Documentation Verification Report

Substructures

πŸ“ Source: Mathlib/ModelTheory/Substructures.lean

Statistics

MetricCount
DefinitionsClosedUnder, codRestrict, domRestrict, equivRange, substructureEquivMap, codRestrict, domRestrict, eqLocus, range, substructureReduct, Substructure, carrier, closure, comap, copy, gciMapComap, gi, giMapComap, inclusion, inducedStructure, instCompleteLattice, instInf, instInfSet, instInhabited, instPartialOrder, instSetLike, instTop, map, subtype, topEquiv, withConstants
31
Theoremsinf, inter, sInf, codRestrict_apply, codRestrict_apply', comp_codRestrict, domRestrict_apply, equivRange_apply, equivRange_toEquiv_apply, substructureEquivMap_apply, subtype_comp_codRestrict, subtype_equivRange, subtype_substructureEquivMap, toHom_range, codRestrict_toFun_coe, comp_codRestrict, domRestrict_toFun, eqOn_closure, eq_of_eqOn_dense, eq_of_eqOn_top, map_le_range, mem_eqLocus, mem_range, mem_range_self, range_coe, range_comp, range_comp_le_range, range_eq_map, range_eq_top, range_id, range_le_iff_comap, subtype_comp_codRestrict, coe_substructureReduct, mem_substructureReduct, apply_coe_mem_map, closed, closure_empty, closure_eq, closure_eq_of_isRelational, closure_eq_of_le, closure_iUnion, closure_image, closure_induction, closure_induction', closure_insert, closure_le, closure_mono, closure_union, closure_univ, closure_withConstants_eq, coe_closure_eq_range_term_realize, coe_comap, coe_copy, coe_iInf, coe_inclusion, coe_inf, coe_map, coe_sInf, coe_subtype, coe_top, coe_topEquiv, coe_withConstants, comap_comap, comap_iInf, comap_iInf_map_of_injective, comap_iSup_map_of_injective, comap_id, comap_inf, comap_inf_map_of_injective, comap_injective_of_surjective, comap_le_comap_iff_of_surjective, comap_map_comap, comap_map_eq_of_injective, comap_strictMono_of_surjective, comap_sup_map_of_injective, comap_surjective_of_injective, comap_top, constants_mem, copy_eq, dense_induction, ext, ext_iff, fun_mem, gc_map_comap, iSup_eq_closure, inclusion_self, instIsEmptySubtypeMemBotOfConstants, le_comap_map, le_comap_of_map_le, lift_card_closure_le, lift_card_closure_le_card_term, map_bot, map_closure, map_comap_eq_of_surjective, map_comap_le, map_comap_map, map_iInf_comap_of_surjective, map_iSup, map_iSup_comap_of_surjective, map_id, map_inf_comap_of_surjective, map_injective_of_injective, map_le_iff_le_comap, map_le_map_iff_of_injective, map_le_of_le_comap, map_map, map_strictMono_of_injective, map_sup, map_sup_comap_of_surjective, map_surjective_of_surjective, mem_carrier, mem_closed_iff, mem_closed_of_isRelational, mem_closure, mem_closure_iff_exists_term, mem_closure_iff_of_isRelational, mem_comap, mem_iInf, mem_iSup_of_directed, mem_inf, mem_map, mem_map_of_mem, mem_sInf, mem_sSup_of_directedOn, mem_top, mem_withConstants, monotone_comap, monotone_map, notMem_of_notMem_closure, range_subtype, realize_boundedFormula_top, realize_formula_top, reduct_withConstants, small_bot, small_closure, subset_closure, subset_closure_withConstants, subtype_apply, subtype_comp_inclusion, subtype_injective, realize_mem, closedUnder_univ, substructure_closure
143
Total174

