Documentation Verification Report

Semantics

๐Ÿ“ Source: Mathlib/ModelTheory/Semantics.lean

Statistics

MetricCount
DefinitionsRealize, ElementarilyEquivalent, Realize, Realize, realize, Model, completeTheory, ยซterm_โŠจ__1ยป, ยซterm_โŠจ_ยป, ยซterm_โ‰…[_]_ยป
10
Theoremsrealize_all, realize_all_liftAt_one_self, realize_alls, realize_bdEqual, realize_bot, realize_castLE_of_eq, realize_constantsVarsEquiv, realize_ex, realize_exs, realize_foldr_imp, realize_foldr_inf, realize_foldr_sup, realize_iAlls, realize_iExs, realize_iExsUnique, realize_iInf, realize_iSup, realize_iff, realize_imp, realize_inf, realize_liftAt, realize_liftAt_one, realize_liftAt_one_self, realize_mapTermRel_add_castLe, realize_mapTermRel_id, realize_not, realize_rel, realize_relabel, realize_relabelEquiv, realize_relโ‚, realize_relโ‚‚, realize_restrictFreeVar, realize_restrictFreeVar', realize_subst, realize_sup, realize_toFormula, realize_top, completeTheory_eq, infinite, infinite_iff, nonempty, nonempty_iff, realize_sentence, theory_model, theory_model_iff, trans, boundedFormula_realize_eq_realize, realize_bot, realize_equal, realize_equivSentence, realize_equivSentence_symm, realize_equivSentence_symm_con, realize_graph, realize_iAlls, realize_iExs, realize_iExsUnique, realize_iInf, realize_iSup, realize_iff, realize_imp, realize_inf, realize_not, realize_rel, realize_relabel, realize_relabel_sumInr, realize_relโ‚, realize_relโ‚‚, realize_sup, realize_top, realize_term, onTheory_model, realize_onBoundedFormula, realize_onFormula, realize_onSentence, realize_onTerm, setOf_realize_onFormula, realize_antisymmetric, realize_irreflexive, realize_reflexive, realize_symmetric, realize_total, realize_transitive, realize_cardGe, realize_not, elementarilyEquivalent, realize_boundedFormula, realize_formula, realize_sentence, theory_model, realize_con, realize_constants, realize_constantsToVars, realize_constantsVarsEquivLeft, realize_func, realize_function_term, realize_functions_applyโ‚, realize_functions_applyโ‚‚, realize_liftAt, realize_relabel, realize_restrictVar, realize_restrictVar', realize_restrictVarLeft, realize_restrictVarLeft', realize_subst, realize_substFunc, realize_var, realize_varsToConstants, mono, realize_of_mem, union, subset, model_iff, model_iff_subset_completeTheory, model_insert_iff, model_singleton_iff, model_union_iff, realize_sentence_of_mem, card_le_of_model_distinctConstantsTheory, elementarilyEquivalent_iff, mem_completeTheory, model_completeTheory, model_distinctConstantsTheory, model_empty, model_infiniteTheory, model_infiniteTheory_iff, model_nonempty, model_nonemptyTheory_iff, realize_iff_of_model_completeTheory
128
Total138

FirstOrder

Definitions

NameCategoryTheorems
ยซterm_โ‰…[_]_ยป ๐Ÿ“–CompOpโ€”

FirstOrder.Language

Definitions

NameCategoryTheorems
ElementarilyEquivalent ๐Ÿ“–MathDef
7 mathmath: exists_elementarilyEquivalent_card_eq, ElementaryEmbedding.elementarilyEquivalent, elementarilyEquivalent_iff, Theory.IsComplete.models_elementarily_equivalent, ElementarySubstructure.elementarilyEquivalent, Theory.IsComplete.isComplete_iff_models_elementarily_equivalent, StrongHomClass.elementarilyEquivalent
completeTheory ๐Ÿ“–CompOp
10 mathmath: ElementarilyEquivalent.completeTheory_eq, completeTheory.isMaximal, Theory.model_iff_subset_completeTheory, mem_completeTheory, completeTheory.mem_or_not_mem, Theory.IsComplete.eq_complete_theory, completeTheory.isSatisfiable, completeTheory.isComplete, Theory.completeTheory.subset, model_completeTheory
ยซterm_โŠจ__1ยป ๐Ÿ“–CompOpโ€”
ยซterm_โŠจ_ยป ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_of_model_distinctConstantsTheory ๐Ÿ“–mathematicalโ€”Cardinal
Cardinal.instLE
Cardinal.lift
Set.Elem
โ€”Cardinal.lift_mk_le'
Set.injOn_iff_injective
model_distinctConstantsTheory
elementarilyEquivalent_iff ๐Ÿ“–mathematicalโ€”ElementarilyEquivalent
Sentence.Realize
โ€”โ€”
mem_completeTheory ๐Ÿ“–mathematicalโ€”Sentence
Theory
Set.instMembership
completeTheory
Sentence.Realize
โ€”โ€”
model_completeTheory ๐Ÿ“–mathematicalโ€”Theory.Model
completeTheory
โ€”Theory.model_iff_subset_completeTheory
subset_rfl
Set.instReflSubset
model_distinctConstantsTheory ๐Ÿ“–mathematicalโ€”Theory.Model
withConstants
distinctConstantsTheory
Set.InjOn
constantMap
con
โ€”Mathlib.Tactic.Contrapose.contraposeโ‚
Empty.instIsEmpty
Term.realize_constants
model_empty ๐Ÿ“–mathematicalโ€”Theory.Model
Theory
Set.instEmptyCollection
Sentence
โ€”Set.notMem_empty
model_infiniteTheory ๐Ÿ“–mathematicalโ€”Theory.Model
infiniteTheory
โ€”model_infiniteTheory_iff
model_infiniteTheory_iff ๐Ÿ“–mathematicalโ€”Theory.Model
infiniteTheory
Infinite
โ€”โ€”
model_nonempty ๐Ÿ“–mathematicalโ€”Theory.Model
nonemptyTheory
โ€”model_nonemptyTheory_iff
model_nonemptyTheory_iff ๐Ÿ“–mathematicalโ€”Theory.Model
nonemptyTheory
โ€”Nat.cast_one
realize_iff_of_model_completeTheory ๐Ÿ“–mathematicalโ€”Sentence.Realizeโ€”Mathlib.Tactic.Contrapose.contraposeโ‚
Sentence.realize_not
Theory.realize_sentence_of_mem
mem_completeTheory

