Documentation Verification Report

LanguageMap

πŸ“ Source: Mathlib/ModelTheory/LanguageMap.lean

Statistics

MetricCount
DefinitionsLEquiv, addEmptyConstants, instInhabited, invLHom, refl, toLHom, trans, LHom, IsExpansionOn, addConstants, comp, constantsOnMap, defaultExpansion, id, instInhabited, instUniqueOfIsAlgebraicOfIsRelational, ofIsEmpty, onFunction, onRelation, reduct, sumElim, sumInl, sumInr, sumMap, con, constantsOn, structure, constantsOnFunc, constantsOnSelfStructure, lhomWithConstants, lhomWithConstantsMap, paramsStructure, withConstants, withConstantsSelfStructure, withConstantsStructure, Β«term_β†’α΄Έ_Β», Β«term_≃ᴸ_Β», Β«term_[[_]]Β»
38
TheoremsaddEmptyConstants_invLHom, addEmptyConstants_toLHom, left_inv, refl_invLHom, refl_toLHom, right_inv, symm_invLHom, symm_toLHom, trans_invLHom, trans_toLHom, isExpansionOn_default, onFunction, onRelation, map_onFunction, map_onRelation, comp_assoc, comp_id, comp_onFunction, comp_onRelation, comp_sumElim, funMap_sumInl, funMap_sumInr, funext, funext_iff, id_comp, id_isExpansionOn, id_onFunction, id_onRelation, isExpansionOn_reduct, map_constants_comp_sumInl, map_onFunction, map_onRelation, ofIsEmpty_isExpansionOn, ofIsEmpty_onFunction, ofIsEmpty_onRelation, sumElim_comp_inl, sumElim_comp_inr, sumElim_inl_inr, sumElim_isExpansionOn, sumElim_onFunction, sumElim_onRelation, sumInl_injective, sumInl_isExpansionOn, sumInl_onFunction, sumInl_onRelation, sumInr_injective, sumInr_isExpansionOn, sumInr_onFunction, sumInr_onRelation, sumMap_comp_inl, sumMap_comp_inr, sumMap_isExpansionOn, sumMap_onFunction, sumMap_onRelation, addConstants_expansion, addEmptyConstants_is_expansion_on', addEmptyConstants_symm_isExpansionOn, card_constantsOn, card_withConstants, coe_con, constantsOnMap_inclusion_isExpansionOn, constantsOnMap_isExpansionOn, constantsOn_Functions, constantsOn_Relations, constantsOn_constants, isAlgebraic_constantsOn, isEmpty_functions_constantsOn_succ, isRelational_constantsOn, lhomWithConstants_injective, lhomWithConstants_onFunction, lhomWithConstants_onRelation, map_constants_inclusion_isExpansionOn, withConstants_expansion, withConstants_funMap_sumInl, withConstants_funMap_sumInr, withConstants_relMap_sumInl, withConstants_self_expansion
77
Total115

FirstOrder

Definitions

NameCategoryTheorems
Β«term_[[_]]Β» πŸ“–CompOpβ€”