FirstOrder.Language

Definitions

NameCategoryTheorems
ClosedUnder πŸ“–MathDef
3 mathmath: Substructure.fun_mem, closedUnder_univ, Substructure.mem_closed_iff
Substructure πŸ“–CompData
163 mathmath: PartialEquiv.toEmbedding_apply, Substructure.closure_eq_of_isRelational, IsExtensionPair.cod, Substructure.gc_map_comap, Structure.fg_def, Embedding.equivRange_toEquiv_apply, Substructure.map_iInf_comap_of_surjective, Substructure.comap_inf_map_of_injective, Substructure.fg_closure_singleton, Substructure.map_sup, Substructure.comap_strictMono_of_surjective, Substructure.ext_iff, PartialEquiv.dom_le_dom, Hom.range_le_iff_comap, Substructure.small_closure, Substructure.coe_inf, Substructure.cg_def, Substructure.mem_closure, Hom.domRestrict_toFun, Substructure.mem_inf, Substructure.fg_closure, Substructure.map_sup_comap_of_surjective, Substructure.coe_comap, Substructure.subtype_apply, Substructure.comap_sup_map_of_injective, Substructure.inclusion_self, Substructure.small_bot, Substructure.constants_mem, Hom.mem_range, instOrderedStructureSubtypeMemSubstructure, Hom.mem_range_self, Substructure.fg_iff_structure_fg, Substructure.comap_surjective_of_injective, Substructure.coe_subtype, Substructure.cg_bot, Substructure.cg_iff_structure_cg, Substructure.fg_def, Substructure.coe_sInf, Substructure.lift_card_closure_le_card_term, DirectLimit.partialEquivLimit_comp_inclusion, LHom.coe_substructureReduct, Substructure.mem_closure_iff_exists_term, PartialEquiv.le_iff, Substructure.realize_formula_top, Embedding.subtype_equivRange, Substructure.map_comap_le, realize_term_substructure, Embedding.toEmbedding_toPartialEquiv, Substructure.coe_top, Substructure.skolem₁_reduct_isElementary, DirectLimit.liftInclusion_of, PartialEquiv.subtype_toEquiv_inclusion, Substructure.range_subtype, isExtensionPair_iff_cod, Hom.range_eq_map, Embedding.substructureEquivMap_apply, Substructure.mem_closed_of_isRelational, Substructure.fg_iff_exists_fin_generating_family, isExtensionPair_iff_exists_embedding_closure_singleton_sup, Substructure.closure_insert, age.fg_substructure, Substructure.CG.sup, PartialEquiv.monotone_cod, Substructure.closure_empty, PartialEquiv.toEquiv_inclusion_apply, Substructure.iSup_eq_closure, Hom.mem_eqLocus, Substructure.map_bot, Substructure.coe_map, Substructure.monotone_map, Structure.cg_def, DirectLimit.Equiv_isup_symm_inclusion, Substructure.subset_closure, Substructure.closure_iUnion, Substructure.subtype_injective, Hom.range_id, Substructure.map_injective_of_injective, Substructure.closure_union, Substructure.comap_iSup_map_of_injective, Structure.cg_iff, Substructure.FG.sup, Substructure.comap_injective_of_surjective, PartialEquiv.le_def, Substructure.FG.finite, Equiv.toHom_range, Substructure.map_iSup_comap_of_surjective, age.has_representative_as_substructure, Substructure.instCountable_fg_substructures_of_countable, PartialEquiv.cod_le_cod, Substructure.comap_inf, Substructure.map_le_iff_le_comap, Substructure.le_comap_map, Hom.range_coe, Substructure.coe_closure_eq_range_term_realize, Substructure.closed, Substructure.coe_topEquiv, Substructure.coeSort_elementarySkolem₁Reduct, Substructure.comap_iInf, Substructure.comap_top, DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, Hom.range_comp_le_range, Substructure.elementarySkolem₁Reduct.instSmall, Hom.range_eq_top, Substructure.mem_carrier, PartialEquiv.monotone_dom, Hom.map_le_range, Substructure.closure_withConstants_eq, PartialEquiv.symm_apply, DirectLimit.Equiv_isup_of_apply, Substructure.mem_iInf, Substructure.comap_iInf_map_of_injective, Substructure.map_closure, Substructure.monotone_comap, instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, Substructure.comap_le_comap_iff_of_surjective, Substructure.closure_le, DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, Substructure.mem_closed_iff, DirectLimit.iSup_range_of_eq_top, Substructure.instIsEmptySubtypeMemBotOfConstants, Set.Countable.substructure_closure, Substructure.subset_closure_withConstants, Substructure.realize_boundedFormula_top, LHom.mem_substructureReduct, Embedding.subtype_substructureEquivMap, Structure.CG.out, Substructure.mem_sInf, DirectLimit.Equiv_isup_symm_inclusion_apply, Substructure.cg_iff_empty_or_exists_nat_generating_family, Substructure.coe_iInf, Substructure.map_iSup, Substructure.map_le_map_iff_of_injective, Substructure.cg_iff_countable, Structure.FG.out, Substructure.map_surjective_of_surjective, Hom.eqOn_closure, Substructure.models_of_isUniversal, Substructure.mem_map, Substructure.mem_comap, Substructure.fg_bot, DirectLimit.cod_partialEquivLimit, DirectLimit.range_lift, Substructure.mem_top, PartialEquiv.ext_iff, PartialEquiv.toEquiv_inclusion, Embedding.domRestrict_apply, Substructure.lift_card_closure_le, Substructure.closure_eq, Embedding.equivRange_apply, Substructure.map_inf_comap_of_surjective, Substructure.mem_closure_iff_of_isRelational, Substructure.closure_mono, Substructure.countable_fg_substructures_of_countable, DirectLimit.rangeLiftInclusion, Substructure.closure_univ, DirectLimit.dom_partialEquivLimit, Substructure.map_strictMono_of_injective, Substructure.closure_image, Substructure.apply_coe_mem_map, Substructure.fg_iff_finite, Substructure.cg_closure_singleton, Structure.fg_iff, Substructure.cg_closure

Theorems

NameKindAssumesProvesValidatesDepends On
closedUnder_univ πŸ“–mathematicalβ€”ClosedUnder
Set.univ
β€”Set.mem_univ

FirstOrder.Language.ClosedUnder

Theorems

NameKindAssumesProvesValidatesDepends On
inf πŸ“–mathematicalFirstOrder.Language.ClosedUnderSet
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”inter
inter πŸ“–mathematicalFirstOrder.Language.ClosedUnderSet
Set.instInter
β€”Set.mem_inter
Set.mem_of_mem_inter_left
Set.mem_of_mem_inter_right
sInf πŸ“–mathematicalFirstOrder.Language.ClosedUnderInfSet.sInf
Set
Set.instInfSet
β€”β€”

FirstOrder.Language.Embedding

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOp
5 mathmath: equivRange_toEquiv_apply, comp_codRestrict, subtype_comp_codRestrict, codRestrict_apply, codRestrict_apply'
domRestrict πŸ“–CompOp
1 mathmath: domRestrict_apply
equivRange πŸ“–CompOp
3 mathmath: equivRange_toEquiv_apply, subtype_equivRange, equivRange_apply
substructureEquivMap πŸ“–CompOp
2 mathmath: substructureEquivMap_apply, subtype_substructureEquivMap

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict_apply πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
FirstOrder.Language.Embedding
funLike
FirstOrder.Language.Substructure.inducedStructure
codRestrict
β€”β€”
codRestrict_apply' πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
FirstOrder.Language.Embedding
funLike
FirstOrder.Language.Substructure.inducedStructure
codRestrict
β€”β€”
comp_codRestrict πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
FirstOrder.Language.Embedding
funLike
comp
FirstOrder.Language.Substructure.inducedStructure
codRestrict
β€”ext
domRestrict_apply πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Substructure.inducedStructure
funLike
domRestrict
β€”β€”
equivRange_apply πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Hom.range
toHom
DFunLike.coe
FirstOrder.Language.Equiv
FirstOrder.Language.Substructure.inducedStructure
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
equivRange
FirstOrder.Language.Embedding
funLike
β€”β€”
equivRange_toEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Hom.range
toHom
EquivLike.toFunLike
Equiv.instEquivLike
FirstOrder.Language.Equiv.toEquiv
FirstOrder.Language.Substructure.inducedStructure
equivRange
FirstOrder.Language.Embedding
funLike
codRestrict
β€”β€”
substructureEquivMap_apply πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Substructure.map
toHom
DFunLike.coe
FirstOrder.Language.Equiv
FirstOrder.Language.Substructure.inducedStructure
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
substructureEquivMap
FirstOrder.Language.Embedding
funLike
β€”β€”
subtype_comp_codRestrict πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
FirstOrder.Language.Embedding
funLike
comp
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.subtype
codRestrict
β€”ext
subtype_equivRange πŸ“–mathematicalβ€”comp
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Hom.range
toHom
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.subtype
FirstOrder.Language.Equiv.toEmbedding
equivRange
β€”ext
subtype_substructureEquivMap πŸ“–mathematicalβ€”comp
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Substructure.map
toHom
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Substructure.subtype
FirstOrder.Language.Equiv.toEmbedding
substructureEquivMap
β€”ext

