Documentation Verification Report

Equivalence

πŸ“ Source: Mathlib/ModelTheory/Equivalence.lean

Statistics

MetricCount
DefinitionsIff, Imp, iffSetoid, Β«term_⇔[_]_Β», Β«term_⟹[_]_Β»
5
Theoremsall_iff_not_ex_not, ex_iff_not_all_not, iff_all_liftAt, iff_not_not, imp_iff_not_sup, inf_iff_not_sup_not, inf_not_iff_bot, sup_iff_not_inf_not, sup_not_iff_top, iff_not_not, imp_iff_not_sup, inf_iff_not_sup_not, sup_iff_not_inf_not, all, ex, imp, instIsTransBoundedFormula, instReflBoundedFormula, instSymmBoundedFormula, models_sentence_iff, mp, mpr, not, realize_bd_iff, realize_iff, refl, trans, instIsTransBoundedFormula, instReflBoundedFormula, refl, trans, bot_imp, iff_iff_imp_and_imp, imp_antisymm, imp_inf, imp_inf_iff, imp_sup_left, imp_sup_right, imp_top, inf_imp_left, inf_imp_right, sup_imp, sup_imp_iff
43
Total48

FirstOrder

Definitions

NameCategoryTheorems
Β«term_⇔[_]_Β» πŸ“–CompOpβ€”
Β«term_⟹[_]_Β» πŸ“–CompOpβ€”

FirstOrder.Language.BoundedFormula

Theorems

NameKindAssumesProvesValidatesDepends On
all_iff_not_ex_not πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
all
not
ex
β€”β€”
ex_iff_not_all_not πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
ex
not
all
β€”β€”
iff_all_liftAt πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
all
liftAt
β€”realize_iff
realize_all_liftAt_one_self
FirstOrder.Language.Theory.ModelType.nonempty'
iff_not_not πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
not
β€”β€”
imp_iff_not_sup πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
imp
FirstOrder.Language.BoundedFormula
instMax
not
β€”β€”
inf_iff_not_sup_not πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
FirstOrder.Language.BoundedFormula
instMin
not
instMax
β€”β€”
inf_not_iff_bot πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
FirstOrder.Language.BoundedFormula
instMin
not
Bot.bot
instBot
β€”β€”
sup_iff_not_inf_not πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
FirstOrder.Language.BoundedFormula
instMax
not
instMin
β€”β€”
sup_not_iff_top πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
FirstOrder.Language.BoundedFormula
instMax
not
Top.top
instTop
β€”β€”

FirstOrder.Language.Formula

Theorems

NameKindAssumesProvesValidatesDepends On
iff_not_not πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
not
β€”FirstOrder.Language.BoundedFormula.iff_not_not
imp_iff_not_sup πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
imp
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMax
not
β€”FirstOrder.Language.BoundedFormula.imp_iff_not_sup
inf_iff_not_sup_not πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMin
not
FirstOrder.Language.Formula
FirstOrder.Language.BoundedFormula.instMax
β€”FirstOrder.Language.BoundedFormula.inf_iff_not_sup_not
sup_iff_not_inf_not πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iff
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMax
not
FirstOrder.Language.Formula
FirstOrder.Language.BoundedFormula.instMin
β€”FirstOrder.Language.BoundedFormula.sup_iff_not_inf_not

