| Metric | Count |
DefinitionsClosedUnder, codRestrict, domRestrict, equivRange, substructureEquivMap, codRestrict, domRestrict, eqLocus, range, substructureReduct, Substructure, carrier, closure, comap, copy, gciMapComap, gi, giMapComap, inclusion, inducedStructure, instCompleteLattice, instInf, instInfSet, instInhabited, instPartialOrder, instSetLike, instTop, map, subtype, topEquiv, withConstants | 31 |
Theoremsinf, inter, sInf, codRestrict_apply, codRestrict_apply', comp_codRestrict, domRestrict_apply, equivRange_apply, equivRange_toEquiv_apply, substructureEquivMap_apply, subtype_comp_codRestrict, subtype_equivRange, subtype_substructureEquivMap, toHom_range, codRestrict_toFun_coe, comp_codRestrict, domRestrict_toFun, eqOn_closure, eq_of_eqOn_dense, eq_of_eqOn_top, map_le_range, mem_eqLocus, mem_range, mem_range_self, range_coe, range_comp, range_comp_le_range, range_eq_map, range_eq_top, range_id, range_le_iff_comap, subtype_comp_codRestrict, coe_substructureReduct, mem_substructureReduct, apply_coe_mem_map, closed, closure_empty, closure_eq, closure_eq_of_isRelational, closure_eq_of_le, closure_iUnion, closure_image, closure_induction, closure_induction', closure_insert, closure_le, closure_mono, closure_union, closure_univ, closure_withConstants_eq, coe_closure_eq_range_term_realize, coe_comap, coe_copy, coe_iInf, coe_inclusion, coe_inf, coe_map, coe_sInf, coe_subtype, coe_top, coe_topEquiv, coe_withConstants, comap_comap, comap_iInf, comap_iInf_map_of_injective, comap_iSup_map_of_injective, comap_id, comap_inf, comap_inf_map_of_injective, comap_injective_of_surjective, comap_le_comap_iff_of_surjective, comap_map_comap, comap_map_eq_of_injective, comap_strictMono_of_surjective, comap_sup_map_of_injective, comap_surjective_of_injective, comap_top, constants_mem, copy_eq, dense_induction, ext, ext_iff, fun_mem, gc_map_comap, iSup_eq_closure, inclusion_self, instIsEmptySubtypeMemBotOfConstants, le_comap_map, le_comap_of_map_le, lift_card_closure_le, lift_card_closure_le_card_term, map_bot, map_closure, map_comap_eq_of_surjective, map_comap_le, map_comap_map, map_iInf_comap_of_surjective, map_iSup, map_iSup_comap_of_surjective, map_id, map_inf_comap_of_surjective, map_injective_of_injective, map_le_iff_le_comap, map_le_map_iff_of_injective, map_le_of_le_comap, map_map, map_strictMono_of_injective, map_sup, map_sup_comap_of_surjective, map_surjective_of_surjective, mem_carrier, mem_closed_iff, mem_closed_of_isRelational, mem_closure, mem_closure_iff_exists_term, mem_closure_iff_of_isRelational, mem_comap, mem_iInf, mem_iSup_of_directed, mem_inf, mem_map, mem_map_of_mem, mem_sInf, mem_sSup_of_directedOn, mem_top, mem_withConstants, monotone_comap, monotone_map, notMem_of_notMem_closure, range_subtype, realize_boundedFormula_top, realize_formula_top, reduct_withConstants, small_bot, small_closure, subset_closure, subset_closure_withConstants, subtype_apply, subtype_comp_inclusion, subtype_injective, realize_mem, closedUnder_univ, substructure_closure | 143 |
| Total | 174 |
| Name | Category | Theorems |
carrier π | CompOp | 2 mathmath: fun_mem, mem_carrier
|
closure π | CompOp | 38 mathmath: closure_eq_of_isRelational, fg_closure_singleton, small_closure, cg_def, mem_closure, fg_closure, fg_def, lift_card_closure_le_card_term, mem_closure_iff_exists_term, mem_closed_of_isRelational, fg_iff_exists_fin_generating_family, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, closure_insert, closure_empty, iSup_eq_closure, subset_closure, closure_iUnion, closure_union, FirstOrder.Language.Structure.cg_iff, coe_closure_eq_range_term_realize, closed, closure_withConstants_eq, map_closure, closure_le, mem_closed_iff, Set.Countable.substructure_closure, subset_closure_withConstants, cg_iff_empty_or_exists_nat_generating_family, FirstOrder.Language.Hom.eqOn_closure, lift_card_closure_le, closure_eq, mem_closure_iff_of_isRelational, closure_mono, closure_univ, closure_image, cg_closure_singleton, FirstOrder.Language.Structure.fg_iff, cg_closure
|
comap π | CompOp | 30 mathmath: gc_map_comap, map_iInf_comap_of_surjective, comap_inf_map_of_injective, comap_strictMono_of_surjective, FirstOrder.Language.Hom.range_le_iff_comap, map_sup_comap_of_surjective, coe_comap, comap_sup_map_of_injective, comap_surjective_of_injective, comap_id, le_comap_of_map_le, map_comap_le, comap_comap, comap_iSup_map_of_injective, comap_injective_of_surjective, map_iSup_comap_of_surjective, comap_map_eq_of_injective, comap_inf, map_le_iff_le_comap, le_comap_map, comap_iInf, comap_top, map_comap_eq_of_surjective, comap_iInf_map_of_injective, monotone_comap, comap_le_comap_iff_of_surjective, map_comap_map, comap_map_comap, mem_comap, map_inf_comap_of_surjective
|
