Documentation Verification Report

ElementaryMaps

πŸ“ Source: Mathlib/ModelTheory/ElementaryMaps.lean

Statistics

MetricCount
DefinitionsElementaryEmbedding, comp, instFunLike, instInhabited, ofModelsElementaryDiagram, refl, toEmbedding, toFun, toHom, toElementaryEmbedding, toElementaryEmbedding, elementaryDiagram, Β«term_β†ͺβ‚‘[_]_Β»
13
Theoremscoe_injective, coe_toEmbedding, coe_toHom, comp_apply, comp_assoc, elementarilyEquivalent, embeddingLike, ext, ext_iff, injective, map_boundedFormula, map_constants, map_formula, map_formula', map_fun, map_rel, map_sentence, ofModelsElementaryDiagram_toFun, refl_apply, strongHomClass, theory_model_iff, toEmbedding_toHom, isElementary_of_exists, toElementaryEmbedding_toFun, coe_toElementaryEmbedding, toElementaryEmbedding_toEmbedding, realize_term_substructure
27
Total40

FirstOrder

Definitions

NameCategoryTheorems
Β«term_β†ͺβ‚‘[_]_Β» πŸ“–CompOpβ€”

FirstOrder.Language

Definitions

NameCategoryTheorems
ElementaryEmbedding πŸ“–CompData
23 mathmath: ElementaryEmbedding.map_rel, ElementarySubstructure.subtype_apply, ElementaryEmbedding.ext_iff, Equiv.coe_toElementaryEmbedding, Embedding.toElementaryEmbedding_toFun, ElementaryEmbedding.map_constants, ElementaryEmbedding.map_fun, ElementaryEmbedding.injective, ElementaryEmbedding.map_boundedFormula, ElementaryEmbedding.embeddingLike, ElementaryEmbedding.coe_injective, ElementaryEmbedding.refl_apply, exists_elementaryEmbedding_card_eq, exists_elementaryEmbedding_card_eq_of_le, ElementaryEmbedding.ofModelsElementaryDiagram_toFun, exists_elementaryEmbedding_card_eq_of_ge, ElementarySubstructure.subtype_injective, ElementaryEmbedding.strongHomClass, ElementarySubstructure.coe_subtype, ElementaryEmbedding.coe_toHom, ElementaryEmbedding.coe_toEmbedding, ElementaryEmbedding.map_formula, ElementaryEmbedding.comp_apply
elementaryDiagram πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
realize_term_substructure πŸ“–mathematicalβ€”Term.realize
Substructure
SetLike.instMembership
Substructure.instSetLike
Substructure.inducedStructure
β€”HomClass.realize_term
StrongHomClass.homClass
Embedding.strongHomClass

