Documentation Verification Report

Order

📁 Source: Mathlib/ModelTheory/Order.lean

Statistics

MetricCount
DefinitionsIsOrdered, leSymb, OrderedStructure, le, lt, decidableLEOfStructure, denselyOrderedSentence, dlo, instDecidableEqOrderRel, decEq, instIsOrderedOrder, instIsRelationalOrder, leOfStructure, linearOrderOfModels, linearOrderTheory, noBotOrderSentence, noTopOrderSentence, instUniqueSigmaNatRelations, instUniqueSymbols, orderLHom, orderRel, orderStructure, partialOrderOfModels, partialOrderTheory, preorderOfModels, preorderTheory, instIsOrdered
27
Theoremsmonotone, strictMono, relMap_leSymb, toOrderIsoClass, realize_le, realize_lt, aleph0_categorical_dlo, denselyOrdered_of_dlo, dlo_age, dlo_isComplete, dlo_isExtensionPair, instInfiniteOfModelDloOrderOfNonempty, instIsExpansionOnOrderLHomOfOrderedStructureOrder, instIsUniversalLinearOrderTheory, instIsUniversalPartialOrderTheory, instIsUniversalPreorderTheory, instModelLinearOrderTheoryOfDlo, instModelPartialOrderTheoryOfLinearOrderTheory, instModelPreorderTheoryOfPartialOrderTheory, instOrderedStructure, instOrderedStructureOfOrderOfIsExpansionOnOrderLHom, instOrderedStructureSubtypeMemSubstructure, isFraisseLimit_of_countable_nonempty_dlo, isFraisse_finite_linear_order, model_dlo, model_linearOrder, model_partialOrder, model_preorder, noBotOrder_of_dlo, noTopOrder_of_dlo, card_eq_one, forall_relations, instHomClassOfOrderHomClass, instIsEmptyRelationsOfNatNat, instStrongHomClassOfOrderIsoClass, instStrongHomClassOrderEmbedding, instSubsingleton, relation_eq_leSymb, orderLHom_leSymb, orderLHom_onFunction, orderLHom_onRelation, orderLHom_order, orderedStructure_iff, realize_denselyOrdered, realize_denselyOrdered_iff, realize_noBotOrder, realize_noBotOrder_iff, realize_noTopOrder, realize_noTopOrder_iff
49
Total76

FirstOrder.Language

Definitions

NameCategoryTheorems
IsOrdered 📖CompData
OrderedStructure 📖CompData
4 mathmath: instOrderedStructureOfOrderOfIsExpansionOnOrderLHom, instOrderedStructureSubtypeMemSubstructure, instOrderedStructure, orderedStructure_iff
decidableLEOfStructure 📖CompOp
denselyOrderedSentence 📖CompOp
2 mathmath: realize_denselyOrdered_iff, realize_denselyOrdered
dlo 📖CompOp
3 mathmath: dlo_isComplete, model_dlo, aleph0_categorical_dlo
instDecidableEqOrderRel 📖CompOp
instIsOrderedOrder 📖CompOp
8 mathmath: orderLHom_leSymb, dlo_age, order.relation_eq_leSymb, orderLHom_order, isFraisse_finite_linear_order, isFraisseLimit_of_countable_nonempty_dlo, dlo_isComplete, aleph0_categorical_dlo
instIsRelationalOrder 📖CompOp
1 mathmath: orderLHom_onFunction
leOfStructure 📖CompOp
1 mathmath: instOrderedStructure
linearOrderOfModels 📖CompOp
linearOrderTheory 📖CompOp
6 mathmath: instIsUniversalLinearOrderTheory, dlo_age, instModelLinearOrderTheoryOfDlo, isFraisse_finite_linear_order, isFraisseLimit_of_countable_nonempty_dlo, model_linearOrder
noBotOrderSentence 📖CompOp
2 mathmath: realize_noBotOrder_iff, realize_noBotOrder
noTopOrderSentence 📖CompOp
2 mathmath: realize_noTopOrder_iff, realize_noTopOrder
orderLHom 📖CompOp
6 mathmath: orderLHom_leSymb, orderLHom_order, instIsExpansionOnOrderLHomOfOrderedStructureOrder, orderLHom_onRelation, orderedStructure_iff, orderLHom_onFunction
orderRel 📖CompData
orderStructure 📖CompOp
partialOrderOfModels 📖CompOp
partialOrderTheory 📖CompOp
3 mathmath: model_partialOrder, instModelPartialOrderTheoryOfLinearOrderTheory, instIsUniversalPartialOrderTheory
preorderOfModels 📖CompOp
preorderTheory 📖CompOp
3 mathmath: model_preorder, instModelPreorderTheoryOfPartialOrderTheory, instIsUniversalPreorderTheory