FirstOrder.Language

Definitions

NameCategoryTheorems
LEquiv πŸ“–CompDataβ€”
LHom πŸ“–CompDataβ€”
con πŸ“–CompOp
10 mathmath: coe_con, Term.realize_constantsToVars, Term.realize_constantsVarsEquivLeft, Formula.realize_equivSentence_symm_con, Term.realize_con, model_distinctConstantsTheory, withConstants_funMap_sumInr, BoundedFormula.realize_constantsVarsEquiv, Term.realize_varsToConstants, Formula.realize_equivSentence
constantsOn πŸ“–CompOp
15 mathmath: isRelational_constantsOn, constantsOnMap_isExpansionOn, constantsOn_Relations, constantsOn_Functions, constantsOnMap_inclusion_isExpansionOn, LEquiv.addEmptyConstants_invLHom, withConstants_funMap_sumInl, constantsOn_constants, LHom.map_constants_comp_sumInl, withConstants_relMap_sumInl, card_constantsOn, withConstants_funMap_sumInr, BoundedFormula.instCountableSymbolsConstantsOn, isAlgebraic_constantsOn, isEmpty_functions_constantsOn_succ
constantsOnFunc πŸ“–CompOp
1 mathmath: constantsOn_Functions
constantsOnSelfStructure πŸ“–CompOpβ€”
lhomWithConstants πŸ“–CompOp
16 mathmath: lhomWithConstants_onRelation, LEquiv.addEmptyConstants_toLHom, withConstants_expansion, Theory.CompleteType.subset', withConstants_self_expansion, Substructure.reduct_withConstants, Theory.models_formula_iff_onTheory_models_equivSentence, lhomWithConstants_onFunction, LHom.map_constants_comp_sumInl, Theory.CompleteType.setOf_mem_eq_univ_iff, lhomWithConstants_injective, Theory.CompleteType.setOf_subset_eq_empty_iff, Theory.isSatisfiable_union_distinctConstantsTheory_of_infinite, Theory.CompleteType.setOf_subset_eq_univ_iff, Theory.isSatisfiable_union_distinctConstantsTheory_of_card_le, Theory.CompleteType.subset
lhomWithConstantsMap πŸ“–CompOp
2 mathmath: LHom.map_constants_comp_sumInl, map_constants_inclusion_isExpansionOn
paramsStructure πŸ“–CompOp
16 mathmath: Set.definable_iff_empty_definable_with_params, Set.TermDefinable₁.const, Set.termDefinable_empty_withConstants_iff, coe_con, addEmptyConstants_symm_isExpansionOn, constantsOnMap_inclusion_isExpansionOn, Substructure.reduct_withConstants, Set.termDefinable₁_iff_exists_term, Term.realize_con, Substructure.coe_withConstants, Substructure.mem_withConstants, addEmptyConstants_is_expansion_on', Set.TermDefinable.const, Substructure.closure_withConstants_eq, Substructure.subset_closure_withConstants, map_constants_inclusion_isExpansionOn
withConstants πŸ“–CompOp
70 mathmath: Theory.CompleteType.compl_setOf_mem, Theory.CompleteType.mem_or_not_mem, Set.definable_iff_empty_definable_with_params, directed_distinctConstantsTheory, Set.TermDefinable₁.const, lhomWithConstants_onRelation, Set.termDefinable_empty_withConstants_iff, coe_con, Term.constantsVarsEquiv_symm_apply, LEquiv.addEmptyConstants_toLHom, CompleteType.isTopologicalBasis_range_typesWith, Term.constantsVarsEquivLeft_apply, addEmptyConstants_symm_isExpansionOn, Formula.equivSentence_not, BoundedFormula.instCountableSymbolsWithConstants, withConstants_expansion, Term.realize_constantsToVars, Theory.CompleteType.subset', LEquiv.addEmptyConstants_invLHom, withConstants_self_expansion, Formula.equivSentence_inf, Substructure.reduct_withConstants, Term.constantsVarsEquivLeft_symm_apply, distinctConstantsTheory_mono, Term.realize_constantsVarsEquivLeft, Set.termDefinable₁_iff_exists_term, Theory.models_formula_iff_onTheory_models_equivSentence, Term.constantsVarsEquiv_apply, withConstants_funMap_sumInl, Formula.realize_equivSentence_symm_con, monotone_distinctConstantsTheory, lhomWithConstants_onFunction, LHom.map_constants_comp_sumInl, Term.realize_con, Theory.CompleteType.formula_mem_typeOf, Theory.CompleteType.setOf_mem_eq_univ_iff, model_distinctConstantsTheory, withConstants_relMap_sumInl, Substructure.coe_withConstants, lhomWithConstants_injective, distinctConstantsTheory_eq_iUnion, Theory.CompleteType.isMaximal', ElementaryEmbedding.ofModelsElementaryDiagram_toFun, Substructure.mem_withConstants, addEmptyConstants_is_expansion_on', withConstants_funMap_sumInr, Theory.CompleteType.not_mem_iff, Set.TermDefinable.const, Theory.CompleteType.iInter_setOf_subset, Theory.CompleteType.setOf_subset_eq_empty_iff, Theory.isSatisfiable_union_distinctConstantsTheory_of_infinite, card_withConstants, BoundedFormula.realize_constantsVarsEquiv, Theory.CompleteType.mem_typeOf, Substructure.closure_withConstants_eq, Theory.CompleteType.setOf_subset_eq_univ_iff, Theory.CompleteType.toList_foldr_inf_mem, Substructure.subset_closure_withConstants, Theory.CompleteType.typesWith_not, Theory.isSatisfiable_union_distinctConstantsTheory_of_card_le, Theory.CompleteType.isMaximal, Theory.CompleteType.typesWith_inf, addConstants_expansion, Theory.CompleteType.typesWith_top, map_constants_inclusion_isExpansionOn, Term.realize_varsToConstants, Formula.realize_equivSentence_symm, Formula.realize_equivSentence, Theory.CompleteType.subset, Theory.CompleteType.mem_typesWith_iff
withConstantsSelfStructure πŸ“–CompOp
1 mathmath: withConstants_self_expansion
withConstantsStructure πŸ“–CompOp
19 mathmath: Set.definable_iff_empty_definable_with_params, Set.TermDefinable₁.const, Set.termDefinable_empty_withConstants_iff, coe_con, addEmptyConstants_symm_isExpansionOn, withConstants_expansion, Substructure.reduct_withConstants, Set.termDefinable₁_iff_exists_term, Term.realize_con, Substructure.coe_withConstants, Substructure.mem_withConstants, addEmptyConstants_is_expansion_on', withConstants_funMap_sumInr, Set.TermDefinable.const, Substructure.closure_withConstants_eq, Substructure.subset_closure_withConstants, addConstants_expansion, map_constants_inclusion_isExpansionOn, Formula.realize_equivSentence_symm
Β«term_β†’α΄Έ_Β» πŸ“–CompOpβ€”
Β«term_≃ᴸ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addConstants_expansion πŸ“–mathematicalβ€”LHom.IsExpansionOn
withConstants
LHom.addConstants
withConstantsStructure
β€”LHom.sumMap_isExpansionOn
LHom.id_isExpansionOn
addEmptyConstants_is_expansion_on' πŸ“–mathematicalβ€”LHom.IsExpansionOn
withConstants
Set.Elem
Set
Set.instEmptyCollection
LEquiv.toLHom
LEquiv.addEmptyConstants
Set.instIsEmptyElemEmptyCollection
withConstantsStructure
paramsStructure
β€”withConstants_expansion
addEmptyConstants_symm_isExpansionOn πŸ“–mathematicalβ€”LHom.IsExpansionOn
withConstants
Set.Elem
Set
Set.instEmptyCollection
LEquiv.toLHom
LEquiv.symm
