Documentation Verification Report

Fraisse

📁 Source: Mathlib/ModelTheory/Fraisse.lean

Statistics

MetricCount
DefinitionsAmalgamation, Hereditary, IsFraisse, IsFraisseLimit, IsUltrahomogeneous, JointEmbedding, age
7
Theoremsage_subset_age, age_eq_age, is_equiv_invariant_of_fg, amalgamation, hereditary, is_equiv_invariant, is_essentially_countable, is_nonempty, jointEmbedding, age, isExtensionPair, isFraisse, nonempty_equiv, ultrahomogeneous, age_isFraisse, amalgamation_age, extend_embedding, mem_age_of_equiv, countable_quotient, fg_substructure, has_representative_as_substructure, hereditary, is_equiv_invariant, jointEmbedding, nonempty, age_directLimit, isFraisseLimit_of_countable_infinite, isFraisse_finite, exists_cg_is_age_of, exists_countable_is_age_of_iff, isUltrahomogeneous_iff_IsExtensionPair
31
Total38

FirstOrder.Language

Definitions

NameCategoryTheorems
Amalgamation 📖MathDef
2 mathmath: IsFraisse.amalgamation, IsUltrahomogeneous.amalgamation_age
Hereditary 📖MathDef
3 mathmath: exists_countable_is_age_of_iff, IsFraisse.hereditary, age.hereditary
IsFraisse 📖CompData
4 mathmath: empty.isFraisse_finite, isFraisse_finite_linear_order, IsUltrahomogeneous.age_isFraisse, IsFraisseLimit.isFraisse
IsFraisseLimit 📖CompData
2 mathmath: empty.isFraisseLimit_of_countable_infinite, isFraisseLimit_of_countable_nonempty_dlo
IsUltrahomogeneous 📖MathDef
2 mathmath: IsFraisseLimit.ultrahomogeneous, isUltrahomogeneous_iff_IsExtensionPair
JointEmbedding 📖MathDef
3 mathmath: exists_countable_is_age_of_iff, age.jointEmbedding, IsFraisse.jointEmbedding
age 📖CompOp
16 mathmath: dlo_age, age.nonempty, exists_cg_is_age_of, Embedding.age_subset_age, exists_countable_is_age_of_iff, IsFraisseLimit.age, Equiv.age_eq_age, age.fg_substructure, age.countable_quotient, age.is_equiv_invariant, IsUltrahomogeneous.age_isFraisse, age.jointEmbedding, IsUltrahomogeneous.amalgamation_age, age_directLimit, age.hereditary, Structure.FG.mem_age_of_equiv

Theorems

NameKindAssumesProvesValidatesDepends On
age_directLimit 📖mathematicalage
DirectLimit
DirectLimit.instStructureDirectLimit
Set.iUnion
CategoryTheory.Bundled
Structure
Set.ext
Structure.FG.range
Finset.exists_le
Substructure.closure_le
Finset.mem_image_of_mem
Embedding.coe_toHom
DirectLimit.of_apply
Quotient.mk_eq_iff_out
le_refl
DirectLimit.equiv_iff
le_rfl
DirectedSystem.map_self
exists_cg_is_age_of 📖mathematicalSet.Nonempty
CategoryTheory.Bundled
Structure
Structure.FG
CategoryTheory.Bundled.α
CategoryTheory.Bundled.structure
Hereditary
JointEmbedding
Structure.CG
age
Set.Countable.exists_eq_range
Set.Nonempty.image
Quotient.mk_out
Hereditary.is_equiv_invariant_of_fg
DirectedSystem.natLERec.directedSystem
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
DirectLimit.cg
instCountableNat
Structure.FG.cg
age_directLimit
subset_antisymm
Set.instAntisymmSubset
Set.iUnion_subset
Quotient.eq_mk_iff_out
Set.mem_iUnion_of_mem
exists_countable_is_age_of_iff 📖mathematicalCountable
CategoryTheory.Bundled.α
Structure
age
CategoryTheory.Bundled.structure
Set.Nonempty
CategoryTheory.Bundled
Set
Set.instMembership
Set.Countable
equivSetoid
Set.image
Structure.FG
Hereditary
JointEmbedding
age.nonempty
age.is_equiv_invariant
age.countable_quotient
age.hereditary
age.jointEmbedding
exists_cg_is_age_of
Structure.cg_iff_countable
isUltrahomogeneous_iff_IsExtensionPair 📖mathematicalIsUltrahomogeneous
IsExtensionPair
le_sup_left
IsUltrahomogeneous.extend_embedding
Substructure.fg_iff_structure_fg
Substructure.FG.sup
Substructure.fg_closure_singleton
HasSubset.Subset.trans
Set.instIsTransSubset
Substructure.subset_closure
le_sup_right
Set.mem_singleton
Embedding.ext
equiv_between_cg
Embedding.subtype_equivRange