FirstOrder.Language.BoundedFormula

Definitions

NameCategoryTheorems
Realize ๐Ÿ“–MathDef
52 mathmath: FirstOrder.Language.LHom.realize_onBoundedFormula, realize_foldr_imp, realize_inf, realize_ex, realize_iExsUnique, realize_toPrenexImp, realize_iExs, realize_iSup, realize_not, realize_all, realize_foldr_sup, FirstOrder.Language.ElementaryEmbedding.map_boundedFormula, FirstOrder.Language.Formula.realize_relabel_sumInr, realize_liftAt_one, realize_relabel, realize_subst, realize_relโ‚, FirstOrder.Language.Term.realize_le, FirstOrder.Language.Term.realize_lt, realize_relabelEquiv, realize_toPrenex, realize_bot, realize_iAlls, realize_restrictFreeVar', IsQF.realize_embedding, realize_foldr_inf, realize_liftAt_one_self, realize_exs, realize_all_liftAt_one_self, realize_top, FirstOrder.Language.Ultraproduct.boundedFormula_realize_cast, realize_rel, realize_iff, realize_bdEqual, realize_alls, realize_constantsVarsEquiv, FirstOrder.Language.StrongHomClass.realize_boundedFormula, realize_iInf, realize_toPrenexImpRight, FirstOrder.Language.Substructure.realize_boundedFormula_top, realize_imp, realize_mapTermRel_add_castLe, realize_mapTermRel_id, realize_liftAt, realize_sup, FirstOrder.Language.Theory.Iff.realize_bd_iff, FirstOrder.Language.Formula.boundedFormula_realize_eq_realize, realize_toFormula, realize_restrictFreeVar, realize_castLE_of_eq, FirstOrder.Language.Theory.ModelsBoundedFormula.realize_boundedFormula, realize_relโ‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
realize_all ๐Ÿ“–mathematicalโ€”Realize
all
Fin.snoc
โ€”โ€”
realize_all_liftAt_one_self ๐Ÿ“–mathematicalโ€”Realize
all
liftAt
โ€”Fin.snoc_comp_castSucc
realize_alls ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Formula.Realize
alls
Realize
โ€”Fin.isEmpty'
Unique.forall_iff
Fin.snoc_init_self
realize_bdEqual ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Term.bdEqual
FirstOrder.Language.Term.realize
โ€”โ€”
realize_bot ๐Ÿ“–mathematicalโ€”Realize
Bot.bot
FirstOrder.Language.BoundedFormula
instBot
โ€”โ€”
realize_castLE_of_eq ๐Ÿ“–mathematicalโ€”Realize
castLE
โ€”castLE_rfl
realize_constantsVarsEquiv ๐Ÿ“–mathematicalโ€”Realize
DFunLike.coe
Equiv
FirstOrder.Language.BoundedFormula
FirstOrder.Language.withConstants
EquivLike.toFunLike
Equiv.instEquivLike
constantsVarsEquiv
FirstOrder.Language.constantMap
FirstOrder.Language.con
โ€”realize_mapTermRel_id
FirstOrder.Language.isAlgebraic_constantsOn
FirstOrder.Language.Term.realize_constantsVarsEquivLeft
FirstOrder.Language.LHom.map_onRelation
realize_ex ๐Ÿ“–mathematicalโ€”Realize
ex
Fin.snoc
โ€”ex.eq_1
realize_not
realize_all
realize_exs ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Formula.Realize
exs
Realize
โ€”Fin.isEmpty'
Unique.exists_iff
Fin.snoc_init_self
realize_foldr_imp ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.BoundedFormula
imp
โ€”instIsEmptyFalse
realize_foldr_inf ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.BoundedFormula
instMin
Top.top
instTop
โ€”instIsEmptyFalse
realize_foldr_sup ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.BoundedFormula
instMax
Bot.bot
instBot
โ€”โ€”
realize_iAlls ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Formula.iAlls
FirstOrder.Language.Formula.Realize
โ€”FirstOrder.Language.Formula.realize_iAlls
Fin.isEmpty'
Unique.instSubsingleton
realize_iExs ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Formula.iExs
FirstOrder.Language.Formula.Realize
โ€”FirstOrder.Language.Formula.realize_iExs
Fin.isEmpty'
Unique.instSubsingleton
realize_iExsUnique ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Formula.iExsUnique