LEquiv.addEmptyConstants
Set.instIsEmptyElemEmptyCollection
withConstantsStructure
paramsStructure
β€”LHom.sumElim_isExpansionOn
isAlgebraic_constantsOn
isRelational_constantsOn
Set.instIsEmptyElemEmptyCollection
LHom.id_isExpansionOn
LHom.ofIsEmpty_isExpansionOn
card_constantsOn πŸ“–mathematicalβ€”card
constantsOn
β€”card_eq_card_functions_add_card_relations
Cardinal.lift_uzero
Cardinal.sum_nat_eq_add_sum_succ
Cardinal.mk_eq_zero
PEmpty.instIsEmpty
Cardinal.sum_const
Cardinal.mk_eq_aleph0
instCountableNat
instInfiniteNat
Cardinal.lift_aleph0
MulZeroClass.mul_zero
add_zero
Empty.instIsEmpty
Cardinal.lift_zero
card_withConstants πŸ“–mathematicalβ€”card
withConstants
Cardinal
Cardinal.instAdd
Cardinal.lift
β€”withConstants.eq_1
card_sum
card_constantsOn
coe_con πŸ“–mathematicalβ€”constantMap
withConstants
Set.Elem
withConstantsStructure
paramsStructure
con
Set
Set.instMembership
β€”β€”
constantsOnMap_inclusion_isExpansionOn πŸ“–mathematicalSet
Set.instHasSubset
LHom.IsExpansionOn
constantsOn
Set.Elem
LHom.constantsOnMap
Set.inclusion
paramsStructure
β€”constantsOnMap_isExpansionOn
constantsOnMap_isExpansionOn πŸ“–mathematicalβ€”LHom.IsExpansionOn
constantsOn
LHom.constantsOnMap
constantsOn.structure
β€”isEmpty_functions_constantsOn_succ
isAlgebraic_constantsOn
constantsOn_Functions πŸ“–mathematicalβ€”Functions
constantsOn
constantsOnFunc
β€”β€”
constantsOn_Relations πŸ“–mathematicalβ€”Relations
constantsOn
β€”β€”
constantsOn_constants πŸ“–mathematicalβ€”Constants
constantsOn
β€”β€”
isAlgebraic_constantsOn πŸ“–mathematicalβ€”IsAlgebraic
constantsOn
β€”Empty.instIsEmpty
isEmpty_functions_constantsOn_succ πŸ“–mathematicalβ€”IsEmpty
Functions
constantsOn
β€”PEmpty.instIsEmpty
isRelational_constantsOn πŸ“–mathematicalβ€”IsRelational
constantsOn
β€”isEmpty_functions_constantsOn_succ
lhomWithConstants_injective πŸ“–mathematicalβ€”LHom.Injective
withConstants
lhomWithConstants
β€”LHom.sumInl_injective
lhomWithConstants_onFunction πŸ“–mathematicalβ€”LHom.onFunction
withConstants
lhomWithConstants
Functions
β€”β€”
lhomWithConstants_onRelation πŸ“–mathematicalβ€”LHom.onRelation
withConstants
lhomWithConstants
Relations
β€”β€”
map_constants_inclusion_isExpansionOn πŸ“–mathematicalSet
Set.instHasSubset
LHom.IsExpansionOn
withConstants
Set.Elem
lhomWithConstantsMap
Set.inclusion
withConstantsStructure
paramsStructure
β€”LHom.sumMap_isExpansionOn
LHom.id_isExpansionOn
constantsOnMap_inclusion_isExpansionOn
withConstants_expansion πŸ“–mathematicalβ€”LHom.IsExpansionOn
withConstants
lhomWithConstants
withConstantsStructure
β€”β€”
withConstants_funMap_sumInl πŸ“–mathematicalβ€”Structure.funMap
withConstants
Functions
constantsOn
β€”LHom.map_onFunction
withConstants_funMap_sumInr πŸ“–mathematicalβ€”Structure.funMap
withConstants
withConstantsStructure
Functions
constantsOn
constantMap
con
β€”Fin.isEmpty'
Unique.eq_default
LHom.map_onFunction
LHom.sumInr_isExpansionOn
withConstants_relMap_sumInl πŸ“–mathematicalβ€”Structure.RelMap
withConstants
Relations
constantsOn
β€”LHom.map_onRelation
withConstants_self_expansion πŸ“–mathematicalβ€”LHom.IsExpansionOn
withConstants
lhomWithConstants
withConstantsSelfStructure
β€”β€”