Theorems

NameKindAssumesProvesValidatesDepends On
aleph0_categorical_dlo 📖mathematicalCardinal.Categorical
order
Cardinal.aleph0
dlo
instIsOrderedOrder
Cardinal.denumerable_iff
IsFraisseLimit.nonempty_equiv
Countable.countable_functions
Finite.to_countable
Finite.of_fintype
Encodable.countable
isFraisseLimit_of_countable_nonempty_dlo
Theory.ModelType.nonempty'
Theory.ModelType.is_model
denselyOrdered_of_dlo 📖mathematicalDenselyOrdered
Preorder.toLT
realize_denselyOrdered_iff
Theory.realize_sentence_of_mem
Set.union_insert
Set.union_singleton
dlo_age 📖mathematicalage
order
setOf
CategoryTheory.Bundled
Structure
Finite
CategoryTheory.Bundled.α
Theory.Model
CategoryTheory.Bundled.structure
linearOrderTheory
instIsOrderedOrder
age.eq_1
Set.ext
Structure.FG.finite
Theory.IsUniversal.models_of_embedding
instIsUniversalLinearOrderTheory
instModelLinearOrderTheoryOfDlo
Structure.FG.of_finite
RelEmbedding.instEmbeddingLike
order.instStrongHomClassOrderEmbedding
instOrderedStructure
nonempty_orderEmbedding_of_finite_infinite
instInfiniteOfModelDloOrderOfNonempty
dlo_isComplete 📖mathematicalTheory.IsComplete
order
dlo
instIsOrderedOrder
Cardinal.Categorical.isComplete
aleph0_categorical_dlo
le_rfl
order.card_eq_one
Cardinal.lift_id
model_dlo
instOrderedStructure
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
instInfiniteOfModelDloOrderOfNonempty
Theory.ModelType.is_model
Theory.ModelType.nonempty'
dlo_isExtensionPair 📖mathematicalIsExtensionPair
order
le_sup_right
isExtensionPair_iff_exists_embedding_closure_singleton_sup
instModelLinearOrderTheoryOfDlo
denselyOrdered_of_dlo
instOrderedStructure
noBotOrder_of_dlo
noTopOrder_of_dlo
NoBotOrder.to_noMinOrder
NoTopOrder.to_noMaxOrder
Structure.FG.finite
Substructure.fg_iff_structure_fg
Finset.subset_insert
Set.Finite.coe_toFinset
HomClass.strictMono
StrongHomClass.homClass
Embedding.strongHomClass
Embedding.embeddingLike
instOrderedStructureSubtypeMemSubstructure
Order.exists_orderEmbedding_insert
Finset.coe_insert
Substructure.closure_insert
Substructure.closure_eq
LowerAdjoint.closure_eq_self_of_mem_closed
Substructure.mem_closed_of_isRelational
RelEmbedding.instEmbeddingLike
order.instStrongHomClassOrderEmbedding
Embedding.ext
instInfiniteOfModelDloOrderOfNonempty 📖mathematicalInfiniteorder.instIsEmptyRelationsOfNatNat
embedding_from_cg
Structure.cg_of_countable
Encodable.countable
dlo_isExtensionPair
model_linearOrder
instOrderedStructure
Infinite.of_injective
CharZero.infinite
Rat.instCharZero
Embedding.injective
instIsExpansionOnOrderLHomOfOrderedStructureOrder 📖mathematicalLHom.IsExpansionOn
order
orderLHom
order.relation_eq_leSymb
instIsUniversalLinearOrderTheory 📖mathematicalTheory.IsUniversal
linearOrderTheory
Theory.IsUniversal.insert
instIsUniversalPartialOrderTheory
Relations.isUniversal_total
instIsUniversalPartialOrderTheory 📖mathematicalTheory.IsUniversal
partialOrderTheory
Theory.IsUniversal.insert
instIsUniversalPreorderTheory
Relations.isUniversal_antisymmetric
instIsUniversalPreorderTheory 📖mathematicalTheory.IsUniversal
preorderTheory
Relations.isUniversal_reflexive
Relations.isUniversal_transitive
instModelLinearOrderTheoryOfDlo 📖mathematicalTheory.Model
linearOrderTheory
Theory.Model.mono
Set.subset_union_left
instModelPartialOrderTheoryOfLinearOrderTheory 📖mathematicalTheory.Model
partialOrderTheory
Theory.Model.mono
Set.subset_insert
instModelPreorderTheoryOfPartialOrderTheory 📖mathematicalTheory.Model