ExistsUnique
FirstOrder.Language.Formula.Realize
โ€”FirstOrder.Language.Formula.realize_iExsUnique
Fin.isEmpty'
Unique.instSubsingleton
realize_iInf ๐Ÿ“–mathematicalโ€”Realize
iInf
โ€”โ€”
realize_iSup ๐Ÿ“–mathematicalโ€”Realize
iSup
โ€”โ€”
realize_iff ๐Ÿ“–mathematicalโ€”Realize
iff
โ€”โ€”
realize_imp ๐Ÿ“–mathematicalโ€”Realize
imp
โ€”โ€”
realize_inf ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.BoundedFormula
instMin
โ€”โ€”
realize_liftAt ๐Ÿ“–mathematicalโ€”Realize
liftAt
โ€”liftAt.eq_1
FirstOrder.Language.Term.realize_liftAt
add_assoc
add_comm
realize_castLE_of_eq
LE.le.trans
iff_eq_eq
Fin.snoc_last
Fin.snoc_castSucc
realize_liftAt_one ๐Ÿ“–mathematicalโ€”Realize
liftAt
โ€”covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
realize_liftAt_one_self ๐Ÿ“–mathematicalโ€”Realize
liftAt
โ€”realize_liftAt_one
refl
instReflLe
iff_eq_eq
realize_mapTermRel_add_castLe ๐Ÿ“–mathematicalFirstOrder.Language.Term.realize
FirstOrder.Language.Structure.RelMap
Fin.snoc
Realize
mapTermRel
castLE
Eq.le
Nat.instPreorder
AddSemigroup.toAdd
Nat.instAddSemigroup
add_assoc
โ€”Eq.le
add_assoc
castLE_rfl
Fin.snoc_comp_natAdd
realize_mapTermRel_id ๐Ÿ“–mathematicalFirstOrder.Language.Term.realize
FirstOrder.Language.Structure.RelMap
Realize
mapTermRel
FirstOrder.Language.BoundedFormula
โ€”โ€”
realize_not ๐Ÿ“–mathematicalโ€”Realize
not
โ€”โ€”
realize_rel ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Relations.boundedFormula
FirstOrder.Language.Structure.RelMap
FirstOrder.Language.Term.realize
โ€”โ€”
realize_relabel ๐Ÿ“–mathematicalโ€”Realize
relabel
โ€”realize_mapTermRel_add_castLe
FirstOrder.Language.Term.realize_relabel
sumElim_comp_relabelAux
Fin.snoc_comp_castAdd
realize_relabelEquiv ๐Ÿ“–mathematicalโ€”Realize
DFunLike.coe
Equiv
FirstOrder.Language.BoundedFormula
EquivLike.toFunLike
Equiv.instEquivLike
relabelEquiv
โ€”realize_mapTermRel_id
FirstOrder.Language.Term.realize_relabel
realize_relโ‚ ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Relations.boundedFormulaโ‚
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
FirstOrder.Language.Term.realize
Matrix.vecEmpty
โ€”FirstOrder.Language.Relations.boundedFormulaโ‚.eq_1
realize_rel
iff_eq_eq
Matrix.cons_val_fin_one
realize_relโ‚‚ ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Relations.boundedFormulaโ‚‚
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
FirstOrder.Language.Term.realize
Matrix.vecEmpty
โ€”FirstOrder.Language.Relations.boundedFormulaโ‚‚.eq_1
realize_rel
iff_eq_eq
Matrix.cons_val_succ
Matrix.cons_val_fin_one
realize_restrictFreeVar ๐Ÿ“–mathematicalFinset
SetLike.instMembership
Finset.instSetLike
freeVarFinset
Realize
restrictFreeVar
โ€”FirstOrder.Language.Term.realize_restrictVarLeft
realize_restrictFreeVar' ๐Ÿ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
freeVarFinset
Realize
Set.Elem
restrictFreeVar
Set.inclusion
Set.instMembership
โ€”realize_restrictFreeVar
realize_subst ๐Ÿ“–mathematicalโ€”Realize
subst
FirstOrder.Language.Term.realize
โ€”realize_mapTermRel_id
FirstOrder.Language.Term.realize_subst
FirstOrder.Language.Term.realize_relabel
realize_sup ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.BoundedFormula
instMax
โ€”โ€”
realize_toFormula ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Formula.Realize
toFormula
Realize
โ€”toFormula.eq_4
Fin.isEmpty'
FirstOrder.Language.Formula.Realize.eq_1
realize_imp
toFormula.eq_5
realize_all
realize_relabel
finSumFinEquiv_symm_last
finSumFinEquiv_symm_apply_castAdd
Fin.snoc_castSucc
realize_top ๐Ÿ“–mathematicalโ€”Realize
Top.top
FirstOrder.Language.BoundedFormula
instTop
โ€”โ€”