FirstOrder.Language.LEquiv

Definitions

NameCategoryTheorems
addEmptyConstants πŸ“–CompOp
4 mathmath: addEmptyConstants_toLHom, FirstOrder.Language.addEmptyConstants_symm_isExpansionOn, addEmptyConstants_invLHom, FirstOrder.Language.addEmptyConstants_is_expansion_on'
instInhabited πŸ“–CompOpβ€”
invLHom πŸ“–CompOp
10 mathmath: onTerm_symm_apply, right_inv, symm_toLHom, trans_invLHom, symm_invLHom, addEmptyConstants_invLHom, onBoundedFormula_symm_apply, onSentence_symm_apply, refl_invLHom, left_inv
refl πŸ“–CompOp
2 mathmath: refl_toLHom, refl_invLHom
toLHom πŸ“–CompOp
13 mathmath: right_inv, addEmptyConstants_toLHom, FirstOrder.Language.addEmptyConstants_symm_isExpansionOn, onFormula_apply, symm_toLHom, onSentence_apply, symm_invLHom, trans_toLHom, FirstOrder.Language.addEmptyConstants_is_expansion_on', refl_toLHom, onTerm_apply, onBoundedFormula_apply, left_inv
trans πŸ“–CompOp
2 mathmath: trans_invLHom, trans_toLHom

Theorems

NameKindAssumesProvesValidatesDepends On
addEmptyConstants_invLHom πŸ“–mathematicalβ€”invLHom
FirstOrder.Language.withConstants
addEmptyConstants
FirstOrder.Language.LHom.sumElim
FirstOrder.Language.LHom.id
FirstOrder.Language.constantsOn
FirstOrder.Language.LHom.ofIsEmpty
FirstOrder.Language.isAlgebraic_constantsOn
FirstOrder.Language.isRelational_constantsOn
β€”β€”
addEmptyConstants_toLHom πŸ“–mathematicalβ€”toLHom
FirstOrder.Language.withConstants
addEmptyConstants
FirstOrder.Language.lhomWithConstants
β€”β€”
left_inv πŸ“–mathematicalβ€”FirstOrder.Language.LHom.comp
invLHom
toLHom
FirstOrder.Language.LHom.id
β€”β€”
refl_invLHom πŸ“–mathematicalβ€”invLHom
refl
FirstOrder.Language.LHom.id
β€”β€”
refl_toLHom πŸ“–mathematicalβ€”toLHom
refl
FirstOrder.Language.LHom.id
β€”β€”
right_inv πŸ“–mathematicalβ€”FirstOrder.Language.LHom.comp
toLHom
invLHom
FirstOrder.Language.LHom.id
β€”β€”
symm_invLHom πŸ“–mathematicalβ€”invLHom
symm
toLHom
β€”β€”
symm_toLHom πŸ“–mathematicalβ€”toLHom
symm
invLHom
β€”β€”
trans_invLHom πŸ“–mathematicalβ€”invLHom
trans
FirstOrder.Language.LHom.comp
β€”β€”
trans_toLHom πŸ“–mathematicalβ€”toLHom
trans
FirstOrder.Language.LHom.comp
β€”β€”

