Documentation Verification Report

Satisfiability

πŸ“ Source: Mathlib/ModelTheory/Satisfiability.lean

Statistics

MetricCount
DefinitionsCategorical, IsComplete, IsFinitelySatisfiable, IsMaximal, IsSatisfiable, ModelsBoundedFormula, Β«term_βŠ¨α΅‡_Β»
7
TheoremsisComplete, empty_infinite_Theory_isComplete, empty_theory_categorical, eq_complete_theory, isComplete_iff_models_elementarily_equivalent, models_elementarily_equivalent, models_not_iff, realize_sentence_iff, isComplete, mem_iff_models, mem_of_models, mem_or_not_mem, isFinitelySatisfiable, mono, isSatisfiable, realize_boundedFormula, realize_formula, realize_sentence, exists_large_model_of_infinite_model, exists_model_card_eq, isSatisfiable_directed_union_iff, isSatisfiable_empty, isSatisfiable_iUnion_iff_isSatisfiable_iUnion_finset, isSatisfiable_iff_isFinitelySatisfiable, isSatisfiable_of_isSatisfiable_onTheory, isSatisfiable_onTheory_iff, isSatisfiable_union_distinctConstantsTheory_of_card_le, isSatisfiable_union_distinctConstantsTheory_of_infinite, models_formula_iff, models_formula_iff_onTheory_models_equivSentence, models_iff_finset_models, models_iff_not_satisfiable, models_of_models_theory, models_sentence_iff, models_sentence_of_mem, models_toFormula_iff, isComplete, isMaximal, isSatisfiable, mem_or_not_mem, exists_elementarilyEquivalent_card_eq, exists_elementaryEmbedding_card_eq, exists_elementaryEmbedding_card_eq_of_ge, exists_elementaryEmbedding_card_eq_of_le
44
Total51

Cardinal

Definitions

NameCategoryTheorems
Categorical πŸ“–MathDef
3 mathmath: FirstOrder.Field.ACF_categorical, empty_theory_categorical, FirstOrder.Language.aleph0_categorical_dlo

Theorems

NameKindAssumesProvesValidatesDepends On
empty_infinite_Theory_isComplete πŸ“–mathematicalβ€”FirstOrder.Language.Theory.IsComplete
FirstOrder.Language.empty
FirstOrder.Language.infiniteTheory
β€”Categorical.isComplete
empty_theory_categorical
le_rfl
FirstOrder.Language.card_empty
lift_id
canonicallyOrderedAdd
FirstOrder.Language.model_infiniteTheory_iff
instInfiniteNat
FirstOrder.Language.Theory.ModelType.is_model
empty_theory_categorical πŸ“–mathematicalβ€”Categorical
FirstOrder.Language.empty
β€”FirstOrder.Language.empty.nonempty_equiv_iff

Cardinal.Categorical

Theorems

NameKindAssumesProvesValidatesDepends On
isComplete πŸ“–mathematicalCardinal.Categorical
Cardinal
Cardinal.instLE
Cardinal.aleph0
Cardinal.lift
FirstOrder.Language.card
Infinite
FirstOrder.Language.Theory.ModelType.Carrier
FirstOrder.Language.Theory.IsCompleteβ€”FirstOrder.Language.Theory.exists_model_card_eq
FirstOrder.Language.Theory.models_sentence_iff
Mathlib.Tactic.Push.not_forall_eq
FirstOrder.Language.exists_elementarilyEquivalent_card_eq
FirstOrder.Language.ElementarilyEquivalent.realize_sentence
FirstOrder.Language.StrongHomClass.realize_sentence
FirstOrder.Language.Equiv.instStrongHomClass
FirstOrder.Language.Sentence.realize_not