FirstOrder.Language.Embedding

Theorems

NameKindAssumesProvesValidatesDepends On
age_subset_age 📖mathematicalSet
CategoryTheory.Bundled
FirstOrder.Language.Structure
Set.instHasSubset
FirstOrder.Language.age
Nonempty.map

FirstOrder.Language.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
age_eq_age 📖mathematicalFirstOrder.Language.agele_antisymm
FirstOrder.Language.Embedding.age_subset_age

FirstOrder.Language.Hereditary

Theorems

NameKindAssumesProvesValidatesDepends On
is_equiv_invariant_of_fg 📖mathematicalFirstOrder.Language.Hereditary
FirstOrder.Language.Structure.FG
CategoryTheory.Bundled.α
FirstOrder.Language.Structure
CategoryTheory.Bundled.structure
CategoryTheory.Bundled
Set
Set.instMembership
FirstOrder.Language.Structure.FG.mem_age_of_equiv

FirstOrder.Language.IsFraisse

Theorems

NameKindAssumesProvesValidatesDepends On
amalgamation 📖mathematicalFirstOrder.Language.Amalgamation
hereditary 📖mathematicalFirstOrder.Language.Hereditary
is_equiv_invariant 📖mathematicalCategoryTheory.Bundled
FirstOrder.Language.Structure
Set
Set.instMembership
FirstOrder.Language.Hereditary.is_equiv_invariant_of_fg
hereditary
FG
is_essentially_countable 📖mathematicalSet.Countable
CategoryTheory.Bundled
FirstOrder.Language.Structure
FirstOrder.Language.equivSetoid
Set.image
is_nonempty 📖mathematicalSet.Nonempty
CategoryTheory.Bundled
FirstOrder.Language.Structure
jointEmbedding 📖mathematicalFirstOrder.Language.JointEmbedding

FirstOrder.Language.IsFraisseLimit

Theorems

NameKindAssumesProvesValidatesDepends On
age 📖mathematicalFirstOrder.Language.IsFraisseLimitFirstOrder.Language.age
isExtensionPair 📖mathematicalFirstOrder.Language.IsFraisseLimitFirstOrder.Language.IsExtensionPairFirstOrder.Language.Substructure.FG.sup
FirstOrder.Language.Substructure.fg_closure_singleton
age
FirstOrder.Language.Substructure.fg_iff_structure_fg
le_sup_left
FirstOrder.Language.IsUltrahomogeneous.extend_embedding
ultrahomogeneous
HasSubset.Subset.trans
Set.instIsTransSubset
FirstOrder.Language.Substructure.subset_closure
le_sup_right
Set.mem_singleton
FirstOrder.Language.Embedding.ext
isFraisse 📖mathematicalFirstOrder.Language.IsFraisseLimitFirstOrder.Language.IsFraisseage
FirstOrder.Language.IsUltrahomogeneous.age_isFraisse
ultrahomogeneous
nonempty_equiv 📖mathematicalFirstOrder.Language.IsFraisseLimitFirstOrder.Language.EquivFirstOrder.Language.Substructure.fg_iff_structure_fg
FirstOrder.Language.Substructure.fg_bot
age
FirstOrder.Language.equiv_between_cg
FirstOrder.Language.Structure.cg_of_countable
isExtensionPair
ultrahomogeneous 📖mathematicalFirstOrder.Language.IsFraisseLimitFirstOrder.Language.IsUltrahomogeneous

FirstOrder.Language.IsUltrahomogeneous

Theorems

NameKindAssumesProvesValidatesDepends On
age_isFraisse 📖mathematicalFirstOrder.Language.IsUltrahomogeneousFirstOrder.Language.IsFraisse
FirstOrder.Language.age
FirstOrder.Language.age.nonempty
FirstOrder.Language.age.countable_quotient
FirstOrder.Language.age.hereditary
FirstOrder.Language.age.jointEmbedding
amalgamation_age
amalgamation_age 📖mathematicalFirstOrder.Language.IsUltrahomogeneousFirstOrder.Language.Amalgamation
FirstOrder.Language.age
FirstOrder.Language.Structure.FG.range
le_sup_left
le_sup_right
FirstOrder.Language.Substructure.fg_iff_structure_fg
FirstOrder.Language.Substructure.FG.sup
FirstOrder.Language.Embedding.ext
FirstOrder.Language.Embedding.ext_iff
FirstOrder.Language.Substructure.coe_inclusion
FirstOrder.Language.Equiv.symm_apply_apply
FirstOrder.Language.Embedding.comp_apply
FirstOrder.Language.Equiv.coe_toEmbedding
FirstOrder.Language.Embedding.equivRange_apply
extend_embedding 📖mathematicalFirstOrder.Language.IsUltrahomogeneousFirstOrder.Language.Embedding.compFirstOrder.Language.Structure.FG.range
FirstOrder.Language.Embedding.ext
FirstOrder.Language.Hom.mem_range
FirstOrder.Language.Embedding.embeddingLike
FirstOrder.Language.Equiv.injective
FirstOrder.Language.Equiv.apply_symm_apply