FirstOrder.Language.LHom

Definitions

NameCategoryTheorems
IsExpansionOn πŸ“–CompData
18 mathmath: sumElim_isExpansionOn, FirstOrder.Language.constantsOnMap_isExpansionOn, FirstOrder.Language.addEmptyConstants_symm_isExpansionOn, sumMap_isExpansionOn, ofIsEmpty_isExpansionOn, FirstOrder.Language.withConstants_expansion, FirstOrder.Language.instIsExpansionOnOrderLHomOfOrderedStructureOrder, FirstOrder.Language.constantsOnMap_inclusion_isExpansionOn, FirstOrder.Language.withConstants_self_expansion, sumInl_isExpansionOn, FirstOrder.Language.addEmptyConstants_is_expansion_on', FirstOrder.Language.orderedStructure_iff, Injective.isExpansionOn_default, id_isExpansionOn, isExpansionOn_reduct, FirstOrder.Language.addConstants_expansion, FirstOrder.Language.map_constants_inclusion_isExpansionOn, sumInr_isExpansionOn
addConstants πŸ“–CompOp
1 mathmath: FirstOrder.Language.addConstants_expansion
comp πŸ“–CompOp
17 mathmath: sumMap_comp_inl, FirstOrder.Language.LEquiv.right_inv, comp_onFunction, sumElim_comp_inr, id_comp, FirstOrder.Language.LEquiv.trans_invLHom, comp_assoc, FirstOrder.Language.LEquiv.trans_toLHom, comp_onTerm, comp_onRelation, comp_sumElim, comp_onBoundedFormula, sumElim_comp_inl, map_constants_comp_sumInl, comp_id, sumMap_comp_inr, FirstOrder.Language.LEquiv.left_inv
constantsOnMap πŸ“–CompOp
2 mathmath: FirstOrder.Language.constantsOnMap_isExpansionOn, FirstOrder.Language.constantsOnMap_inclusion_isExpansionOn
defaultExpansion πŸ“–CompOp
2 mathmath: FirstOrder.Language.Theory.ModelType.defaultExpansion_struc, Injective.isExpansionOn_default
id πŸ“–CompOp
14 mathmath: id_onRelation, FirstOrder.Language.LEquiv.right_inv, sumElim_inl_inr, id_comp, FirstOrder.Language.orderLHom_order, FirstOrder.Language.LEquiv.addEmptyConstants_invLHom, comp_id, FirstOrder.Language.LEquiv.refl_toLHom, id_onFunction, id_onBoundedFormula, id_isExpansionOn, FirstOrder.Language.LEquiv.refl_invLHom, id_onTerm, FirstOrder.Language.LEquiv.left_inv
instInhabited πŸ“–CompOpβ€”
instUniqueOfIsAlgebraicOfIsRelational πŸ“–CompOpβ€”
ofIsEmpty πŸ“–CompOp
4 mathmath: ofIsEmpty_isExpansionOn, ofIsEmpty_onRelation, FirstOrder.Language.LEquiv.addEmptyConstants_invLHom, ofIsEmpty_onFunction
onFunction πŸ“–CompOp
13 mathmath: Injective.onFunction, sumElim_onFunction, sumMap_onFunction, comp_onFunction, map_onFunction, IsExpansionOn.map_onFunction, sumInr_onFunction, sumInl_onFunction, FirstOrder.Language.lhomWithConstants_onFunction, FirstOrder.Language.orderLHom_onFunction, id_onFunction, funext_iff, ofIsEmpty_onFunction
onRelation πŸ“–CompOp
14 mathmath: FirstOrder.Language.orderLHom_leSymb, id_onRelation, FirstOrder.Language.lhomWithConstants_onRelation, ofIsEmpty_onRelation, sumInr_onRelation, comp_onRelation, IsExpansionOn.map_onRelation, sumElim_onRelation, FirstOrder.Language.orderLHom_onRelation, map_onRelation, sumInl_onRelation, funext_iff, sumMap_onRelation, Injective.onRelation
reduct πŸ“–CompOp
2 mathmath: FirstOrder.Language.Theory.ModelType.reduct_struc, isExpansionOn_reduct
sumElim πŸ“–CompOp
8 mathmath: sumElim_onFunction, sumElim_isExpansionOn, sumElim_comp_inr, sumElim_inl_inr, FirstOrder.Language.LEquiv.addEmptyConstants_invLHom, comp_sumElim, sumElim_comp_inl, sumElim_onRelation
sumInl πŸ“–CompOp
9 mathmath: sumInl_injective, sumMap_comp_inl, sumElim_inl_inr, FirstOrder.Language.Substructure.skolem₁_reduct_isElementary, sumElim_comp_inl, sumInl_onFunction, map_constants_comp_sumInl, sumInl_isExpansionOn, sumInl_onRelation
sumInr πŸ“–CompOp
7 mathmath: sumElim_comp_inr, sumElim_inl_inr, sumInr_onRelation, sumInr_onFunction, sumMap_comp_inr, sumInr_isExpansionOn, sumInr_injective
sumMap πŸ“–CompOp
5 mathmath: sumMap_comp_inl, sumMap_onFunction, sumMap_isExpansionOn, sumMap_comp_inr, sumMap_onRelation