FirstOrder.Language.Theory

Definitions

NameCategoryTheorems
Iff πŸ“–MathDef
20 mathmath: FirstOrder.Language.BoundedFormula.ex_iff_not_all_not, FirstOrder.Language.Formula.iff_not_not, FirstOrder.Language.BoundedFormula.iff_all_liftAt, Iff.instSymmBoundedFormula, Iff.instIsTransBoundedFormula, FirstOrder.Language.BoundedFormula.iff_toPrenex, FirstOrder.Language.Formula.inf_iff_not_sup_not, iff_iff_imp_and_imp, FirstOrder.Language.BoundedFormula.inf_not_iff_bot, FirstOrder.Language.BoundedFormula.iff_not_not, FirstOrder.Language.BoundedFormula.sup_not_iff_top, FirstOrder.Language.BoundedFormula.imp_iff_not_sup, FirstOrder.Language.BoundedFormula.all_iff_not_ex_not, FirstOrder.Language.BoundedFormula.inf_iff_not_sup_not, FirstOrder.Language.Formula.imp_iff_not_sup, FirstOrder.Language.BoundedFormula.sup_iff_not_inf_not, Iff.refl, FirstOrder.Language.Formula.sup_iff_not_inf_not, Iff.instReflBoundedFormula, imp_antisymm
Imp πŸ“–MathDef
14 mathmath: imp_sup_right, imp_inf_iff, imp_sup_left, bot_imp, Imp.refl, inf_imp_left, inf_imp_right, Iff.mpr, Imp.instIsTransBoundedFormula, Imp.instReflBoundedFormula, iff_iff_imp_and_imp, Iff.mp, imp_top, sup_imp_iff
iffSetoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_imp πŸ“–mathematicalβ€”Imp
Bot.bot
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instBot
β€”β€”
iff_iff_imp_and_imp πŸ“–mathematicalβ€”Iff
Imp
β€”β€”
imp_antisymm πŸ“–mathematicalImpIffβ€”iff_iff_imp_and_imp
imp_inf πŸ“–mathematicalImpFirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMin
β€”β€”
imp_inf_iff πŸ“–mathematicalβ€”Imp
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMin
β€”Imp.trans
inf_imp_left
inf_imp_right
imp_inf
imp_sup_left πŸ“–mathematicalβ€”Imp
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMax
β€”β€”
imp_sup_right πŸ“–mathematicalβ€”Imp
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMax
β€”β€”
imp_top πŸ“–mathematicalβ€”Imp
Top.top
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instTop
β€”β€”
inf_imp_left πŸ“–mathematicalβ€”Imp
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMin
β€”β€”
inf_imp_right πŸ“–mathematicalβ€”Imp
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMin
β€”β€”
sup_imp πŸ“–mathematicalImpFirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMax
β€”β€”
sup_imp_iff πŸ“–mathematicalβ€”Imp
FirstOrder.Language.BoundedFormula
FirstOrder.Language.BoundedFormula.instMax
β€”Imp.trans
imp_sup_left
imp_sup_right
sup_imp

FirstOrder.Language.Theory.Iff

Theorems

NameKindAssumesProvesValidatesDepends On
all πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.BoundedFormula.allβ€”realize_bd_iff
FirstOrder.Language.Theory.ModelType.nonempty'
FirstOrder.Language.Theory.ModelType.is_model
ex πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.BoundedFormula.exβ€”realize_bd_iff
FirstOrder.Language.Theory.ModelType.nonempty'
FirstOrder.Language.Theory.ModelType.is_model
imp πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.BoundedFormula.impβ€”realize_bd_iff
FirstOrder.Language.Theory.ModelType.nonempty'
FirstOrder.Language.Theory.ModelType.is_model
instIsTransBoundedFormula πŸ“–mathematicalβ€”IsTrans
FirstOrder.Language.BoundedFormula
FirstOrder.Language.Theory.Iff
β€”trans
instReflBoundedFormula πŸ“–mathematicalβ€”FirstOrder.Language.BoundedFormula
FirstOrder.Language.Theory.Iff
β€”refl
instSymmBoundedFormula πŸ“–mathematicalβ€”FirstOrder.Language.BoundedFormula
FirstOrder.Language.Theory.Iff
β€”symm
models_sentence_iff πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.Sentence.Realizeβ€”realize_iff
Empty.instIsEmpty
mp πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.Theory.Impβ€”FirstOrder.Language.Theory.iff_iff_imp_and_imp
mpr πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.Theory.Impβ€”FirstOrder.Language.Theory.iff_iff_imp_and_imp
not πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.BoundedFormula.notβ€”realize_bd_iff
FirstOrder.Language.Theory.ModelType.nonempty'
FirstOrder.Language.Theory.ModelType.is_model
realize_bd_iff πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.BoundedFormula.Realizeβ€”FirstOrder.Language.BoundedFormula.realize_iff
FirstOrder.Language.Theory.ModelsBoundedFormula.realize_boundedFormula
realize_iff πŸ“–mathematicalFirstOrder.Language.Theory.IffFirstOrder.Language.Formula.Realizeβ€”realize_bd_iff
Fin.isEmpty'
refl πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Iffβ€”FirstOrder.Language.BoundedFormula.realize_iff
trans πŸ“–β€”FirstOrder.Language.Theory.Iffβ€”β€”FirstOrder.Language.BoundedFormula.realize_iff

FirstOrder.Language.Theory.Imp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTransBoundedFormula πŸ“–mathematicalβ€”IsTrans
FirstOrder.Language.BoundedFormula
FirstOrder.Language.Theory.Imp
β€”trans
instReflBoundedFormula πŸ“–mathematicalβ€”FirstOrder.Language.BoundedFormula
FirstOrder.Language.Theory.Imp
β€”refl
refl πŸ“–mathematicalβ€”FirstOrder.Language.Theory.Impβ€”β€”
trans πŸ“–β€”FirstOrder.Language.Theory.Impβ€”β€”β€”

---

← Back to Index