FirstOrder.Language

Theorems

NameKindAssumesProvesValidatesDepends On
exists_elementarilyEquivalent_card_eq πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Cardinal.lift
card
ElementarilyEquivalent
CategoryTheory.Bundled.Ξ±
Structure
CategoryTheory.Bundled.structure
β€”exists_elementaryEmbedding_card_eq
ElementarilyEquivalent.symm
ElementaryEmbedding.elementarilyEquivalent
exists_elementaryEmbedding_card_eq πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Cardinal.lift
card
ElementaryEmbedding
CategoryTheory.Bundled.Ξ±
Structure
CategoryTheory.Bundled.structure
β€”le_or_gt
exists_elementaryEmbedding_card_eq_of_le
Nontrivial.to_nonempty
Infinite.instNontrivial
exists_elementaryEmbedding_card_eq_of_ge
le_of_lt
exists_elementaryEmbedding_card_eq_of_ge πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.lift
card
ElementaryEmbedding
CategoryTheory.Bundled.Ξ±
Structure
CategoryTheory.Bundled.structure
β€”Theory.exists_large_model_of_infinite_model
model_completeTheory
exists_elementaryEmbedding_card_eq_of_le
Theory.ModelType.nonempty'
Cardinal.aleph0_le_lift
LE.le.trans
Cardinal.lift_lift
Cardinal.lift_le
card_withConstants
Cardinal.lift_add
add_comm
Cardinal.add_eq_max
Cardinal.infinite_iff
max_le_iff
Cardinal.lift_umax
Cardinal.lift_id
le_refl
LHom.isExpansionOn_reduct
ElementaryEmbedding.theory_model_iff
Theory.ModelType.is_model
exists_elementaryEmbedding_card_eq_of_le πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Cardinal.lift
card
ElementaryEmbedding
CategoryTheory.Bundled.Ξ±
Structure
CategoryTheory.Bundled.structure
β€”exists_elementarySubstructure_card_eq
Cardinal.mk_eq_zero
Set.instIsEmptyElemEmptyCollection
Cardinal.lift_zero
Cardinal.canonicallyOrderedAdd
Cardinal.small_iff_lift_mk_lt_univ
Cardinal.lift_lift
Cardinal.lift_lt_univ'
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
Cardinal.lift_mk_shrink'