FirstOrder.Language.ElementarilyEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
completeTheory_eq ๐Ÿ“–mathematicalFirstOrder.Language.ElementarilyEquivalentFirstOrder.Language.completeTheoryโ€”โ€”
infinite ๐Ÿ“–mathematicalFirstOrder.Language.ElementarilyEquivalentInfiniteโ€”infinite_iff
infinite_iff ๐Ÿ“–mathematicalFirstOrder.Language.ElementarilyEquivalentInfiniteโ€”FirstOrder.Language.model_infiniteTheory_iff
theory_model_iff
nonempty ๐Ÿ“–โ€”FirstOrder.Language.ElementarilyEquivalentโ€”โ€”nonempty_iff
nonempty_iff ๐Ÿ“–โ€”FirstOrder.Language.ElementarilyEquivalentโ€”โ€”FirstOrder.Language.model_nonemptyTheory_iff
theory_model_iff
realize_sentence ๐Ÿ“–mathematicalFirstOrder.Language.ElementarilyEquivalentFirstOrder.Language.Sentence.Realizeโ€”FirstOrder.Language.elementarilyEquivalent_iff
theory_model ๐Ÿ“–mathematicalFirstOrder.Language.ElementarilyEquivalentFirstOrder.Language.Theory.Modelโ€”theory_model_iff
theory_model_iff ๐Ÿ“–mathematicalFirstOrder.Language.ElementarilyEquivalentFirstOrder.Language.Theory.Modelโ€”FirstOrder.Language.Theory.model_iff_subset_completeTheory
completeTheory_eq
trans ๐Ÿ“–โ€”FirstOrder.Language.ElementarilyEquivalentโ€”โ€”โ€”

FirstOrder.Language.Formula

Definitions

NameCategoryTheorems
Realize ๐Ÿ“–MathDef
46 mathmath: realize_bot, FirstOrder.Language.LHom.setOf_realize_onFormula, realize_rel, realize_relโ‚, Set.empty_definable_iff, realize_equal, FirstOrder.Field.realize_eqZero, FirstOrder.Language.BoundedFormula.realize_iExsUnique, Set.definable_iff_exists_formula_sum, realize_iff, FirstOrder.Language.Theory.models_formula_iff, realize_relโ‚‚, FirstOrder.Language.LHom.realize_onFormula, FirstOrder.Language.BoundedFormula.realize_iExs, FirstOrder.Language.Ultraproduct.realize_formula_cast, FirstOrder.Language.Substructure.realize_formula_top, realize_iAlls, realize_relabel_sumInr, realize_relabel, realize_iSup, FirstOrder.Language.Theory.ModelsBoundedFormula.realize_formula, FirstOrder.Language.BoundedFormula.realize_iAlls, realize_equivSentence_symm_con, FirstOrder.Language.Theory.Iff.realize_iff, FirstOrder.Language.StrongHomClass.realize_formula, realize_graph, FirstOrder.Language.BoundedFormula.realize_exs, FirstOrder.Language.Theory.CompleteType.formula_mem_typeOf, realize_iInf, FirstOrder.realize_genericPolyMapSurjOnOfInjOn, realize_not, FirstOrder.Language.BoundedFormula.realize_alls, realize_sup, FirstOrder.Language.Theory.CompleteType.mem_typeOf, realize_inf, realize_iExsUnique, realize_imp, realize_top, FirstOrder.Language.Embedding.isElementary_of_exists, FirstOrder.Language.ElementaryEmbedding.map_formula, FirstOrder.Language.ElementaryEmbedding.map_formula', boundedFormula_realize_eq_realize, realize_iExs, FirstOrder.Language.BoundedFormula.realize_toFormula, realize_equivSentence_symm, realize_equivSentence