preorderTheory
Theory.Model.mono
Set.subset_insert
instOrderedStructure 📖mathematicalOrderedStructure
leOfStructure
Fin.cons_zero
instOrderedStructureOfOrderOfIsExpansionOnOrderLHom 📖mathematicalOrderedStructureorderLHom_leSymb
LHom.IsExpansionOn.map_onRelation
OrderedStructure.relMap_leSymb
instOrderedStructureSubtypeMemSubstructure 📖mathematicalOrderedStructure
Substructure
SetLike.instMembership
Substructure.instSetLike
Substructure.inducedStructure
OrderedStructure.relMap_leSymb
isFraisseLimit_of_countable_nonempty_dlo 📖mathematicalIsFraisseLimit
order
setOf
CategoryTheory.Bundled
Structure
Finite
CategoryTheory.Bundled.α
Theory.Model
CategoryTheory.Bundled.structure
linearOrderTheory
instIsOrderedOrder
Countable.countable_functions
Finite.to_countable
Symbols
Finite.of_fintype
Unique.fintype
order.instUniqueSymbols
Countable.countable_functions
Finite.to_countable
Finite.of_fintype
isUltrahomogeneous_iff_IsExtensionPair
Structure.cg_of_countable
dlo_isExtensionPair
instModelLinearOrderTheoryOfDlo
dlo_age
isFraisse_finite_linear_order 📖mathematicalIsFraisse
order
setOf
CategoryTheory.Bundled
Structure
Finite
CategoryTheory.Bundled.α
Theory.Model
CategoryTheory.Bundled.structure
linearOrderTheory
instIsOrderedOrder
IsFraisseLimit.isFraisse
Countable.countable_functions
Finite.to_countable
Finite.of_fintype
Encodable.countable
isFraisseLimit_of_countable_nonempty_dlo
model_dlo
instOrderedStructure
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
model_dlo 📖mathematicalTheory.Model
dlo
Set.union_insert
Set.union_singleton
model_linearOrder 📖mathematicalTheory.Model
linearOrderTheory
LE.total
model_partialOrder 📖mathematicalTheory.Model
partialOrderTheory
instAntisymmLe
model_preorder 📖mathematicalTheory.Model
preorderTheory
le_refl
le_trans
noBotOrder_of_dlo 📖mathematicalNoBotOrderrealize_noBotOrder_iff
Theory.realize_sentence_of_mem
Set.union_insert
Set.union_singleton
noTopOrder_of_dlo 📖mathematicalNoTopOrderrealize_noTopOrder_iff
Theory.realize_sentence_of_mem
Set.union_insert
Set.union_singleton
orderLHom_leSymb 📖mathematicalLHom.onRelation
order
orderLHom
IsOrdered.leSymb
instIsOrderedOrder
orderLHom_onFunction 📖mathematicalLHom.onFunction
order
orderLHom
isEmptyElim
Functions
instIsRelationalOrder
orderLHom_onRelation 📖mathematicalLHom.onRelation
order
orderLHom
Relations
IsOrdered.leSymb
orderLHom_order 📖mathematicalorderLHom
order
instIsOrderedOrder
LHom.id
LHom.funext
IsEmpty.instSubsingleton
order.instSubsingleton
orderedStructure_iff 📖mathematicalOrderedStructure
LHom.IsExpansionOn
order
orderLHom
instIsExpansionOnOrderLHomOfOrderedStructureOrder
instOrderedStructureOfOrderOfIsExpansionOnOrderLHom
realize_denselyOrdered 📖mathematicalSentence.Realize
denselyOrderedSentence
realize_denselyOrdered_iff
realize_denselyOrdered_iff 📖mathematicalSentence.Realize
denselyOrderedSentence
DenselyOrdered
Preorder.toLT
Empty.instIsEmpty
Fin.isEmpty'
exists_between
realize_noBotOrder 📖mathematicalSentence.Realize
noBotOrderSentence
realize_noBotOrder_iff
realize_noBotOrder_iff 📖mathematicalSentence.Realize
noBotOrderSentence
NoBotOrder
Empty.instIsEmpty
Fin.isEmpty'
NoBotOrder.exists_not_ge
realize_noTopOrder 📖mathematicalSentence.Realize
noTopOrderSentence
realize_noTopOrder_iff
realize_noTopOrder_iff 📖mathematicalSentence.Realize
noTopOrderSentence
NoTopOrder
Empty.instIsEmpty
Fin.isEmpty'
NoTopOrder.exists_not_le