FirstOrder.Language.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
toHom_range πŸ“–mathematicalβ€”FirstOrder.Language.Hom.range
toHom
Top.top
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instTop
β€”FirstOrder.Language.Substructure.ext
apply_symm_apply

FirstOrder.Language.Hom

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOp
3 mathmath: subtype_comp_codRestrict, comp_codRestrict, codRestrict_toFun_coe
domRestrict πŸ“–CompOp
1 mathmath: domRestrict_toFun
eqLocus πŸ“–CompOp
1 mathmath: mem_eqLocus
range πŸ“–CompOp
20 mathmath: FirstOrder.Language.Embedding.equivRange_toEquiv_apply, range_le_iff_comap, mem_range, mem_range_self, FirstOrder.Language.Embedding.subtype_equivRange, FirstOrder.Language.Substructure.range_subtype, range_eq_map, FirstOrder.Language.Structure.CG.range, range_id, FirstOrder.Language.Equiv.toHom_range, range_coe, range_comp_le_range, range_eq_top, map_le_range, range_comp, FirstOrder.Language.Structure.FG.range, FirstOrder.Language.DirectLimit.iSup_range_of_eq_top, FirstOrder.Language.DirectLimit.range_lift, FirstOrder.Language.Embedding.equivRange_apply, FirstOrder.Language.DirectLimit.rangeLiftInclusion

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict_toFun_coe πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
FirstOrder.Language.Substructure.inducedStructure
codRestrict
β€”β€”
comp_codRestrict πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
comp
FirstOrder.Language.Substructure.inducedStructure
codRestrict
β€”ext
domRestrict_toFun πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Substructure.inducedStructure
instFunLike
domRestrict
β€”β€”
eqOn_closure πŸ“–mathematicalSet.EqOn
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
SetLike.coe
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
FirstOrder.Language.Substructure.instPartialOrder
FirstOrder.Language.Substructure.closure
β€”FirstOrder.Language.Substructure.closure_le
eq_of_eqOn_dense πŸ“–β€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
FirstOrder.Language.Substructure.instPartialOrder
SetLike.coe
FirstOrder.Language.Substructure.instSetLike
FirstOrder.Language.Substructure.closure
Top.top
FirstOrder.Language.Substructure.instTop
Set.EqOn
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
β€”β€”eq_of_eqOn_top
eqOn_closure
eq_of_eqOn_top πŸ“–β€”Set.EqOn
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
SetLike.coe
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instSetLike
Top.top
FirstOrder.Language.Substructure.instTop
β€”β€”ext
map_le_range πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
FirstOrder.Language.Substructure.map
range
β€”SetLike.coe_mono
instIsConcreteLE
Set.image_subset_range
mem_eqLocus πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
eqLocus
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
β€”β€”
mem_range πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
range
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
β€”β€”
mem_range_self πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
range
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
β€”β€”
range_coe πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instSetLike
range
Set.range
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
β€”β€”
range_comp πŸ“–mathematicalβ€”range
comp
FirstOrder.Language.Substructure.map
β€”SetLike.coe_injective
Set.range_comp
range_comp_le_range πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
range
comp
β€”SetLike.coe_mono
instIsConcreteLE
Set.range_comp_subset_range
range_eq_map πŸ“–mathematicalβ€”range
FirstOrder.Language.Substructure.map
Top.top
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instTop
β€”FirstOrder.Language.Substructure.ext
range_eq_top πŸ“–mathematicalβ€”range
Top.top
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instTop
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
β€”SetLike.ext'_iff
range_coe
FirstOrder.Language.Substructure.coe_top
Set.range_eq_univ
range_id πŸ“–mathematicalβ€”range
id
Top.top
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instTop
β€”SetLike.coe_injective
Set.range_id
range_le_iff_comap πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
range
FirstOrder.Language.Substructure.comap
Top.top
FirstOrder.Language.Substructure.instTop
β€”range_eq_map
FirstOrder.Language.Substructure.map_le_iff_le_comap
eq_top_iff
subtype_comp_codRestrict πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
FirstOrder.Language.Hom
instFunLike
comp
FirstOrder.Language.Substructure.inducedStructure
FirstOrder.Language.Embedding.toHom
FirstOrder.Language.Substructure.subtype
codRestrict
β€”ext

FirstOrder.Language.LHom

Definitions

NameCategoryTheorems
substructureReduct πŸ“–CompOp
4 mathmath: coe_substructureReduct, FirstOrder.Language.Substructure.skolem₁_reduct_isElementary, FirstOrder.Language.Substructure.reduct_withConstants, mem_substructureReduct

Theorems

NameKindAssumesProvesValidatesDepends On
coe_substructureReduct πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
instFunLikeOrderEmbedding
substructureReduct
β€”β€”
mem_substructureReduct πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
FirstOrder.Language.Substructure.instPartialOrder
instFunLikeOrderEmbedding
substructureReduct
β€”β€”