Theorems

NameKindAssumesProvesValidatesDepends On
boundedFormula_realize_eq_realize ๐Ÿ“–mathematicalโ€”FirstOrder.Language.BoundedFormula.Realize
Realize
โ€”Fin.isEmpty'
Realize.eq_1
realize_bot ๐Ÿ“–mathematicalโ€”Realize
Bot.bot
FirstOrder.Language.Formula
FirstOrder.Language.BoundedFormula.instBot
โ€”โ€”
realize_equal ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Term.equal
FirstOrder.Language.Term.realize
โ€”Fin.isEmpty'
FirstOrder.Language.Term.realize_relabel
realize_equivSentence ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realize
FirstOrder.Language.withConstants
DFunLike.coe
Equiv
FirstOrder.Language.Formula
FirstOrder.Language.Sentence
EquivLike.toFunLike
Equiv.instEquivLike
equivSentence
Realize
FirstOrder.Language.constantMap
FirstOrder.Language.con
โ€”realize_equivSentence_symm_con
Equiv.symm_apply_apply
realize_equivSentence_symm ๐Ÿ“–mathematicalโ€”Realize
DFunLike.coe
Equiv
FirstOrder.Language.Sentence
FirstOrder.Language.withConstants
FirstOrder.Language.Formula
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivSentence
FirstOrder.Language.Sentence.Realize
FirstOrder.Language.withConstantsStructure
FirstOrder.Language.constantsOn.structure
โ€”realize_equivSentence_symm_con
FirstOrder.Language.withConstants_expansion
realize_equivSentence_symm_con ๐Ÿ“–mathematicalโ€”Realize
DFunLike.coe
Equiv
FirstOrder.Language.Sentence
FirstOrder.Language.withConstants
FirstOrder.Language.Formula
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivSentence
FirstOrder.Language.constantMap
FirstOrder.Language.con
FirstOrder.Language.Sentence.Realize
โ€”Empty.instIsEmpty
Fin.isEmpty'
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
iff_isEquiv
FirstOrder.Language.BoundedFormula.realize_constantsVarsEquiv
realize_graph ๐Ÿ“–mathematicalโ€”Realize
graph
Fin.cons
FirstOrder.Language.Structure.funMap
โ€”Fin.cons_zero
Fin.cons_succ
realize_iAlls ๐Ÿ“–mathematicalโ€”Realize
iAlls
โ€”Finite.exists_equiv_fin
iAlls.eq_1
Equiv.forall_congr
Equiv.apply_symm_apply
Equiv.symm_apply_apply
Fin.isEmpty'
Realize.eq_1
realize_iExs ๐Ÿ“–mathematicalโ€”Realize
iExs
โ€”Finite.exists_equiv_fin
iExs.eq_1
Equiv.exists_congr
Equiv.apply_symm_apply
Equiv.symm_apply_apply
Fin.isEmpty'
Realize.eq_1
realize_iExsUnique ๐Ÿ“–mathematicalโ€”Realize
iExsUnique
ExistsUnique
โ€”iExsUnique.eq_1
ExistsUnique.eq_1
Fin.isEmpty'
realize_iInf ๐Ÿ“–mathematicalโ€”Realize
iInf
โ€”Fin.isEmpty'
realize_iSup ๐Ÿ“–mathematicalโ€”Realize
iSup
โ€”Fin.isEmpty'
realize_iff ๐Ÿ“–mathematicalโ€”Realize
iff
โ€”FirstOrder.Language.BoundedFormula.realize_iff
Fin.isEmpty'
realize_imp ๐Ÿ“–mathematicalโ€”Realize
imp
โ€”FirstOrder.Language.BoundedFormula.realize_imp
Fin.isEmpty'
realize_inf ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Formula
FirstOrder.Language.BoundedFormula.instMin
โ€”FirstOrder.Language.BoundedFormula.realize_inf
Fin.isEmpty'
realize_not ๐Ÿ“–mathematicalโ€”Realize
not
โ€”โ€”
realize_rel ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Relations.formula
FirstOrder.Language.Structure.RelMap
FirstOrder.Language.Term.realize
โ€”Fin.isEmpty'
FirstOrder.Language.BoundedFormula.realize_rel
FirstOrder.Language.Term.realize_relabel
realize_relabel ๐Ÿ“–mathematicalโ€”Realize
relabel
โ€”Fin.isEmpty'
Realize.eq_1
relabel.eq_1
FirstOrder.Language.BoundedFormula.realize_relabel
iff_eq_eq
realize_relabel_sumInr ๐Ÿ“–mathematicalโ€”FirstOrder.Language.BoundedFormula.Realize
FirstOrder.Language.BoundedFormula.relabel
Realize
โ€”FirstOrder.Language.BoundedFormula.realize_relabel
Fin.isEmpty'
Realize.eq_1
Unique.instSubsingleton
realize_relโ‚ ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Relations.formulaโ‚
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
FirstOrder.Language.Term.realize
Matrix.vecEmpty
โ€”FirstOrder.Language.Relations.formulaโ‚.eq_1
realize_rel
iff_eq_eq
Matrix.cons_val_fin_one
realize_relโ‚‚ ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Relations.formulaโ‚‚
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
FirstOrder.Language.Term.realize
Matrix.vecEmpty
โ€”FirstOrder.Language.Relations.formulaโ‚‚.eq_1
realize_rel
iff_eq_eq
Matrix.cons_val_succ
Matrix.cons_val_fin_one
realize_sup ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Formula
FirstOrder.Language.BoundedFormula.instMax
โ€”FirstOrder.Language.BoundedFormula.realize_sup
Fin.isEmpty'
realize_top ๐Ÿ“–mathematicalโ€”Realize
Top.top
FirstOrder.Language.Formula
FirstOrder.Language.BoundedFormula.instTop
โ€”FirstOrder.Language.BoundedFormula.realize_top
Fin.isEmpty'

FirstOrder.Language.HomClass

Theorems

NameKindAssumesProvesValidatesDepends On
realize_term ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Term.realize
DFunLike.coe
โ€”FirstOrder.Language.Term.realize.eq_2
map_fun

FirstOrder.Language.LHom

Theorems

NameKindAssumesProvesValidatesDepends On
onTheory_model ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Theory.Model
onTheory
โ€”โ€”
realize_onBoundedFormula ๐Ÿ“–mathematicalโ€”FirstOrder.Language.BoundedFormula.Realize
onBoundedFormula
โ€”realize_onTerm
map_onRelation
realize_onFormula ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Formula.Realize
onFormula
โ€”realize_onBoundedFormula
Fin.isEmpty'
realize_onSentence ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realize
onSentence
โ€”realize_onFormula
Empty.instIsEmpty
realize_onTerm ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Term.realize
onTerm
โ€”map_onFunction
setOf_realize_onFormula ๐Ÿ“–mathematicalโ€”setOf
FirstOrder.Language.Formula.Realize
onFormula
โ€”Set.ext

FirstOrder.Language.Relations

Theorems

NameKindAssumesProvesValidatesDepends On
realize_antisymmetric ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realize
antisymmetric
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
Matrix.vecEmpty
โ€”Empty.instIsEmpty
Fin.isEmpty'
FirstOrder.Language.BoundedFormula.realize_relโ‚‚
realize_irreflexive ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realize
irreflexive
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
Matrix.vecEmpty
โ€”Empty.instIsEmpty
Fin.isEmpty'
FirstOrder.Language.BoundedFormula.realize_relโ‚‚
realize_reflexive ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realize
reflexive
Reflexive
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
Matrix.vecEmpty
โ€”Empty.instIsEmpty
Fin.isEmpty'
FirstOrder.Language.BoundedFormula.realize_relโ‚‚
realize_symmetric ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realize
symmetric
Symmetric
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
Matrix.vecEmpty
โ€”Empty.instIsEmpty
Fin.isEmpty'
FirstOrder.Language.BoundedFormula.realize_relโ‚‚
realize_total ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realize
total
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
Matrix.vecEmpty
โ€”Empty.instIsEmpty
Fin.isEmpty'
FirstOrder.Language.BoundedFormula.realize_sup
FirstOrder.Language.BoundedFormula.realize_relโ‚‚
realize_transitive ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realize
transitive
Transitive
FirstOrder.Language.Structure.RelMap
Matrix.vecCons
Matrix.vecEmpty
โ€”Empty.instIsEmpty
Fin.isEmpty'
FirstOrder.Language.BoundedFormula.realize_relโ‚‚