Theorems

NameKindAssumesProvesValidatesDepends On
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
comp_onFunction πŸ“–mathematicalβ€”onFunction
comp
β€”β€”
comp_onRelation πŸ“–mathematicalβ€”onRelation
comp
β€”β€”
comp_sumElim πŸ“–mathematicalβ€”comp
FirstOrder.Language.sum
sumElim
β€”funext
funMap_sumInl πŸ“–mathematicalβ€”FirstOrder.Language.Structure.funMap
FirstOrder.Language.sum
FirstOrder.Language.Functions
β€”map_onFunction
funMap_sumInr πŸ“–mathematicalβ€”FirstOrder.Language.Structure.funMap
FirstOrder.Language.sum
FirstOrder.Language.Functions
β€”map_onFunction
funext πŸ“–β€”onFunction
onRelation
β€”β€”β€”
funext_iff πŸ“–mathematicalβ€”onFunction
onRelation
β€”funext
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
id_isExpansionOn πŸ“–mathematicalβ€”IsExpansionOn
id
β€”β€”
id_onFunction πŸ“–mathematicalβ€”onFunction
id
FirstOrder.Language.Functions
β€”β€”
id_onRelation πŸ“–mathematicalβ€”onRelation
id
FirstOrder.Language.Relations
β€”β€”
isExpansionOn_reduct πŸ“–mathematicalβ€”IsExpansionOn
reduct
β€”β€”
map_constants_comp_sumInl πŸ“–mathematicalβ€”comp
FirstOrder.Language.withConstants
FirstOrder.Language.lhomWithConstantsMap
sumInl
FirstOrder.Language.constantsOn
FirstOrder.Language.lhomWithConstants
β€”funext
map_onFunction πŸ“–mathematicalβ€”FirstOrder.Language.Structure.funMap
onFunction
β€”IsExpansionOn.map_onFunction
map_onRelation πŸ“–mathematicalβ€”FirstOrder.Language.Structure.RelMap
onRelation
β€”IsExpansionOn.map_onRelation
ofIsEmpty_isExpansionOn πŸ“–mathematicalFirstOrder.Language.IsAlgebraic
FirstOrder.Language.IsRelational
IsExpansionOn
ofIsEmpty
β€”β€”
ofIsEmpty_onFunction πŸ“–mathematicalFirstOrder.Language.IsAlgebraic
FirstOrder.Language.IsRelational
onFunction
ofIsEmpty
isEmptyElim
FirstOrder.Language.Functions
β€”β€”
ofIsEmpty_onRelation πŸ“–mathematicalFirstOrder.Language.IsAlgebraic
FirstOrder.Language.IsRelational
onRelation
ofIsEmpty
isEmptyElim
FirstOrder.Language.Relations
β€”β€”
sumElim_comp_inl πŸ“–mathematicalβ€”comp
FirstOrder.Language.sum
sumElim
sumInl
β€”funext
sumElim_comp_inr πŸ“–mathematicalβ€”comp
FirstOrder.Language.sum
sumElim
sumInr
β€”funext
sumElim_inl_inr πŸ“–mathematicalβ€”sumElim
FirstOrder.Language.sum
sumInl
sumInr
id
β€”funext
sumElim_isExpansionOn πŸ“–mathematicalβ€”IsExpansionOn
FirstOrder.Language.sum
sumElim
FirstOrder.Language.sumStructure
β€”map_onFunction
map_onRelation
sumElim_onFunction πŸ“–mathematicalβ€”onFunction
FirstOrder.Language.sum
sumElim
FirstOrder.Language.Functions
β€”β€”
sumElim_onRelation πŸ“–mathematicalβ€”onRelation
FirstOrder.Language.sum
sumElim
FirstOrder.Language.Relations
β€”β€”
sumInl_injective πŸ“–mathematicalβ€”Injective
FirstOrder.Language.sum
sumInl
β€”Sum.inl_injective
sumInl_isExpansionOn πŸ“–mathematicalβ€”IsExpansionOn
FirstOrder.Language.sum
sumInl
FirstOrder.Language.sumStructure
β€”β€”
sumInl_onFunction πŸ“–mathematicalβ€”onFunction
FirstOrder.Language.sum
sumInl
FirstOrder.Language.Functions
β€”β€”
sumInl_onRelation πŸ“–mathematicalβ€”onRelation
FirstOrder.Language.sum
sumInl
FirstOrder.Language.Relations
β€”β€”
sumInr_injective πŸ“–mathematicalβ€”Injective
FirstOrder.Language.sum
sumInr
β€”Sum.inr_injective
sumInr_isExpansionOn πŸ“–mathematicalβ€”IsExpansionOn
FirstOrder.Language.sum
sumInr
FirstOrder.Language.sumStructure
β€”β€”
sumInr_onFunction πŸ“–mathematicalβ€”onFunction
FirstOrder.Language.sum
sumInr
FirstOrder.Language.Functions
β€”β€”
sumInr_onRelation πŸ“–mathematicalβ€”onRelation
FirstOrder.Language.sum
sumInr
FirstOrder.Language.Relations
β€”β€”
sumMap_comp_inl πŸ“–mathematicalβ€”comp
FirstOrder.Language.sum
sumMap
sumInl
β€”funext
sumMap_comp_inr πŸ“–mathematicalβ€”comp
FirstOrder.Language.sum
sumMap
sumInr
β€”funext
sumMap_isExpansionOn πŸ“–mathematicalβ€”IsExpansionOn
FirstOrder.Language.sum
sumMap
FirstOrder.Language.sumStructure
β€”map_onFunction
map_onRelation
sumMap_onFunction πŸ“–mathematicalβ€”onFunction
FirstOrder.Language.sum
sumMap
FirstOrder.Language.Functions
β€”β€”
sumMap_onRelation πŸ“–mathematicalβ€”onRelation
FirstOrder.Language.sum
sumMap
FirstOrder.Language.Relations
β€”β€”