FirstOrder.Language.Substructure

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
2 mathmath: fun_mem, mem_carrier
closure πŸ“–CompOp
38 mathmath: closure_eq_of_isRelational, fg_closure_singleton, small_closure, cg_def, mem_closure, fg_closure, fg_def, lift_card_closure_le_card_term, mem_closure_iff_exists_term, mem_closed_of_isRelational, fg_iff_exists_fin_generating_family, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, closure_insert, closure_empty, iSup_eq_closure, subset_closure, closure_iUnion, closure_union, FirstOrder.Language.Structure.cg_iff, coe_closure_eq_range_term_realize, closed, closure_withConstants_eq, map_closure, closure_le, mem_closed_iff, Set.Countable.substructure_closure, subset_closure_withConstants, cg_iff_empty_or_exists_nat_generating_family, FirstOrder.Language.Hom.eqOn_closure, lift_card_closure_le, closure_eq, mem_closure_iff_of_isRelational, closure_mono, closure_univ, closure_image, cg_closure_singleton, FirstOrder.Language.Structure.fg_iff, cg_closure
comap πŸ“–CompOp
30 mathmath: gc_map_comap, map_iInf_comap_of_surjective, comap_inf_map_of_injective, comap_strictMono_of_surjective, FirstOrder.Language.Hom.range_le_iff_comap, map_sup_comap_of_surjective, coe_comap, comap_sup_map_of_injective, comap_surjective_of_injective, comap_id, le_comap_of_map_le, map_comap_le, comap_comap, comap_iSup_map_of_injective, comap_injective_of_surjective, map_iSup_comap_of_surjective, comap_map_eq_of_injective, comap_inf, map_le_iff_le_comap, le_comap_map, comap_iInf, comap_top, map_comap_eq_of_surjective, comap_iInf_map_of_injective, monotone_comap, comap_le_comap_iff_of_surjective, map_comap_map, comap_map_comap, mem_comap, map_inf_comap_of_surjective
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
gciMapComap πŸ“–CompOpβ€”
gi πŸ“–CompOpβ€”
giMapComap πŸ“–CompOpβ€”
inclusion πŸ“–CompOp
18 mathmath: coe_inclusion, inclusion_self, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, FirstOrder.Language.PartialEquiv.le_iff, FirstOrder.Language.DirectLimit.liftInclusion_of, FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, FirstOrder.Language.PartialEquiv.toEquiv_inclusion_apply, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, subtype_comp_inclusion, FirstOrder.Language.PartialEquiv.le_def, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, FirstOrder.Language.PartialEquiv.toEquiv_inclusion, FirstOrder.Language.DirectLimit.rangeLiftInclusion
inducedStructure πŸ“–CompOp
50 mathmath: FirstOrder.Language.PartialEquiv.toEmbedding_apply, FirstOrder.Language.Embedding.equivRange_toEquiv_apply, FirstOrder.Language.Hom.domRestrict_toFun, subtype_apply, coe_inclusion, inclusion_self, FirstOrder.Language.instOrderedStructureSubtypeMemSubstructure, fg_iff_structure_fg, coe_subtype, cg_iff_structure_cg, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, FirstOrder.Language.PartialEquiv.le_iff, realize_formula_top, FirstOrder.Language.Embedding.subtype_equivRange, FirstOrder.Language.realize_term_substructure, FirstOrder.Language.DirectLimit.liftInclusion_of, FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion, range_subtype, FirstOrder.Language.Embedding.substructureEquivMap_apply, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, FirstOrder.Language.age.fg_substructure, FirstOrder.Language.PartialEquiv.toEquiv_inclusion_apply, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, subtype_injective, subtype_comp_inclusion, FirstOrder.Language.PartialEquiv.le_def, FirstOrder.Language.Hom.subtype_comp_codRestrict, FirstOrder.Language.age.has_representative_as_substructure, coe_topEquiv, FirstOrder.Language.Embedding.comp_codRestrict, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.PartialEquiv.symm_apply, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop_apply, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, FirstOrder.Language.Embedding.subtype_comp_codRestrict, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, realize_boundedFormula_top, FirstOrder.Language.Embedding.subtype_substructureEquivMap, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, FirstOrder.Language.Embedding.codRestrict_apply, models_of_isUniversal, FirstOrder.Language.Hom.comp_codRestrict, FirstOrder.Language.PartialEquiv.ext_iff, FirstOrder.Language.PartialEquiv.toEquiv_inclusion, FirstOrder.Language.Embedding.domRestrict_apply, FirstOrder.Language.Embedding.equivRange_apply, FirstOrder.Language.DirectLimit.rangeLiftInclusion, FirstOrder.Language.Hom.codRestrict_toFun_coe, FirstOrder.Language.Embedding.codRestrict_apply'
instCompleteLattice πŸ“–CompOp
31 mathmath: mem_sSup_of_directedOn, mem_iSup_of_directed, map_sup, map_sup_comap_of_surjective, comap_sup_map_of_injective, small_bot, cg_bot, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, closure_insert, CG.sup, closure_empty, iSup_eq_closure, map_bot, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, closure_iUnion, closure_union, comap_iSup_map_of_injective, FG.sup, map_iSup_comap_of_surjective, elementarySkolem₁Reduct.instSmall, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, FirstOrder.Language.DirectLimit.iSup_range_of_eq_top, instIsEmptySubtypeMemBotOfConstants, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, map_iSup, fg_bot, FirstOrder.Language.DirectLimit.cod_partialEquivLimit, FirstOrder.Language.DirectLimit.range_lift, FirstOrder.Language.DirectLimit.rangeLiftInclusion, FirstOrder.Language.DirectLimit.dom_partialEquivLimit
instInf πŸ“–CompOp
5 mathmath: comap_inf_map_of_injective, coe_inf, mem_inf, comap_inf, map_inf_comap_of_surjective
instInfSet πŸ“–CompOp
7 mathmath: map_iInf_comap_of_surjective, coe_sInf, comap_iInf, mem_iInf, comap_iInf_map_of_injective, mem_sInf, coe_iInf
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