FirstOrder.Language.Theory

Definitions

NameCategoryTheorems
IsComplete πŸ“–MathDef
7 mathmath: FirstOrder.Language.dlo_isComplete, IsMaximal.isComplete, Cardinal.Categorical.isComplete, Cardinal.empty_infinite_Theory_isComplete, IsComplete.isComplete_iff_models_elementarily_equivalent, FirstOrder.Language.completeTheory.isComplete, FirstOrder.Field.ACF_isComplete
IsFinitelySatisfiable πŸ“–MathDef
2 mathmath: isSatisfiable_iff_isFinitelySatisfiable, IsSatisfiable.isFinitelySatisfiable
IsMaximal πŸ“–MathDef
3 mathmath: FirstOrder.Language.completeTheory.isMaximal, CompleteType.isMaximal', CompleteType.isMaximal
IsSatisfiable πŸ“–MathDef
17 mathmath: isSatisfiable_iff_isFinitelySatisfiable, isSatisfiable_directed_union_iff, CompleteType.nonempty_iff, simpleGraph_isSatisfiable, isSatisfiable_iUnion_iff_isSatisfiable_iUnion_finset, isSatisfiable_onTheory_iff, FirstOrder.Field.ACF_isSatisfiable, Model.isSatisfiable, IsSatisfiable.mono, isSatisfiable_empty, isSatisfiable_of_isSatisfiable_onTheory, CompleteType.setOf_subset_eq_empty_iff, isSatisfiable_union_distinctConstantsTheory_of_infinite, IsComplete.isComplete_iff_models_elementarily_equivalent, isSatisfiable_union_distinctConstantsTheory_of_card_le, FirstOrder.Language.completeTheory.isSatisfiable, models_iff_not_satisfiable
ModelsBoundedFormula πŸ“–MathDef
17 mathmath: FirstOrder.ACF_models_genericPolyMapSurjOnOfInjOn_of_prime, models_iff_finset_models, FirstOrder.Field.ACF_zero_realize_iff_finite_ACF_prime_not_realize, FirstOrder.ACF_models_genericPolyMapSurjOnOfInjOn_of_prime_or_zero, models_formula_iff, IsComplete.models_not_iff, models_sentence_iff, models_formula_iff_onTheory_models_equivSentence, FirstOrder.Field.ACF_zero_realize_iff_infinite_ACF_prime_realize, CompleteType.setOf_mem_eq_univ_iff, IsMaximal.mem_iff_models, IsComplete.realize_sentence_iff, models_sentence_of_mem, models_toFormula_iff, CompleteType.setOf_subset_eq_univ_iff, IsComplete.eq_complete_theory, models_iff_not_satisfiable
Β«term_βŠ¨α΅‡_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_large_model_of_infinite_model πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.lift
ModelType.Carrier
β€”isSatisfiable_union_distinctConstantsTheory_of_infinite
ModelType.nonempty'
Model.mono
ModelType.is_model
Set.subset_union_left
ModelType.reduct_Carrier
coe_of
trans
instIsTransLe
Cardinal.lift_le
le_of_eq
Cardinal.mk_out
Cardinal.mk_univ
LE.le.trans
FirstOrder.Language.card_le_of_model_distinctConstantsTheory
Set.subset_union_right
Cardinal.lift_lift
le_refl
exists_model_card_eq πŸ“–β€”Infinite
ModelType.Carrier
Cardinal
Cardinal.instLE
Cardinal.aleph0
Cardinal.lift
FirstOrder.Language.card
β€”β€”FirstOrder.Language.exists_elementarilyEquivalent_card_eq
FirstOrder.Language.ElementarilyEquivalent.nonempty
ModelType.nonempty'
FirstOrder.Language.ElementarilyEquivalent.theory_model
ModelType.is_model
isSatisfiable_directed_union_iff πŸ“–mathematicalDirected
FirstOrder.Language.Theory
Set.instHasSubset
FirstOrder.Language.Sentence
IsSatisfiable
Set.iUnion
β€”IsSatisfiable.mono
Set.subset_iUnion
isSatisfiable_iff_isFinitelySatisfiable
IsFinitelySatisfiable.eq_1
Directed.exists_mem_subset_of_finset_subset_biUnion
isSatisfiable_empty πŸ“–mathematicalβ€”IsSatisfiable
FirstOrder.Language.Theory
Set.instEmptyCollection
FirstOrder.Language.Sentence
β€”β€”
isSatisfiable_iUnion_iff_isSatisfiable_iUnion_finset πŸ“–mathematicalβ€”IsSatisfiable
Set.iUnion
FirstOrder.Language.Sentence
Finset
Finset.instMembership
β€”IsSatisfiable.mono
Set.iUnion_mono
Set.iUnion_subset_iff
refl
Set.instReflSubset
isSatisfiable_iff_isFinitelySatisfiable
Directed.exists_mem_subset_of_finset_subset_biUnion
Monotone.directed_le
Finset.isDirected_le
Set.iUnion_mono'
Set.iUnion_eq_iUnion_finset
isSatisfiable_iff_isFinitelySatisfiable πŸ“–mathematicalβ€”IsSatisfiable
IsFinitelySatisfiable
β€”IsSatisfiable.isFinitelySatisfiable
Finset.map_subtype_subset
Filter.atTop_neBot
Finset.isDirected_le
FirstOrder.Language.Ultraproduct.sentence_realize
ModelType.nonempty'
Filter.Eventually.filter_mono
Ultrafilter.of_le
Filter.eventually_atTop
realize_sentence_of_mem
ModelType.is_model
Finset.coe_map
Set.image_congr
Finset.mem_singleton_self
FirstOrder.Language.Ultraproduct.Product.instNonempty
isSatisfiable_of_isSatisfiable_onTheory πŸ“–mathematicalβ€”IsSatisfiableβ€”Model.isSatisfiable