FirstOrder.Language.Sentence

Definitions

NameCategoryTheorems
Realize ๐Ÿ“–MathDef
38 mathmath: FirstOrder.Language.Theory.ModelsBoundedFormula.realize_sentence, FirstOrder.Field.realize_genericMonicPolyHasRoot, FirstOrder.Language.realize_denselyOrdered_iff, FirstOrder.Language.realize_noTopOrder_iff, FirstOrder.Language.Relations.realize_irreflexive, FirstOrder.Language.StrongHomClass.realize_sentence, realize_cardGe, FirstOrder.Language.ElementaryEmbedding.map_sentence, FirstOrder.Language.realize_noBotOrder_iff, FirstOrder.Language.Theory.model_iff, FirstOrder.Language.elementarilyEquivalent_iff, realize_not, FirstOrder.Language.Theory.Iff.models_sentence_iff, FirstOrder.Language.Relations.realize_transitive, FirstOrder.Language.Theory.Model.realize_of_mem, FirstOrder.Language.realize_iff_of_model_completeTheory, FirstOrder.Language.realize_noBotOrder, FirstOrder.Language.realize_noTopOrder, FirstOrder.Language.Theory.model_singleton_iff, FirstOrder.Language.Theory.models_sentence_iff, FirstOrder.Field.FieldAxiom.realize_toSentence_iff_toProp, FirstOrder.Language.Ultraproduct.sentence_realize, FirstOrder.Language.Relations.realize_total, FirstOrder.Language.Formula.realize_equivSentence_symm_con, FirstOrder.Language.Theory.model_insert_iff, FirstOrder.Language.mem_completeTheory, FirstOrder.Language.Relations.realize_symmetric, FirstOrder.realize_genericPolyMapSurjOnOfInjOn, FirstOrder.Language.ElementarySubstructure.realize_sentence, FirstOrder.Language.Theory.IsComplete.realize_sentence_iff, FirstOrder.Language.LHom.realize_onSentence, FirstOrder.Language.realize_denselyOrdered, FirstOrder.Language.Theory.realize_sentence_of_mem, FirstOrder.Language.Relations.realize_reflexive, FirstOrder.Language.ElementarilyEquivalent.realize_sentence, FirstOrder.Language.Formula.realize_equivSentence_symm, FirstOrder.Language.Formula.realize_equivSentence, FirstOrder.Language.Relations.realize_antisymmetric

Theorems

NameKindAssumesProvesValidatesDepends On
realize_cardGe ๐Ÿ“–mathematicalโ€”Realize
cardGe
Cardinal
Cardinal.instLE
Cardinal.instNatCast
โ€”Cardinal.lift_mk_fin
Cardinal.lift_le
Cardinal.lift_lift
Cardinal.lift_mk_le
cardGe.eq_1
Empty.instIsEmpty
Realize.eq_1
FirstOrder.Language.BoundedFormula.realize_exs
Mathlib.Tactic.Contrapose.contraposeโ‚
Function.instEmbeddingLikeEmbedding
realize_not ๐Ÿ“–mathematicalโ€”Realize
FirstOrder.Language.Formula.not
โ€”โ€”

FirstOrder.Language.StrongHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
elementarilyEquivalent ๐Ÿ“–mathematicalโ€”FirstOrder.Language.ElementarilyEquivalentโ€”FirstOrder.Language.elementarilyEquivalent_iff
realize_sentence
realize_boundedFormula ๐Ÿ“–mathematicalโ€”FirstOrder.Language.BoundedFormula.Realize
DFunLike.coe
EquivLike.toFunLike
โ€”FirstOrder.Language.HomClass.realize_term
homClass
EmbeddingLike.apply_eq_iff_eq
EquivLike.toEmbeddingLike
map_rel
FirstOrder.Language.BoundedFormula.Realize.eq_4
FirstOrder.Language.BoundedFormula.Realize.eq_5
Fin.comp_snoc
EquivLike.apply_inv_apply
realize_formula ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Formula.Realize
DFunLike.coe
EquivLike.toFunLike
โ€”Fin.isEmpty'
FirstOrder.Language.Formula.Realize.eq_1
realize_boundedFormula
iff_eq_eq
Unique.eq_default
realize_sentence ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Sentence.Realizeโ€”Empty.instIsEmpty
FirstOrder.Language.Sentence.Realize.eq_1
realize_formula
Unique.eq_default
theory_model ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Theory.Modelโ€”realize_sentence
FirstOrder.Language.Theory.realize_sentence_of_mem