66 mathmath: closure_eq_of_isRelational, gc_map_comap, fg_closure_singleton, comap_strictMono_of_surjective, FirstOrder.Language.PartialEquiv.dom_le_dom, FirstOrder.Language.Hom.range_le_iff_comap, small_closure, cg_def, mem_closure, fg_closure, inclusion_self, fg_def, lift_card_closure_le_card_term, FirstOrder.Language.LHom.coe_substructureReduct, mem_closure_iff_exists_term, map_comap_le, skolem₁_reduct_isElementary, FirstOrder.Language.DirectLimit.liftInclusion_of, mem_closed_of_isRelational, fg_iff_exists_fin_generating_family, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, closure_insert, reduct_withConstants, FirstOrder.Language.PartialEquiv.monotone_cod, closure_empty, iSup_eq_closure, monotone_map, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, subset_closure, closure_iUnion, closure_union, FirstOrder.Language.Structure.cg_iff, FirstOrder.Language.PartialEquiv.cod_le_cod, map_le_iff_le_comap, le_comap_map, coe_closure_eq_range_term_realize, closed, FirstOrder.Language.Hom.range_comp_le_range, FirstOrder.Language.PartialEquiv.monotone_dom, FirstOrder.Language.Hom.map_le_range, closure_withConstants_eq, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, map_closure, monotone_comap, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, comap_le_comap_iff_of_surjective, closure_le, mem_closed_iff, Set.Countable.substructure_closure, subset_closure_withConstants, FirstOrder.Language.LHom.mem_substructureReduct, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, cg_iff_empty_or_exists_nat_generating_family, map_le_map_iff_of_injective, FirstOrder.Language.Hom.eqOn_closure, lift_card_closure_le, closure_eq, mem_closure_iff_of_isRelational, closure_mono, FirstOrder.Language.DirectLimit.rangeLiftInclusion, closure_univ, map_strictMono_of_injective, closure_image, cg_closure_singleton, FirstOrder.Language.Structure.fg_iff, cg_closure
instSetLike πŸ“–CompOp
112 mathmath: FirstOrder.Language.PartialEquiv.toEmbedding_apply, mem_sSup_of_directedOn, closure_eq_of_isRelational, FirstOrder.Language.IsExtensionPair.cod, mem_iSup_of_directed, FirstOrder.Language.Embedding.equivRange_toEquiv_apply, fg_closure_singleton, ext_iff, small_closure, coe_inf, cg_def, mem_closure, FirstOrder.Language.Hom.domRestrict_toFun, mem_inf, fg_closure, coe_comap, subtype_apply, coe_inclusion, inclusion_self, small_bot, constants_mem, FirstOrder.Language.Hom.mem_range, FirstOrder.Language.instOrderedStructureSubtypeMemSubstructure, FirstOrder.Language.Hom.mem_range_self, fg_iff_structure_fg, coe_subtype, cg_iff_structure_cg, fg_def, coe_sInf, lift_card_closure_le_card_term, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, FirstOrder.Language.LHom.coe_substructureReduct, mem_closure_iff_exists_term, FirstOrder.Language.PartialEquiv.le_iff, realize_formula_top, FirstOrder.Language.Embedding.subtype_equivRange, FirstOrder.Language.realize_term_substructure, coe_top, FirstOrder.Language.DirectLimit.liftInclusion_of, FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion, range_subtype, FirstOrder.Language.isExtensionPair_iff_cod, FirstOrder.Language.Embedding.substructureEquivMap_apply, mem_closed_of_isRelational, fg_iff_exists_fin_generating_family, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, closure_insert, FirstOrder.Language.age.fg_substructure, closure_empty, FirstOrder.Language.PartialEquiv.toEquiv_inclusion_apply, iSup_eq_closure, FirstOrder.Language.Hom.mem_eqLocus, coe_map, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, subset_closure, closure_iUnion, subtype_injective, closure_union, subtype_comp_inclusion, FirstOrder.Language.Structure.cg_iff, FirstOrder.Language.PartialEquiv.le_def, FG.finite, FirstOrder.Language.age.has_representative_as_substructure, FirstOrder.Language.Hom.range_coe, coe_closure_eq_range_term_realize, closed, coe_topEquiv, coeSort_elementarySkolem₁Reduct, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, mem_carrier, closure_withConstants_eq, FirstOrder.Language.PartialEquiv.symm_apply, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, mem_iInf, map_closure, FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop_apply, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, closure_le, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, mem_closed_iff, instIsEmptySubtypeMemBotOfConstants, Set.Countable.substructure_closure, subset_closure_withConstants, realize_boundedFormula_top, FirstOrder.Language.LHom.mem_substructureReduct, FirstOrder.Language.Embedding.subtype_substructureEquivMap, mem_sInf, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, cg_iff_empty_or_exists_nat_generating_family, coe_iInf, cg_iff_countable, FirstOrder.Language.Hom.eqOn_closure, models_of_isUniversal, mem_map, mem_comap, mem_top, FirstOrder.Language.PartialEquiv.ext_iff, FirstOrder.Language.PartialEquiv.toEquiv_inclusion, FirstOrder.Language.Embedding.domRestrict_apply, lift_card_closure_le, closure_eq, FirstOrder.Language.Embedding.equivRange_apply, mem_closure_iff_of_isRelational, closure_mono, FirstOrder.Language.DirectLimit.rangeLiftInclusion, closure_univ, closure_image, apply_coe_mem_map, fg_iff_finite, cg_closure_singleton, FirstOrder.Language.Structure.fg_iff, cg_closure
instTop πŸ“–CompOp
19 mathmath: FirstOrder.Language.Structure.fg_def, FirstOrder.Language.Hom.range_le_iff_comap, realize_formula_top, coe_top, FirstOrder.Language.Hom.range_eq_map, FirstOrder.Language.Structure.cg_def, FirstOrder.Language.Hom.range_id, FirstOrder.Language.Structure.cg_iff, FirstOrder.Language.Equiv.toHom_range, coe_topEquiv, comap_top, FirstOrder.Language.Hom.range_eq_top, FirstOrder.Language.DirectLimit.iSup_range_of_eq_top, realize_boundedFormula_top, FirstOrder.Language.Structure.CG.out, FirstOrder.Language.Structure.FG.out, mem_top, closure_univ, FirstOrder.Language.Structure.fg_iff
map πŸ“–CompOp
41 mathmath: gc_map_comap, map_iInf_comap_of_surjective, comap_inf_map_of_injective, map_sup, map_map, map_sup_comap_of_surjective, comap_sup_map_of_injective, CG.map, map_comap_le, FirstOrder.Language.Hom.range_eq_map, FirstOrder.Language.Embedding.substructureEquivMap_apply, FirstOrder.Language.DirectLimit.exists_fg_substructure_in_Sigma, map_bot, coe_map, monotone_map, map_injective_of_injective, comap_iSup_map_of_injective, map_iSup_comap_of_surjective, comap_map_eq_of_injective, map_le_iff_le_comap, le_comap_map, map_id, map_le_of_le_comap, FirstOrder.Language.Hom.map_le_range, map_comap_eq_of_surjective, comap_iInf_map_of_injective, map_closure, map_comap_map, FirstOrder.Language.Hom.range_comp, FirstOrder.Language.Embedding.subtype_substructureEquivMap, comap_map_comap, map_iSup, map_le_map_iff_of_injective, FG.map, map_surjective_of_surjective, mem_map_of_mem, mem_map, map_inf_comap_of_surjective, map_strictMono_of_injective, closure_image, apply_coe_mem_map
subtype πŸ“–CompOp
13 mathmath: subtype_apply, coe_subtype, FirstOrder.Language.Embedding.subtype_equivRange, FirstOrder.Language.DirectLimit.liftInclusion_of, FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion, range_subtype, subtype_injective, subtype_comp_inclusion, FirstOrder.Language.PartialEquiv.le_def, FirstOrder.Language.Hom.subtype_comp_codRestrict, FirstOrder.Language.Embedding.subtype_comp_codRestrict, FirstOrder.Language.Embedding.subtype_substructureEquivMap, FirstOrder.Language.PartialEquiv.ext_iff
topEquiv πŸ“–CompOp
1 mathmath: coe_topEquiv
withConstants πŸ“–CompOp
4 mathmath: reduct_withConstants, coe_withConstants, mem_withConstants, closure_withConstants_eq

