite.of_fintype
FirstOrder.Language.Substructure.map_closure
Set.image_congr
Set.image_univ
Set.image_image
Subtype.range_coe_subtype
Finset.setOf_mem
exists_of ๐Ÿ“–mathematicalโ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.DirectLimit
instStructureDirectLimit
FirstOrder.Language.Embedding.funLike
of
โ€”Sigma.eta
Quotient.out_eq
exists_quotient_mk'_sigma_mk'_eq ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Structure.Sigma
setoid
โ€”Finite.bddAbove_range
Quotient.eq_mk_iff_out
unify.eq_1
le_rfl
equiv_iff
FirstOrder.Language.DirectedSystem.map_self
exists_unify_eq ๐Ÿ“–mathematicalpiSetoid
FirstOrder.Language.Structure.Sigma
setoid
unifyโ€”Finite.bddAbove_range
Finite.instSum
upperBounds_union
Set.Sum.elim_range
equiv_iff
funMap_equiv_unify ๐Ÿ“–mathematicalSet
Set.instMembership
upperBounds
Preorder.toLE
Set.range
FirstOrder.Language.Structure.Sigma
setoid
FirstOrder.Language.Structure.funMap
sigmaStructure
unify
โ€”funMap_unify_equiv
Finite.bddAbove_range
Finite.of_fintype
funMap_quotient_mk'_sigma_mk' ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Structure.funMap
FirstOrder.Language.Structure.Sigma
setoid
FirstOrder.Language.quotientStructure
prestructure
โ€”FirstOrder.Language.funMap_quotient_mk'
Finite.bddAbove_range
Finite.of_fintype
directed_of
trans
instIsTransLe
mem_upperBounds
FirstOrder.Language.Embedding.map_fun
comp_unify
funMap_unify_equiv ๐Ÿ“–mathematicalSet
Set.instMembership
upperBounds
Preorder.toLE
Set.range
FirstOrder.Language.Structure.Sigma
setoid
FirstOrder.Language.Structure.funMap
unify
โ€”directed_of
FirstOrder.Language.Embedding.map_fun
trans
instIsTransLe
mem_upperBounds
comp_unify
iSup_range_of_eq_top ๐Ÿ“–mathematicalโ€”iSup
FirstOrder.Language.Substructure
FirstOrder.Language.DirectLimit
instStructureDirectLimit
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
FirstOrder.Language.Substructure.instCompleteLattice
FirstOrder.Language.Hom.range
FirstOrder.Language.Embedding.toHom
of
Top.top
FirstOrder.Language.Substructure.instTop
โ€”eq_top_iff
inductionOn
le_iSup
Set.mem_range_self
inductionOn ๐Ÿ“–โ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.DirectLimit
instStructureDirectLimit
FirstOrder.Language.Embedding.funLike
of
โ€”โ€”exists_of
liftInclusion_of ๐Ÿ“–mathematicalโ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.DirectLimit
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
OrderHom
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
OrderHom.instFunLike
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.inclusion
OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
instStructureDirectLimit
FirstOrder.Language.Embedding.funLike
liftInclusion
of
FirstOrder.Language.Substructure.subtype
โ€”OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
lift_of ๐Ÿ“–mathematicalDFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.DirectLimit
instStructureDirectLimit
lift
of
โ€”lift_quotient_mk'_sigma_mk'
lift_quotient_mk'_sigma_mk' ๐Ÿ“–mathematicalDFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.DirectLimit
instStructureDirectLimit
lift
FirstOrder.Language.Structure.Sigma
setoid
โ€”โ€”
lift_unique ๐Ÿ“–mathematicalโ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.DirectLimit
instStructureDirectLimit
FirstOrder.Language.Embedding.funLike
lift
FirstOrder.Language.Embedding.comp
of
โ€”inductionOn
lift_of
of_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.DirectLimit
instStructureDirectLimit
FirstOrder.Language.Embedding.funLike
of
FirstOrder.Language.Structure.Sigma
setoid
โ€”โ€”
of_f ๐Ÿ“–mathematicalPreorder.toLEDFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.DirectLimit
instStructureDirectLimit
FirstOrder.Language.Embedding.funLike
of
โ€”of_apply
Quotient.eq
refl
instReflLe
FirstOrder.Language.DirectedSystem.map_self
rangeLiftInclusion ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Hom.range
FirstOrder.Language.DirectLimit
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
OrderHom.instFunLike
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.inclusion
OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
instStructureDirectLimit
FirstOrder.Language.Embedding.toHom
liftInclusion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
FirstOrder.Language.Substructure.instCompleteLattice
โ€”OrderHom.monotone
FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion
range_lift
FirstOrder.Language.Substructure.range_subtype
range_lift ๐Ÿ“–mathematicalDFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.Hom.range
FirstOrder.Language.DirectLimit
instStructureDirectLimit
FirstOrder.Language.Embedding.toHom
lift
iSup
FirstOrder.Language.Substructure
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
FirstOrder.Language.Substructure.instCompleteLattice
โ€”FirstOrder.Language.Hom.range_eq_map
iSup_range_of_eq_top
FirstOrder.Language.Substructure.map_iSup
FirstOrder.Language.Substructure.map_map
relMap_equiv_unify ๐Ÿ“–mathematicalSet
Set.instMembership
upperBounds
Preorder.toLE
Set.range
FirstOrder.Language.Structure.RelMap
FirstOrder.Language.Structure.Sigma
sigmaStructure
unify
โ€”relMap_unify_equiv
Finite.bddAbove_range
Finite.of_fintype
relMap_quotient_mk'_sigma_mk' ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Structure.RelMap
FirstOrder.Language.Structure.Sigma
setoid
FirstOrder.Language.quotientStructure
prestructure
โ€”FirstOrder.Language.relMap_quotient_mk'
le_of_eq
relMap_equiv_unify
trans
instIsTransLe
refl
instReflLe
unify_sigma_mk_self
relMap_unify_equiv ๐Ÿ“–mathematicalSet
Set.instMembership
upperBounds
Preorder.toLE
Set.range
FirstOrder.Language.Structure.RelMap
unify
โ€”directed_of
FirstOrder.Language.Embedding.map_rel
trans
instIsTransLe
mem_upperBounds
comp_unify
unify_sigma_mk_self ๐Ÿ“–mathematicalโ€”unify
Preorder.toLE
trans
instIsTransLe
le_of_eq
refl
instReflLe
โ€”trans
instIsTransLe
le_of_eq
refl
instReflLe
unify.eq_1
FirstOrder.Language.DirectedSystem.map_self