ModelType.nonempty'
ModelType.is_model
isSatisfiable_onTheory_iff πŸ“–mathematicalFirstOrder.Language.LHom.InjectiveIsSatisfiable
FirstOrder.Language.LHom.onTheory
β€”isSatisfiable_of_isSatisfiable_onTheory
Model.isSatisfiable
ModelType.nonempty'
ModelType.is_model
isSatisfiable_union_distinctConstantsTheory_of_card_le πŸ“–mathematicalβ€”IsSatisfiable
FirstOrder.Language.withConstants
FirstOrder.Language.Theory
Set.instUnion
FirstOrder.Language.Sentence
FirstOrder.Language.LHom.onTheory
FirstOrder.Language.lhomWithConstants
FirstOrder.Language.distinctConstantsTheory
β€”Cardinal.lift_mk_le'
Model.union
FirstOrder.Language.LHom.onTheory_model
FirstOrder.Language.withConstants_expansion
FirstOrder.Language.model_distinctConstantsTheory
Function.Embedding.injective
Function.Injective.extend_apply
Subtype.coe_injective
Model.isSatisfiable
isSatisfiable_union_distinctConstantsTheory_of_infinite πŸ“–mathematicalβ€”IsSatisfiable
FirstOrder.Language.withConstants
FirstOrder.Language.Theory
Set.instUnion
FirstOrder.Language.Sentence
FirstOrder.Language.LHom.onTheory
FirstOrder.Language.lhomWithConstants
FirstOrder.Language.distinctConstantsTheory
β€”FirstOrder.Language.distinctConstantsTheory_eq_iUnion
Set.union_iUnion
isSatisfiable_directed_union_iff
Monotone.directed_le
Finset.isDirected_le
Monotone.union
monotone_const
Monotone.comp
FirstOrder.Language.monotone_distinctConstantsTheory
Finset.coe_map
Set.image_congr
Set.monotone_image
Finset.coe_subset
isSatisfiable_union_distinctConstantsTheory_of_card_le
Nontrivial.to_nonempty
Infinite.instNontrivial
LE.le.trans
Cardinal.lift_le_aleph0
LT.lt.le
Cardinal.finset_card_lt_aleph0
Cardinal.aleph0_le_lift
models_formula_iff πŸ“–mathematicalβ€”ModelsBoundedFormula
FirstOrder.Language.Formula.Realize
ModelType.Carrier
ModelType.struc
β€”Unique.forall_iff
Fin.isEmpty'
models_formula_iff_onTheory_models_equivSentence πŸ“–mathematicalβ€”ModelsBoundedFormula
FirstOrder.Language.withConstants
FirstOrder.Language.LHom.onTheory
FirstOrder.Language.lhomWithConstants
DFunLike.coe
Equiv
FirstOrder.Language.Formula
FirstOrder.Language.Sentence
EquivLike.toFunLike
Equiv.instEquivLike
FirstOrder.Language.Formula.equivSentence
β€”models_sentence_iff
FirstOrder.Language.LHom.isExpansionOn_reduct
FirstOrder.Language.Formula.realize_equivSentence
FirstOrder.Language.LHom.onTheory_model
ModelType.is_model
ModelType.nonempty'
Fin.isEmpty'
models_formula_iff
FirstOrder.Language.withConstants_expansion
ModelsBoundedFormula.realize_sentence
models_iff_finset_models πŸ“–mathematicalβ€”ModelsBoundedFormula
Set
FirstOrder.Language.Sentence
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
β€”isSatisfiable_iff_isFinitelySatisfiable
IsFinitelySatisfiable.eq_1
Mathlib.Tactic.Contrapose.contrapose_iffβ‚‚
Mathlib.Tactic.Push.not_and_eq
Set.union_singleton
Finset.union_singleton
Finset.coe_insert
Finset.coe_union
Finset.coe_singleton
Set.union_subset_union
Set.Subset.refl
IsSatisfiable.mono
Finset.coe_erase
Set.insert_diff_singleton
models_iff_not_satisfiable πŸ“–mathematicalβ€”ModelsBoundedFormula
IsSatisfiable
FirstOrder.Language.Theory
Set.instUnion
FirstOrder.Language.Sentence
FirstOrder.Language.Formula
Set.instSingletonSet
FirstOrder.Language.Formula.not
β€”models_sentence_iff
IsSatisfiable.eq_1
Set.subset_union_left
FirstOrder.Language.Sentence.realize_not
realize_sentence_of_mem
ModelType.subtheoryModel_models
Set.subset_union_right
Set.mem_singleton
Mathlib.Tactic.Contrapose.contraposeβ‚‚
ModelType.is_model
Set.mem_singleton_iff
ModelType.nonempty'
models_of_models_theory πŸ“–β€”ModelsBoundedFormulaβ€”β€”model_iff
ModelsBoundedFormula.realize_sentence
ModelType.is_model
ModelType.nonempty'
models_sentence_iff πŸ“–mathematicalβ€”ModelsBoundedFormula
FirstOrder.Language.Sentence.Realize
ModelType.Carrier
ModelType.struc
β€”models_formula_iff
Unique.forall_iff
Empty.instIsEmpty
models_sentence_of_mem πŸ“–mathematicalFirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instMembership
ModelsBoundedFormulaβ€”models_sentence_iff
realize_sentence_of_mem
ModelType.is_model
models_toFormula_iff πŸ“–mathematicalβ€”ModelsBoundedFormula
FirstOrder.Language.BoundedFormula.toFormula
β€”ModelsBoundedFormula.realize_formula
ModelType.is_model
ModelType.nonempty'