Theorems

NameKindAssumesProvesValidatesDepends On
apply_coe_mem_map πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
map
DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
β€”mem_map_of_mem
Subtype.prop
closed πŸ“–mathematicalβ€”LowerAdjoint.closed
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
β€”LowerAdjoint.eq_of_le
Set.Subset.rfl
mem_closure
closure_empty πŸ“–mathematicalβ€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Set.instEmptyCollection
Bot.bot
OrderBot.toBot
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
β€”GaloisInsertion.l_u_eq
closure_eq_of_isRelational πŸ“–mathematicalFirstOrder.Language.IsRelationalSetLike.coe
FirstOrder.Language.Substructure
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
closure
β€”LowerAdjoint.closure_eq_self_of_mem_closed
mem_closed_of_isRelational
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
FirstOrder.Language.Substructure
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LowerAdjoint.toFun
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
closure
β€”β€”LowerAdjoint.eq_of_le
closure_iUnion πŸ“–mathematicalβ€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Set.iUnion
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_image πŸ“–mathematicalβ€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Set.image
DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
map
β€”map_closure
closure_induction πŸ“–β€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
FirstOrder.Language.ClosedUnder
setOf
β€”β€”closure_le
closure_induction' πŸ“–β€”subset_closure
FirstOrder.Language.ClosedUnder
setOf
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
β€”β€”subset_closure
closure_induction
closure_insert πŸ“–mathematicalβ€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Set.instInsert
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.instSingletonSet
β€”closure_union
closure_le πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LowerAdjoint.toFun
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
SetLike.coe
instSetLike
closure
Set.instHasSubset
β€”LowerAdjoint.closure_le_closed_iff_le
closed
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LowerAdjoint.toFun
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
SetLike.coe
instSetLike
closure
β€”LowerAdjoint.monotone
closure_union πŸ“–mathematicalβ€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Set.instUnion
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Set.univ
Top.top
instTop
β€”closure_eq
coe_top
closure_withConstants_eq πŸ“–mathematicalβ€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
FirstOrder.Language.withConstants
Set.Elem
FirstOrder.Language.withConstantsStructure
FirstOrder.Language.paramsStructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
withConstants
Set.instUnion
HasSubset.Subset.trans
Set.instHasSubset
Set.instIsTransSubset
Set.subset_union_left
subset_closure
β€”closure_eq_of_le
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_left
subset_closure
Set.subset_union_right
FirstOrder.Language.withConstants_expansion
OrderEmbedding.le_iff_le
reduct_withConstants
subset_closure_withConstants
coe_closure_eq_range_term_realize πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
closure
Set.range
FirstOrder.Language.Term
Set.instMembership
FirstOrder.Language.Term.realize
β€”SetLike.ext'_iff
closure_eq_of_le
le_sInf
FirstOrder.Language.Term.realize_mem
coe_comap πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
instSetLike
comap
Set.preimage
DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
β€”β€”
coe_copy πŸ“–mathematicalSetLike.coe
FirstOrder.Language.Substructure
instSetLike
copyβ€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_inclusion πŸ“–mathematicalFirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
FirstOrder.Language.Embedding
SetLike.instMembership
instSetLike
inducedStructure
FirstOrder.Language.Embedding.funLike
inclusion
Set.inclusion
SetLike.coe
β€”β€”
coe_inf πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
instSetLike
instInf
Set
Set.instInter
β€”β€”
coe_map πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
instSetLike
map
Set.image
DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
inducedStructure
FirstOrder.Language.Embedding.funLike
subtype
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
FirstOrder.Language.Substructure
instSetLike
Top.top
instTop
Set.univ
β€”β€”
coe_topEquiv πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Equiv
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
Top.top
instTop
inducedStructure
EquivLike.toFunLike
FirstOrder.Language.Equiv.instEquivLike
topEquiv
β€”β€”
coe_withConstants πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
FirstOrder.Language.Substructure
instSetLike
FirstOrder.Language.withConstants
Set.Elem
FirstOrder.Language.withConstantsStructure
FirstOrder.Language.paramsStructure
withConstants
β€”β€”
comap_comap πŸ“–mathematicalβ€”comap
FirstOrder.Language.Hom.comp
β€”β€”
comap_iInf πŸ“–mathematicalβ€”comap
iInf
FirstOrder.Language.Substructure
instInfSet
β€”GaloisConnection.u_iInf
gc_map_comap
comap_iInf_map_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
comap
iInf
FirstOrder.Language.Substructure
instInfSet
map
β€”GaloisCoinsertion.u_iInf_l
comap_iSup_map_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
comap
iSup
FirstOrder.Language.Substructure
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
map
β€”GaloisCoinsertion.u_iSup_l
comap_id πŸ“–mathematicalβ€”comap
FirstOrder.Language.Hom.id
β€”ext
comap_inf πŸ“–mathematicalβ€”comap
FirstOrder.Language.Substructure
instInf
β€”GaloisConnection.u_inf
gc_map_comap
comap_inf_map_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
comap
FirstOrder.Language.Substructure
instInf
map
β€”GaloisCoinsertion.u_inf_l
comap_injective_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
FirstOrder.Language.Substructure
comap
β€”GaloisInsertion.u_injective
comap_le_comap_iff_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
β€”GaloisInsertion.u_le_u_iff
comap_map_comap πŸ“–mathematicalβ€”comap
map
β€”GaloisConnection.u_l_u_eq_u
gc_map_comap
comap_map_eq_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