FirstOrder.Language.DirectedSystem

Definitions

NameCategoryTheorems
natLERec ๐Ÿ“–CompOp
2 mathmath: coe_natLERec, natLERec.directedSystem

Theorems

NameKindAssumesProvesValidatesDepends On
coe_natLERec ๐Ÿ“–mathematicalโ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
natLERec
Nat.leRecOn
โ€”Nat.leRecOn_self
le_self_add
Nat.instCanonicallyOrderedAdd
Nat.leRecOn_succ
natLERec.eq_1
FirstOrder.Language.Embedding.comp_apply
map_map ๐Ÿ“–mathematicalPreorder.toLEDFunLike.coe
LE.le.trans
โ€”DirectedSystem.map_map'
map_self ๐Ÿ“–mathematicalโ€”DFunLike.coe
le_rfl
โ€”DirectedSystem.map_self'

FirstOrder.Language.DirectedSystem.natLERec

Theorems

NameKindAssumesProvesValidatesDepends On
directedSystem ๐Ÿ“–mathematicalโ€”DirectedSystem
Nat.instPreorder
DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
FirstOrder.Language.DirectedSystem.natLERec
โ€”Nat.leRecOn_self
LE.le.trans
FirstOrder.Language.DirectedSystem.coe_natLERec
Nat.leRecOn_trans

FirstOrder.Language.Structure.Sigma

Definitions

NameCategoryTheorems
mk ๐Ÿ“–CompOpโ€”

Module

Definitions

NameCategoryTheorems
DirectLimit ๐Ÿ“–CompOp
31 mathmath: DirectLimit.lift_injective, DirectLimit.map_apply_of, ModuleCat.directLimitCocone_pt_carrier, DirectLimit.lift_of, TensorProduct.directLimitRight_tmul_of, DirectLimit.quotMk_of, DirectLimit.congr_symm_apply_of, DirectLimit.map_comp, DirectLimit.of_f, ModuleCat.directLimitIsColimit_desc, Submodule.FG.lTensor.directLimit_apply', DirectLimit.linearEquiv_of, Submodule.FG.rTensor.directLimit_apply, TensorProduct.directLimitLeft_rTensor_of, DirectLimit.lift_comp_of, DirectLimit.congr_apply_of, DirectLimit.exists_of, DirectLimit.map_id, DirectLimit.linearEquiv_symm_mk, DirectLimit.lift_of', Submodule.FG.lTensor.directLimit_apply, fgSystem.equiv_comp_of, ModuleCat.directLimitCocone_ฮน_app, TensorProduct.directLimitLeft_tmul_of, TensorProduct.directLimitLeft_symm_of_tmul, TensorProduct.fromDirectLimit_of_tmul, TensorProduct.directLimitRight_symm_of_tmul, Submodule.FG.rTensor.directLimit_apply', DirectLimit.hom_ext_iff, DirectLimit.exists_ofโ‚‚, TensorProduct.toDirectLimit_tmul_of

Ring

Definitions

NameCategoryTheorems
DirectLimit ๐Ÿ“–CompOp
21 mathmath: DirectLimit.congr_symm_apply_of, Field.DirectLimit.exists_inv, Field.DirectLimit.nontrivial, DirectLimit.congr_apply_of, DirectLimit.of_injective, Field.DirectLimit.mul_inv_cancel, DirectLimit.hom_ext_iff, DirectLimit.ringEquiv_of, DirectLimit.quotientMk_of, DirectLimit.map_id, DirectLimit.map_comp, DirectLimit.lift_comp_of, DirectLimit.ringEquiv_symm_mk, Field.DirectLimit.inv_mul_cancel, DirectLimit.lift_of, DirectLimit.exists_of, DirectLimit.Polynomial.exists_of, DirectLimit.lift_injective, DirectLimit.map_apply_of, DirectLimit.of_f, DirectLimit.lift_of'

(root)

Definitions

NameCategoryTheorems
DirectLimit ๐Ÿ“–CompOp
21 mathmath: DirectLimit.Module.of_f, DirectLimit.Module.lift_of, DirectLimit.ratCast_def, DirectLimit.instNontrivial, DirectLimit.natCast_def, Module.DirectLimit.linearEquiv_of, DirectLimit.exists_eq_one, DirectLimit.intCast_def, Module.DirectLimit.linearEquiv_symm_mk, DirectLimit.Ring.of_f, Ring.DirectLimit.ringEquiv_of, DirectLimit.exists_eq_zero, DirectLimit.one_def, DirectLimit.Ring.hom_ext_iff, DirectLimit.Ring.lift_of, Ring.DirectLimit.ringEquiv_symm_mk, DirectLimit.Module.hom_ext_iff, DirectLimit.Module.lift_apply, DirectLimit.zero_def, DirectLimit.nnratCast_def, DirectLimit.lift_injective

---

โ† Back to Index