FirstOrder.Language.Structure.FG

Theorems

NameKindAssumesProvesValidatesDepends On
mem_age_of_equiv 📖mathematicalCategoryTheory.Bundled
FirstOrder.Language.Structure
Set
Set.instMembership
FirstOrder.Language.age
CategoryTheory.Bundled.α
CategoryTheory.Bundled.structure
FirstOrder.Language.Equiv.fg_iff

FirstOrder.Language.age

Theorems

NameKindAssumesProvesValidatesDepends On
countable_quotient 📖mathematicalSet.Countable
CategoryTheory.Bundled
FirstOrder.Language.Structure
FirstOrder.Language.equivSetoid
Set.image
FirstOrder.Language.age
Set.ext
Quotient.forall
FirstOrder.Language.Substructure.fg_iff_structure_fg
FirstOrder.Language.Substructure.fg_closure
Finset.finite_toSet
FirstOrder.Language.Embedding.coe_toHom
Finset.coe_image
FirstOrder.Language.Substructure.closure_image
FirstOrder.Language.Hom.range_eq_map
Set.countable_range
Finset.countable
fg_substructure 📖mathematicalFirstOrder.Language.Substructure.FGCategoryTheory.Bundled
FirstOrder.Language.Structure
Set
Set.instMembership
FirstOrder.Language.age
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.fg_iff_structure_fg
has_representative_as_substructure 📖mathematicalCategoryTheory.Bundled
FirstOrder.Language.Structure
FirstOrder.Language.equivSetoid
Set
Set.instMembership
Set.image
FirstOrder.Language.age
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Substructure.FG
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Structure.FG.range
hereditary 📖mathematicalFirstOrder.Language.Hereditary
FirstOrder.Language.age
FirstOrder.Language.Embedding.age_subset_age
is_equiv_invariant 📖mathematicalCategoryTheory.Bundled
FirstOrder.Language.Structure
Set
Set.instMembership
FirstOrder.Language.age
FirstOrder.Language.Equiv.fg_iff
Nonempty.map
jointEmbedding 📖mathematicalFirstOrder.Language.JointEmbedding
FirstOrder.Language.age
FirstOrder.Language.Substructure.fg_iff_structure_fg
FirstOrder.Language.Substructure.FG.sup
FirstOrder.Language.Structure.FG.range
le_sup_left
le_sup_right
nonempty 📖mathematicalSet.Nonempty
CategoryTheory.Bundled
FirstOrder.Language.Structure
FirstOrder.Language.age
FirstOrder.Language.Substructure.fg_iff_structure_fg
FirstOrder.Language.Substructure.fg_closure
Set.finite_empty

FirstOrder.Language.empty

Theorems

NameKindAssumesProvesValidatesDepends On
isFraisseLimit_of_countable_infinite 📖mathematicalFirstOrder.Language.IsFraisseLimit
FirstOrder.Language.empty
setOf
CategoryTheory.Bundled
FirstOrder.Language.Structure
Finite
CategoryTheory.Bundled.α
FirstOrder.Language.Countable.countable_functions
Encodable.countable
FirstOrder.Language.Symbols
Sum.encodable
FirstOrder.Language.Functions
FirstOrder.Language.Relations
Sigma.encodable
Nat.encodable
IsEmpty.toEncodable
FirstOrder.Language.instIsRelationalEmpty
FirstOrder.Language.instIsAlgebraicEmpty
FirstOrder.Language.Countable.countable_functions
Encodable.countable
FirstOrder.Language.Substructure.FG.finite
Set.Infinite.to_subtype
Set.Finite.infinite_compl
Set.toFinite
FirstOrder.Language.Structure.FG.range
FirstOrder.Language.Substructure.fg_iff_structure_fg
FirstOrder.Language.strongHomClassEmpty
nonempty_equiv_of_countable
Subtype.countable
FirstOrder.Language.Embedding.ext
Equiv.sumCompl_symm_apply_of_pos
Subtype.coe_eta
Set.ext
Cardinal.lift_id
Cardinal.mk_eq_aleph0
Finite.to_countable
isFraisse_finite 📖mathematicalFirstOrder.Language.IsFraisse
FirstOrder.Language.empty
setOf
CategoryTheory.Bundled
FirstOrder.Language.Structure
Finite
CategoryTheory.Bundled.α
FirstOrder.Language.IsFraisseLimit.isFraisse
FirstOrder.Language.Countable.countable_functions
Encodable.countable
instCountableULift
instCountableNat
isFraisseLimit_of_countable_infinite
instInfiniteULift
instInfiniteNat

---

← Back to Index