comap
map
β€”GaloisCoinsertion.u_l_eq
comap_strictMono_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
StrictMono
FirstOrder.Language.Substructure
PartialOrder.toPreorder
instPartialOrder
comap
β€”GaloisInsertion.strictMono_u
comap_sup_map_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
comap
FirstOrder.Language.Substructure
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
map
β€”GaloisCoinsertion.u_sup_l
comap_surjective_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
FirstOrder.Language.Substructure
comap
β€”GaloisCoinsertion.u_surjective
comap_top πŸ“–mathematicalβ€”comap
Top.top
FirstOrder.Language.Substructure
instTop
β€”GaloisConnection.u_top
gc_map_comap
constants_mem πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
FirstOrder.Language.constantMap
β€”mem_carrier
fun_mem
Fin.isEmpty'
copy_eq πŸ“–mathematicalSetLike.coe
FirstOrder.Language.Substructure
instSetLike
copyβ€”SetLike.coe_injective
dense_induction πŸ“–β€”LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Top.top
instTop
FirstOrder.Language.ClosedUnder
setOf
β€”β€”closure_induction
ext πŸ“–β€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
β€”ext
fun_mem πŸ“–mathematicalβ€”FirstOrder.Language.ClosedUnder
carrier
β€”β€”
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
FirstOrder.Language.Substructure
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
iSup_eq_closure πŸ“–mathematicalβ€”iSup
FirstOrder.Language.Substructure
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Set.iUnion
β€”closure_iUnion
closure_eq
inclusion_self πŸ“–mathematicalβ€”inclusion
le_refl
FirstOrder.Language.Substructure
PartialOrder.toPreorder
instPartialOrder
FirstOrder.Language.Embedding.refl
SetLike.instMembership
instSetLike
inducedStructure
β€”le_refl
instIsEmptySubtypeMemBotOfConstants πŸ“–mathematicalβ€”IsEmpty
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”isEmpty_subtype
mem_closed_iff
closure_empty
SetLike.mem_coe
Set.notMem_empty
le_comap_map πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
map
β€”GaloisConnection.le_u_l
gc_map_comap
le_comap_of_map_le πŸ“–mathematicalFirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comapβ€”GaloisConnection.le_u
gc_map_comap
lift_card_closure_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.lift
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
Cardinal.instAdd
Set.Elem
FirstOrder.Language.Functions
β€”Cardinal.lift_umax
LE.le.trans
lift_card_closure_le_card_term
FirstOrder.Language.Term.card_le
Cardinal.mk_sum
le_refl
lift_card_closure_le_card_term πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.lift
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
FirstOrder.Language.Term
Set.Elem
β€”SetLike.coe_sort_coe
coe_closure_eq_range_term_realize
Cardinal.lift_id'
Cardinal.mk_range_le_lift
map_bot πŸ“–mathematicalβ€”map
Bot.bot
FirstOrder.Language.Substructure
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”GaloisConnection.l_bot
gc_map_comap
map_closure πŸ“–mathematicalβ€”map
LowerAdjoint.toFun
Set
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
Set.image
DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
β€”closure_eq_of_le
Set.image_mono
subset_closure
map_le_iff_le_comap
closure_le
map_comap_eq_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
map
comap
β€”GaloisInsertion.l_u_eq
map_comap_le πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”GaloisConnection.l_u_le
gc_map_comap
map_comap_map πŸ“–mathematicalβ€”map
comap
β€”GaloisConnection.l_u_l_eq_l
gc_map_comap
map_iInf_comap_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
map
iInf
FirstOrder.Language.Substructure
instInfSet
comap
β€”GaloisInsertion.l_iInf_u
map_iSup πŸ“–mathematicalβ€”map
iSup
FirstOrder.Language.Substructure
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_iSup
gc_map_comap
map_iSup_comap_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
map
iSup
FirstOrder.Language.Substructure
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
comap
β€”GaloisInsertion.l_iSup_u
map_id πŸ“–mathematicalβ€”map
FirstOrder.Language.Hom.id
β€”SetLike.coe_injective
Set.image_id
map_inf_comap_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
map
FirstOrder.Language.Substructure
instInf
comap
β€”GaloisInsertion.l_inf_u
map_injective_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
FirstOrder.Language.Substructure
map
β€”GaloisCoinsertion.l_injective
map_le_iff_le_comap πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_le_map_iff_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
β€”GaloisCoinsertion.l_le_l_iff
map_le_of_le_comap πŸ“–mathematicalFirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
mapβ€”GaloisConnection.l_le
gc_map_comap
map_map πŸ“–mathematicalβ€”map
FirstOrder.Language.Hom.comp
β€”SetLike.coe_injective
Set.image_image
map_strictMono_of_injective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
StrictMono
FirstOrder.Language.Substructure
PartialOrder.toPreorder
instPartialOrder
map
β€”GaloisCoinsertion.strictMono_l
map_sup πŸ“–mathematicalβ€”map
FirstOrder.Language.Substructure
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”GaloisConnection.l_sup
gc_map_comap
map_sup_comap_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
map
FirstOrder.Language.Substructure
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
comap
β€”GaloisInsertion.l_sup_u
map_surjective_of_surjective πŸ“–mathematicalDFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
FirstOrder.Language.Substructure
map
β€”GaloisInsertion.l_surjective
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
carrier
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
β€”β€”
mem_closed_iff πŸ“–mathematicalβ€”Set
Set.instMembership
LowerAdjoint.closed
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
FirstOrder.Language.ClosedUnder
β€”fun_mem
closure_eq_of_le
refl
Set.instReflSubset
subset_closure
mem_closed_of_isRelational πŸ“–mathematicalFirstOrder.Language.IsRelationalSet
Set.instMembership
LowerAdjoint.closed
FirstOrder.Language.Substructure
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
instSetLike
closure
β€”mem_closed_iff