FirstOrder.Language.Theory.IsComplete

Theorems

NameKindAssumesProvesValidatesDepends On
eq_complete_theory πŸ“–mathematicalFirstOrder.Language.Theory.IsCompletesetOf
FirstOrder.Language.BoundedFormula
FirstOrder.Language.Theory.ModelsBoundedFormula
FirstOrder.Language.completeTheory
β€”Set.ext
FirstOrder.Language.mem_completeTheory
FirstOrder.Language.Theory.ModelsBoundedFormula.realize_sentence
FirstOrder.Language.Sentence.realize_not
isComplete_iff_models_elementarily_equivalent πŸ“–mathematicalβ€”FirstOrder.Language.Theory.IsComplete
FirstOrder.Language.Theory.IsSatisfiable
FirstOrder.Language.ElementarilyEquivalent
FirstOrder.Language.Theory.ModelType.Carrier
FirstOrder.Language.Theory.ModelType.struc
β€”FirstOrder.Language.ElementarilyEquivalent.eq_1
eq_complete_theory
FirstOrder.Language.Theory.ModelType.is_model
FirstOrder.Language.Theory.ModelType.nonempty'
FirstOrder.Language.Theory.models_sentence_iff
FirstOrder.Language.elementarilyEquivalent_iff
FirstOrder.Language.Sentence.realize_not
models_elementarily_equivalent πŸ“–mathematicalFirstOrder.Language.Theory.IsCompleteFirstOrder.Language.ElementarilyEquivalentβ€”FirstOrder.Language.ElementarilyEquivalent.eq_1
eq_complete_theory
models_not_iff πŸ“–mathematicalFirstOrder.Language.Theory.IsCompleteFirstOrder.Language.Theory.ModelsBoundedFormula
FirstOrder.Language.Formula.not
β€”FirstOrder.Language.Theory.models_sentence_iff
realize_sentence_iff πŸ“–mathematicalFirstOrder.Language.Theory.IsCompleteFirstOrder.Language.Sentence.Realize
FirstOrder.Language.Theory.ModelsBoundedFormula
β€”FirstOrder.Language.Theory.ModelsBoundedFormula.realize_sentence
FirstOrder.Language.Sentence.realize_not
models_not_iff