FirstOrder.Language.Term

Definitions

NameCategoryTheorems
realize ๐Ÿ“–CompOp
50 mathmath: FirstOrder.Ring.realize_neg, FirstOrder.Language.Formula.realize_rel, FirstOrder.Language.Formula.realize_relโ‚, FirstOrder.Language.Formula.realize_equal, realize_function_term, realize_liftAt, FirstOrder.Ring.realize_termOfFreeCommRing, FirstOrder.Language.Formula.realize_relโ‚‚, FirstOrder.Language.presburger.realize_sum, FirstOrder.Language.presburger.realize_add, realize_restrictVar, FirstOrder.Language.Substructure.mem_closure_iff_exists_term, realize_restrictVarLeft', FirstOrder.Language.presburger.realize_natCast, realize_constantsToVars, FirstOrder.Language.realize_term_substructure, realize_relabel, realize_subst, FirstOrder.Language.BoundedFormula.realize_subst, FirstOrder.Language.presburger.realize_one, FirstOrder.Language.BoundedFormula.realize_relโ‚, FirstOrder.Language.presburger.realize_zero, FirstOrder.Ring.realize_add, realize_le, realize_lt, realize_constants, realize_constantsVarsEquivLeft, Set.termDefinableโ‚_iff_exists_term, FirstOrder.Language.HomClass.realize_term, realize_var, realize_con, realize_quotient_mk', FirstOrder.Ring.realize_mul, FirstOrder.Language.presburger.realize_nsmul, FirstOrder.Ring.realize_zero, FirstOrder.Ring.realize_one, FirstOrder.Language.LHom.realize_onTerm, FirstOrder.Language.BoundedFormula.realize_rel, FirstOrder.Language.Substructure.coe_closure_eq_range_term_realize, FirstOrder.Language.BoundedFormula.realize_bdEqual, FirstOrder.Language.Ultraproduct.term_realize_cast, realize_func, realize_restrictVarLeft, realize_varsToConstants, Set.termDefinable_empty_iff, realize_mem, realize_functions_applyโ‚‚, realize_restrictVar', FirstOrder.Language.BoundedFormula.realize_relโ‚‚, realize_functions_applyโ‚

Theorems

NameKindAssumesProvesValidatesDepends On
realize_con ๐Ÿ“–mathematicalโ€”realize
FirstOrder.Language.withConstants
Set.Elem
FirstOrder.Language.withConstantsStructure
FirstOrder.Language.paramsStructure
FirstOrder.Language.Constants.term
FirstOrder.Language.con
Set
Set.instMembership
โ€”โ€”
realize_constants ๐Ÿ“–mathematicalโ€”realize
FirstOrder.Language.Constants.term
FirstOrder.Language.constantMap
โ€”FirstOrder.Language.funMap_eq_coe_constants
Fin.isEmpty'
realize_constantsToVars ๐Ÿ“–mathematicalโ€”realize
FirstOrder.Language.constantMap
FirstOrder.Language.withConstants
FirstOrder.Language.con
constantsToVars
โ€”FirstOrder.Language.withConstants_funMap_sumInl
FirstOrder.Language.funMap_eq_coe_constants
FirstOrder.Language.isEmpty_functions_constantsOn_succ
realize_constantsVarsEquivLeft ๐Ÿ“–mathematicalโ€”realize
FirstOrder.Language.constantMap
FirstOrder.Language.withConstants
FirstOrder.Language.con
DFunLike.coe
Equiv
FirstOrder.Language.Term
EquivLike.toFunLike
Equiv.instEquivLike
constantsVarsEquivLeft
โ€”realize_relabel
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
realize_constantsToVars
realize_func ๐Ÿ“–mathematicalโ€”realize
func
FirstOrder.Language.Structure.funMap
โ€”โ€”
realize_function_term ๐Ÿ“–mathematicalโ€”realize
FirstOrder.Language.Functions.term
FirstOrder.Language.Structure.funMap
โ€”โ€”
realize_functions_applyโ‚ ๐Ÿ“–mathematicalโ€”realize
FirstOrder.Language.Functions.applyโ‚
FirstOrder.Language.Structure.funMap
Matrix.vecCons
Matrix.vecEmpty
โ€”FirstOrder.Language.Functions.applyโ‚.eq_1
realize.eq_2
Matrix.cons_val_fin_one
realize_functions_applyโ‚‚ ๐Ÿ“–mathematicalโ€”realize
FirstOrder.Language.Functions.applyโ‚‚
FirstOrder.Language.Structure.funMap
Matrix.vecCons
Matrix.vecEmpty
โ€”FirstOrder.Language.Functions.applyโ‚‚.eq_1
realize.eq_2
Matrix.cons_val_succ
Matrix.cons_val_fin_one
realize_liftAt ๐Ÿ“–mathematicalโ€”realize
liftAt
โ€”realize_relabel
realize_relabel ๐Ÿ“–mathematicalโ€”realize
relabel
โ€”โ€”
realize_restrictVar ๐Ÿ“–mathematicalFinset
SetLike.instMembership
Finset.instSetLike
varFinset
realize
restrictVar
โ€”Finset.mem_singleton_self
realize_restrictVar' ๐Ÿ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
varFinset
realize
Set.Elem
Set.instMembership
restrictVar
Set.inclusion
โ€”realize_restrictVar
realize_restrictVarLeft ๐Ÿ“–mathematicalFinset
SetLike.instMembership
Finset.instSetLike
varFinsetLeft
realize
restrictVarLeft
โ€”Finset.mem_singleton_self
realize_restrictVarLeft' ๐Ÿ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
varFinsetLeft
realize
Set.Elem
Set.instMembership
restrictVarLeft
Set.inclusion
โ€”realize_restrictVarLeft
realize_subst ๐Ÿ“–mathematicalโ€”realize
subst
โ€”โ€”
realize_substFunc ๐Ÿ“–mathematicalrealize
FirstOrder.Language.Functions.term
substFuncโ€”realize_subst
realize_function_term
realize_var ๐Ÿ“–mathematicalโ€”realize
var
โ€”โ€”
realize_varsToConstants ๐Ÿ“–mathematicalโ€”realize
FirstOrder.Language.withConstants
varsToConstants
FirstOrder.Language.constantMap
FirstOrder.Language.con
โ€”realize_constants
FirstOrder.Language.withConstants_funMap_sumInl