mem_closure πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
β€”mem_sInf
mem_closure_iff_exists_term πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
FirstOrder.Language.Term.realize
Set.instMembership
β€”SetLike.mem_coe
coe_closure_eq_range_term_realize
Set.mem_range
mem_closure_iff_of_isRelational πŸ“–mathematicalFirstOrder.Language.IsRelationalFirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
Set.instMembership
β€”SetLike.mem_coe
closure_eq_of_isRelational
mem_comap πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
comap
DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
β€”β€”
mem_iInf πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup_of_directed πŸ“–mathematicalDirected
FirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”closure_induction
Set.mem_iUnion
Directed.finite_le
instIsTransLe
Finite.of_fintype
fun_mem
closure_iUnion
closure_eq
le_iSup
mem_inf πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
instInf
β€”β€”
mem_map πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
map
DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
β€”β€”
mem_map_of_mem πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
map
DFunLike.coe
FirstOrder.Language.Hom
FirstOrder.Language.Hom.instFunLike
β€”Set.mem_image_of_mem
mem_sInf πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
mem_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
FirstOrder.Language.Substructure
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set
Set.instMembership
β€”sSup_eq_iSup'
mem_iSup_of_directed
Set.Nonempty.to_subtype
DirectedOn.directed_val
mem_top πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
Top.top
instTop
β€”Set.mem_univ
mem_withConstants πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
FirstOrder.Language.Substructure
instSetLike
FirstOrder.Language.withConstants
Set.Elem
FirstOrder.Language.withConstantsStructure
FirstOrder.Language.paramsStructure
SetLike.instMembership
withConstants
β€”β€”
monotone_comap πŸ“–mathematicalβ€”Monotone
FirstOrder.Language.Substructure
PartialOrder.toPreorder
instPartialOrder
comap
β€”GaloisConnection.monotone_u
gc_map_comap
monotone_map πŸ“–mathematicalβ€”Monotone
FirstOrder.Language.Substructure
PartialOrder.toPreorder
instPartialOrder
map
β€”GaloisConnection.monotone_l
gc_map_comap
notMem_of_notMem_closure πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
Set.instMembershipβ€”subset_closure
range_subtype πŸ“–mathematicalβ€”FirstOrder.Language.Hom.range
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
inducedStructure
FirstOrder.Language.Embedding.toHom
subtype
β€”ext
realize_boundedFormula_top πŸ“–mathematicalβ€”FirstOrder.Language.BoundedFormula.Realize
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
Top.top
instTop
inducedStructure
β€”FirstOrder.Language.StrongHomClass.realize_boundedFormula
FirstOrder.Language.Equiv.instStrongHomClass
realize_formula_top πŸ“–mathematicalβ€”FirstOrder.Language.Formula.Realize
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
Top.top
instTop
inducedStructure
β€”FirstOrder.Language.StrongHomClass.realize_formula
FirstOrder.Language.Equiv.instStrongHomClass
reduct_withConstants πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
FirstOrder.Language.Substructure
instSetLike
DFunLike.coe
OrderEmbedding
FirstOrder.Language.withConstants
Set.Elem
FirstOrder.Language.withConstantsStructure
FirstOrder.Language.paramsStructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderEmbedding
FirstOrder.Language.LHom.substructureReduct
FirstOrder.Language.lhomWithConstants
FirstOrder.Language.withConstants_expansion
withConstants
β€”ext
FirstOrder.Language.withConstants_expansion
small_bot πŸ“–mathematicalβ€”Small
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”closure_empty
small_closure
small_subsingleton
IsEmpty.instSubsingleton
Set.instIsEmptyElemEmptyCollection
small_closure πŸ“–mathematicalβ€”Small
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
SetLike.coe
closure
β€”SetLike.coe_sort_coe
coe_closure_eq_range_term_realize
small_range
FirstOrder.Language.Term.small
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
FirstOrder.Language.Substructure
instSetLike
LowerAdjoint.toFun
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
closure
β€”LowerAdjoint.le_closure
subset_closure_withConstants πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
FirstOrder.Language.Substructure
FirstOrder.Language.withConstants
Set.Elem
FirstOrder.Language.withConstantsStructure
FirstOrder.Language.paramsStructure
instSetLike
LowerAdjoint.toFun
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
closure
β€”constants_mem
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
FirstOrder.Language.Embedding
FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
inducedStructure
FirstOrder.Language.Embedding.funLike
subtype
β€”β€”
subtype_comp_inclusion πŸ“–mathematicalFirstOrder.Language.Substructure
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
FirstOrder.Language.Embedding.comp
SetLike.instMembership
instSetLike
inducedStructure
subtype
inclusion
β€”β€”
subtype_injective πŸ“–mathematicalβ€”FirstOrder.Language.Substructure
SetLike.instMembership
instSetLike
DFunLike.coe
FirstOrder.Language.Embedding
inducedStructure
FirstOrder.Language.Embedding.funLike
subtype
β€”Subtype.coe_injective

FirstOrder.Language.Term

Theorems

NameKindAssumesProvesValidatesDepends On
realize_mem πŸ“–mathematicalFirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
realizeβ€”FirstOrder.Language.Substructure.fun_mem

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
substructure_closure πŸ“–mathematicalβ€”Countable
FirstOrder.Language.Substructure
SetLike.instMembership
FirstOrder.Language.Substructure.instSetLike
LowerAdjoint.toFun
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
FirstOrder.Language.Substructure.instPartialOrder
SetLike.coe
FirstOrder.Language.Substructure.closure
β€”Cardinal.mk_le_aleph0_iff
Cardinal.lift_le_aleph0
LE.le.trans
FirstOrder.Language.Substructure.lift_card_closure_le_card_term
Cardinal.mk_le_aleph0
FirstOrder.Language.Term.instCountableOfSigmaNatFunctions
to_subtype

---

← Back to Index