FirstOrder.Language.ElementaryEmbedding

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
2 mathmath: comp_assoc, comp_apply
instFunLike πŸ“–CompOp
20 mathmath: map_rel, FirstOrder.Language.ElementarySubstructure.subtype_apply, ext_iff, FirstOrder.Language.Equiv.coe_toElementaryEmbedding, FirstOrder.Language.Embedding.toElementaryEmbedding_toFun, map_constants, map_fun, injective, map_boundedFormula, embeddingLike, coe_injective, refl_apply, ofModelsElementaryDiagram_toFun, FirstOrder.Language.ElementarySubstructure.subtype_injective, strongHomClass, FirstOrder.Language.ElementarySubstructure.coe_subtype, coe_toHom, coe_toEmbedding, map_formula, comp_apply
instInhabited πŸ“–CompOpβ€”
ofModelsElementaryDiagram πŸ“–CompOp
1 mathmath: ofModelsElementaryDiagram_toFun
refl πŸ“–CompOp
1 mathmath: refl_apply
toEmbedding πŸ“–CompOp
3 mathmath: FirstOrder.Language.Equiv.toElementaryEmbedding_toEmbedding, toEmbedding_toHom, coe_toEmbedding
toFun πŸ“–CompOp
1 mathmath: map_formula'
toHom πŸ“–CompOp
2 mathmath: toEmbedding_toHom, coe_toHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_injective πŸ“–mathematicalβ€”FirstOrder.Language.ElementaryEmbedding
DFunLike.coe
instFunLike
β€”DFunLike.coe_injective
coe_toEmbedding πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Embedding.funLike
toEmbedding
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”β€”
coe_toHom πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
toHom
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
elementarilyEquivalent πŸ“–mathematicalβ€”FirstOrder.Language.ElementarilyEquivalentβ€”FirstOrder.Language.elementarilyEquivalent_iff
map_sentence
embeddingLike πŸ“–mathematicalβ€”EmbeddingLike
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”injective
ext πŸ“–β€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”ext
injective πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”map_formula
map_boundedFormula πŸ“–mathematicalβ€”FirstOrder.Language.BoundedFormula.Realize
DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”Set.Subset.rfl
FirstOrder.Language.BoundedFormula.realize_restrictFreeVar'
Set.inclusion_eq_id
iff_eq_eq
map_formula'
Function.comp_assoc
Equiv.symm_comp_self
map_constants πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
FirstOrder.Language.constantMap
β€”FirstOrder.Language.HomClass.map_constants
FirstOrder.Language.StrongHomClass.homClass
strongHomClass
map_formula πŸ“–mathematicalβ€”FirstOrder.Language.Formula.Realize
DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”Fin.isEmpty'
FirstOrder.Language.Formula.Realize.eq_1
map_boundedFormula
Unique.eq_default
map_formula' πŸ“–mathematicalβ€”FirstOrder.Language.Formula.Realize
toFun
β€”β€”
map_fun πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
FirstOrder.Language.Structure.funMap
β€”map_formula
FirstOrder.Language.Formula.realize_graph
Fin.comp_cons
map_rel πŸ“–mathematicalβ€”FirstOrder.Language.Structure.RelMap
DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”map_formula
map_sentence πŸ“–mathematicalβ€”FirstOrder.Language.Sentence.Realizeβ€”Empty.instIsEmpty
FirstOrder.Language.Sentence.Realize.eq_1
map_formula
Unique.eq_default
ofModelsElementaryDiagram_toFun πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
ofModelsElementaryDiagram
FirstOrder.Language.Constants
FirstOrder.Language.withConstants
FirstOrder.Language.constantMap
FirstOrder.Language.Functions
β€”β€”
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
instFunLike
refl
β€”β€”
strongHomClass πŸ“–mathematicalβ€”FirstOrder.Language.StrongHomClass
FirstOrder.Language.ElementaryEmbedding
instFunLike
β€”map_fun
map_rel
theory_model_iff πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Modelβ€”map_sentence
toEmbedding_toHom πŸ“–mathematicalβ€”FirstOrder.Language.Embedding.toHom
toEmbedding
toHom
β€”β€”

FirstOrder.Language.Embedding

Definitions

NameCategoryTheorems
toElementaryEmbedding πŸ“–CompOp
1 mathmath: toElementaryEmbedding_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
isElementary_of_exists πŸ“–mathematicalFirstOrder.Language.BoundedFormula.Realize
Unique.instInhabited
Pi.uniqueOfIsEmpty
Empty.instIsEmpty
Fin.snoc
DFunLike.coe
FirstOrder.Language.Embedding
funLike
FirstOrder.Language.Formula.Realizeβ€”Empty.instIsEmpty
FirstOrder.Language.HomClass.realize_term
FirstOrder.Language.StrongHomClass.homClass
strongHomClass
embeddingLike
map_rel
Fin.comp_snoc
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
FirstOrder.Language.BoundedFormula.realize_not
Unique.eq_default
FirstOrder.Language.Formula.realize_relabel_sumInr
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
iff_isEquiv
toElementaryEmbedding_toFun πŸ“–mathematicalFirstOrder.Language.BoundedFormula.Realize
Unique.instInhabited
Pi.uniqueOfIsEmpty
Empty.instIsEmpty
Fin.snoc
DFunLike.coe
FirstOrder.Language.Embedding
funLike
FirstOrder.Language.ElementaryEmbedding
FirstOrder.Language.ElementaryEmbedding.instFunLike
toElementaryEmbedding
β€”Empty.instIsEmpty

FirstOrder.Language.Equiv

Definitions

NameCategoryTheorems
toElementaryEmbedding πŸ“–CompOp
2 mathmath: coe_toElementaryEmbedding, toElementaryEmbedding_toEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toElementaryEmbedding πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.ElementaryEmbedding
FirstOrder.Language.ElementaryEmbedding.instFunLike
toElementaryEmbedding
FirstOrder.Language.Equiv
EquivLike.toFunLike
instEquivLike
β€”β€”
toElementaryEmbedding_toEmbedding πŸ“–mathematicalβ€”FirstOrder.Language.ElementaryEmbedding.toEmbedding
toElementaryEmbedding
toEmbedding
β€”β€”

---

← Back to Index