FirstOrder.Language.Theory

Definitions

NameCategoryTheorems
Model ๐Ÿ“–CompData
44 mathmath: FirstOrder.Language.ElementarilyEquivalent.theory_model_iff, FirstOrder.Field.modelField_of_modelACF, FirstOrder.Language.ElementarySubstructure.theory_model, ModelType.subtheoryModel_models, model_union_iff, FirstOrder.Language.model_infiniteTheory, FirstOrder.Language.model_partialOrder, FirstOrder.Language.dlo_age, FirstOrder.Language.model_preorder, FirstOrder.Language.instModelLinearOrderTheoryOfDlo, FirstOrder.Field.instModelACFOfCharPOfIsAlgClosed, model_iff, FirstOrder.Language.model_infiniteTheory_iff, ModelType.is_model, FirstOrder.Language.instModelPartialOrderTheoryOfLinearOrderTheory, IsUniversal.models_of_embedding, FirstOrder.Language.instModelPreorderTheoryOfPartialOrderTheory, FirstOrder.Language.isFraisse_finite_linear_order, FirstOrder.Language.model_nonempty, FirstOrder.Language.isFraisseLimit_of_countable_nonempty_dlo, model_singleton_iff, FirstOrder.Language.model_linearOrder, FirstOrder.Language.ElementarilyEquivalent.theory_model, FirstOrder.Language.simpleGraph_model, model_insert_iff, model_iff_subset_completeTheory, FirstOrder.Language.model_distinctConstantsTheory, FirstOrder.Language.ElementarySubstructure.theory_model_iff, FirstOrder.Field.instModelField, FirstOrder.Language.model_dlo, FirstOrder.Field.model_hasChar_of_charP, FirstOrder.Field.instModelFieldOfCharOfACF, FirstOrder.Language.ElementaryEmbedding.theory_model_iff, FirstOrder.Language.model_nonemptyTheory_iff, simpleGraph_model_iff, FirstOrder.Language.LHom.onTheory_model, FirstOrder.Field.model_fieldOfChar_of_charP, FirstOrder.Language.StrongHomClass.theory_model, FirstOrder.Language.model_empty, Model.mono, FirstOrder.Language.Substructure.models_of_isUniversal, Model.union, FirstOrder.Field.charP_iff_model_fieldOfChar, FirstOrder.Language.model_completeTheory

Theorems

NameKindAssumesProvesValidatesDepends On
model_iff ๐Ÿ“–mathematicalโ€”Model
FirstOrder.Language.Sentence.Realize
โ€”Model.realize_of_mem
model_iff_subset_completeTheory ๐Ÿ“–mathematicalโ€”Model
FirstOrder.Language.Theory
Set.instHasSubset
FirstOrder.Language.Sentence
FirstOrder.Language.completeTheory
โ€”model_iff
model_insert_iff ๐Ÿ“–mathematicalโ€”Model
FirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instInsert
FirstOrder.Language.Sentence.Realize
โ€”Set.insert_eq
model_union_iff
model_singleton_iff
model_singleton_iff ๐Ÿ“–mathematicalโ€”Model
FirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instSingletonSet
FirstOrder.Language.Sentence.Realize
โ€”โ€”
model_union_iff ๐Ÿ“–mathematicalโ€”Model
FirstOrder.Language.Theory
Set.instUnion
FirstOrder.Language.Sentence
โ€”Model.mono
Set.subset_union_left
Set.subset_union_right
Model.union
realize_sentence_of_mem ๐Ÿ“–mathematicalFirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instMembership
FirstOrder.Language.Sentence.Realizeโ€”Model.realize_of_mem

FirstOrder.Language.Theory.Model

Theorems

NameKindAssumesProvesValidatesDepends On
mono ๐Ÿ“–mathematicalFirstOrder.Language.Theory
Set.instHasSubset
FirstOrder.Language.Sentence
FirstOrder.Language.Theory.Modelโ€”FirstOrder.Language.Theory.realize_sentence_of_mem
realize_of_mem ๐Ÿ“–mathematicalFirstOrder.Language.Sentence
FirstOrder.Language.Theory
Set.instMembership
FirstOrder.Language.Sentence.Realizeโ€”โ€”
union ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Theory.Model
FirstOrder.Language.Theory
Set.instUnion
FirstOrder.Language.Sentence
โ€”โ€”

FirstOrder.Language.Theory.completeTheory

Theorems

NameKindAssumesProvesValidatesDepends On
subset ๐Ÿ“–mathematicalโ€”FirstOrder.Language.Theory
Set.instHasSubset
FirstOrder.Language.Sentence
FirstOrder.Language.completeTheory
โ€”FirstOrder.Language.Theory.model_iff_subset_completeTheory

---

โ† Back to Index