FirstOrder.Language.HomClass

Theorems

NameKindAssumesProvesValidatesDepends On
monotone 📖mathematicalMonotone
DFunLike.coe
map_rel
strictMono 📖mathematicalStrictMono
PartialOrder.toPreorder
DFunLike.coe
Monotone.strictMono_of_injective
monotone
EmbeddingLike.injective

FirstOrder.Language.IsOrdered

Definitions

NameCategoryTheorems
leSymb 📖CompOp
4 mathmath: FirstOrder.Language.orderLHom_leSymb, FirstOrder.Language.order.relation_eq_leSymb, FirstOrder.Language.OrderedStructure.relMap_leSymb, FirstOrder.Language.orderLHom_onRelation

FirstOrder.Language.OrderedStructure

Theorems

NameKindAssumesProvesValidatesDepends On
relMap_leSymb 📖mathematicalFirstOrder.Language.Structure.RelMap
FirstOrder.Language.IsOrdered.leSymb

FirstOrder.Language.StrongHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
toOrderIsoClass 📖mathematicalOrderIsoClassmap_rel

FirstOrder.Language.Term

Definitions

NameCategoryTheorems
le 📖CompOp
1 mathmath: realize_le
lt 📖CompOp
1 mathmath: realize_lt

Theorems

NameKindAssumesProvesValidatesDepends On
realize_le 📖mathematicalFirstOrder.Language.BoundedFormula.Realize
le
realize
Matrix.cons_val_fin_one
realize_lt 📖mathematicalFirstOrder.Language.BoundedFormula.Realize
lt
Preorder.toLT
realize

FirstOrder.Language.instDecidableEqOrderRel

Definitions

NameCategoryTheorems
decEq 📖CompOp

FirstOrder.Language.order

Definitions

NameCategoryTheorems
instUniqueSigmaNatRelations 📖CompOp
instUniqueSymbols 📖CompOp
1 mathmath: FirstOrder.Language.isFraisseLimit_of_countable_nonempty_dlo

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_one 📖mathematicalFirstOrder.Language.card
FirstOrder.Language.order
Cardinal
Cardinal.instOne
Cardinal.mk_fintype
Fintype.card_unique
Nat.cast_one
forall_relations 📖mathematicalFirstOrder.Language.orderRel.le
instHomClassOfOrderHomClass 📖mathematicalFirstOrder.Language.HomClass
FirstOrder.Language.order
relation_eq_leSymb
RelHomClass.map_rel
instIsEmptyRelationsOfNatNat 📖mathematicalIsEmpty
FirstOrder.Language.Relations
FirstOrder.Language.order
instStrongHomClassOfOrderIsoClass 📖mathematicalFirstOrder.Language.StrongHomClass
FirstOrder.Language.order
EquivLike.toFunLike
relation_eq_leSymb
instStrongHomClassOrderEmbedding 📖mathematicalFirstOrder.Language.StrongHomClass
FirstOrder.Language.order
OrderEmbedding
instFunLikeOrderEmbedding
relation_eq_leSymb
instSubsingleton 📖mathematicalFirstOrder.Language.Relations
FirstOrder.Language.order
relation_eq_leSymb 📖mathematicalFirstOrder.Language.IsOrdered.leSymb
FirstOrder.Language.order
FirstOrder.Language.instIsOrderedOrder

FirstOrder.Language.sum

Definitions

NameCategoryTheorems
instIsOrdered 📖CompOp

---

← Back to Index