FirstOrder.Language.Theory.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
isComplete πŸ“–mathematicalFirstOrder.Language.Theory.IsMaximalFirstOrder.Language.Theory.IsCompleteβ€”FirstOrder.Language.Theory.models_sentence_of_mem
mem_iff_models πŸ“–mathematicalFirstOrder.Language.Theory.IsMaximalFirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instMembership
FirstOrder.Language.Theory.ModelsBoundedFormula
β€”FirstOrder.Language.Theory.models_sentence_of_mem
mem_of_models
mem_of_models πŸ“–mathematicalFirstOrder.Language.Theory.IsMaximal
FirstOrder.Language.Theory.ModelsBoundedFormula
FirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instMembership
β€”mem_or_not_mem
Set.insert_eq_of_mem
Set.union_singleton
FirstOrder.Language.Theory.models_iff_not_satisfiable
mem_or_not_mem πŸ“–mathematicalFirstOrder.Language.Theory.IsMaximalFirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instMembership
FirstOrder.Language.Formula
FirstOrder.Language.Formula.not
β€”β€”

FirstOrder.Language.Theory.IsSatisfiable

Theorems

NameKindAssumesProvesValidatesDepends On
isFinitelySatisfiable πŸ“–mathematicalβ€”FirstOrder.Language.Theory.IsFinitelySatisfiableβ€”mono
mono πŸ“–mathematicalFirstOrder.Language.Theory
Set.instHasSubset
FirstOrder.Language.Sentence
FirstOrder.Language.Theory.IsSatisfiableβ€”FirstOrder.Language.Theory.ModelType.nonempty'
FirstOrder.Language.Theory.Model.mono
FirstOrder.Language.Theory.ModelType.is_model

FirstOrder.Language.Theory.Model

Theorems

NameKindAssumesProvesValidatesDepends On
isSatisfiable πŸ“–mathematicalβ€”FirstOrder.Language.Theory.IsSatisfiableβ€”FirstOrder.Language.Theory.ModelType.nonempty'
FirstOrder.Language.ElementarySubstructure.toModel.instSmall
FirstOrder.Language.Substructure.elementarySkolem₁Reduct.instSmall

FirstOrder.Language.Theory.ModelsBoundedFormula

Theorems

NameKindAssumesProvesValidatesDepends On
realize_boundedFormula πŸ“–mathematicalFirstOrder.Language.Theory.ModelsBoundedFormulaFirstOrder.Language.BoundedFormula.Realizeβ€”realize_formula
FirstOrder.Language.Theory.models_toFormula_iff
realize_formula πŸ“–mathematicalFirstOrder.Language.Theory.ModelsBoundedFormulaFirstOrder.Language.Formula.Realizeβ€”FirstOrder.Language.LHom.onTheory_model
FirstOrder.Language.withConstants_expansion
FirstOrder.Language.Formula.realize_equivSentence
realize_sentence
FirstOrder.Language.Theory.models_formula_iff_onTheory_models_equivSentence
realize_sentence πŸ“–mathematicalFirstOrder.Language.Theory.ModelsBoundedFormulaFirstOrder.Language.Sentence.Realizeβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Set.union_singleton
FirstOrder.Language.Theory.model_iff
FirstOrder.Language.Theory.Model.isSatisfiable
FirstOrder.Language.Theory.models_iff_not_satisfiable

FirstOrder.Language.completeTheory

Theorems

NameKindAssumesProvesValidatesDepends On
isComplete πŸ“–mathematicalβ€”FirstOrder.Language.Theory.IsComplete
FirstOrder.Language.completeTheory
β€”FirstOrder.Language.Theory.IsMaximal.isComplete
isMaximal
isMaximal πŸ“–mathematicalβ€”FirstOrder.Language.Theory.IsMaximal
FirstOrder.Language.completeTheory
β€”isSatisfiable
mem_or_not_mem
isSatisfiable πŸ“–mathematicalβ€”FirstOrder.Language.Theory.IsSatisfiable
FirstOrder.Language.completeTheory
β€”FirstOrder.Language.Theory.Model.isSatisfiable
FirstOrder.Language.model_completeTheory
mem_or_not_mem πŸ“–mathematicalβ€”FirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instMembership
FirstOrder.Language.completeTheory
FirstOrder.Language.Formula
FirstOrder.Language.Formula.not
β€”Empty.instIsEmpty

---

← Back to Index