FirstOrder.Language.LHom.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
isExpansionOn_default πŸ“–mathematicalFirstOrder.Language.LHom.InjectiveFirstOrder.Language.LHom.IsExpansionOn
FirstOrder.Language.LHom.defaultExpansion
β€”onFunction
onRelation
onFunction πŸ“–mathematicalFirstOrder.Language.LHom.InjectiveFirstOrder.Language.Functions
FirstOrder.Language.LHom.onFunction
β€”β€”
onRelation πŸ“–mathematicalFirstOrder.Language.LHom.InjectiveFirstOrder.Language.Relations
FirstOrder.Language.LHom.onRelation
β€”β€”

FirstOrder.Language.LHom.IsExpansionOn

Theorems

NameKindAssumesProvesValidatesDepends On
map_onFunction πŸ“–mathematicalβ€”FirstOrder.Language.Structure.funMap
FirstOrder.Language.LHom.onFunction
β€”β€”
map_onRelation πŸ“–mathematicalβ€”FirstOrder.Language.Structure.RelMap
FirstOrder.Language.LHom.onRelation
β€”β€”

FirstOrder.Language.constantsOn

Definitions

NameCategoryTheorems
structure πŸ“–CompOp
2 mathmath: FirstOrder.Language.constantsOnMap_isExpansionOn, FirstOrder.Language.Formula.realize_equivSentence_symm

---

← Back to Index