copy π | CompOp | 2 mathmath: copy_eq, coe_copy
|
gciMapComap π | CompOp | β |
gi π | CompOp | β |
giMapComap π | CompOp | β |
inclusion π | CompOp | 18 mathmath: coe_inclusion, inclusion_self, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, FirstOrder.Language.PartialEquiv.le_iff, FirstOrder.Language.DirectLimit.liftInclusion_of, FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, FirstOrder.Language.PartialEquiv.toEquiv_inclusion_apply, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, subtype_comp_inclusion, FirstOrder.Language.PartialEquiv.le_def, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, FirstOrder.Language.PartialEquiv.toEquiv_inclusion, FirstOrder.Language.DirectLimit.rangeLiftInclusion
|
inducedStructure π | CompOp | 50 mathmath: FirstOrder.Language.PartialEquiv.toEmbedding_apply, FirstOrder.Language.Embedding.equivRange_toEquiv_apply, FirstOrder.Language.Hom.domRestrict_toFun, subtype_apply, coe_inclusion, inclusion_self, FirstOrder.Language.instOrderedStructureSubtypeMemSubstructure, fg_iff_structure_fg, coe_subtype, cg_iff_structure_cg, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, FirstOrder.Language.PartialEquiv.le_iff, realize_formula_top, FirstOrder.Language.Embedding.subtype_equivRange, FirstOrder.Language.realize_term_substructure, FirstOrder.Language.DirectLimit.liftInclusion_of, FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion, range_subtype, FirstOrder.Language.Embedding.substructureEquivMap_apply, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, FirstOrder.Language.age.fg_substructure, FirstOrder.Language.PartialEquiv.toEquiv_inclusion_apply, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, subtype_injective, subtype_comp_inclusion, FirstOrder.Language.PartialEquiv.le_def, FirstOrder.Language.Hom.subtype_comp_codRestrict, FirstOrder.Language.age.has_representative_as_substructure, coe_topEquiv, FirstOrder.Language.Embedding.comp_codRestrict, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, FirstOrder.Language.PartialEquiv.symm_apply, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop_apply, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, FirstOrder.Language.Embedding.subtype_comp_codRestrict, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, realize_boundedFormula_top, FirstOrder.Language.Embedding.subtype_substructureEquivMap, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, FirstOrder.Language.Embedding.codRestrict_apply, models_of_isUniversal, FirstOrder.Language.Hom.comp_codRestrict, FirstOrder.Language.PartialEquiv.ext_iff, FirstOrder.Language.PartialEquiv.toEquiv_inclusion, FirstOrder.Language.Embedding.domRestrict_apply, FirstOrder.Language.Embedding.equivRange_apply, FirstOrder.Language.DirectLimit.rangeLiftInclusion, FirstOrder.Language.Hom.codRestrict_toFun_coe, FirstOrder.Language.Embedding.codRestrict_apply'
|
instCompleteLattice π | CompOp | 31 mathmath: mem_sSup_of_directedOn, mem_iSup_of_directed, map_sup, map_sup_comap_of_surjective, comap_sup_map_of_injective, small_bot, cg_bot, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, closure_insert, CG.sup, closure_empty, iSup_eq_closure, map_bot, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, closure_iUnion, closure_union, comap_iSup_map_of_injective, FG.sup, map_iSup_comap_of_surjective, elementarySkolemβReduct.instSmall, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, FirstOrder.Language.DirectLimit.iSup_range_of_eq_top, instIsEmptySubtypeMemBotOfConstants, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, map_iSup, fg_bot, FirstOrder.Language.DirectLimit.cod_partialEquivLimit, FirstOrder.Language.DirectLimit.range_lift, FirstOrder.Language.DirectLimit.rangeLiftInclusion, FirstOrder.Language.DirectLimit.dom_partialEquivLimit
|
instInf π | CompOp | 5 mathmath: comap_inf_map_of_injective, coe_inf, mem_inf, comap_inf, map_inf_comap_of_surjective
|
instInfSet π | CompOp | 7 mathmath: map_iInf_comap_of_surjective, coe_sInf, comap_iInf, mem_iInf, comap_iInf_map_of_injective, mem_sInf, coe_iInf
|
instInhabited π | CompOp | β |
instPartialOrder π | CompOp | 66 mathmath: closure_eq_of_isRelational, gc_map_comap, fg_closure_singleton, comap_strictMono_of_surjective, FirstOrder.Language.PartialEquiv.dom_le_dom, FirstOrder.Language.Hom.range_le_iff_comap, small_closure, cg_def, mem_closure, fg_closure, inclusion_self, fg_def, lift_card_closure_le_card_term, FirstOrder.Language.LHom.coe_substructureReduct, mem_closure_iff_exists_term, map_comap_le, skolemβ_reduct_isElementary, FirstOrder.Language.DirectLimit.liftInclusion_of, mem_closed_of_isRelational, fg_iff_exists_fin_generating_family, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, closure_insert, reduct_withConstants, FirstOrder.Language.PartialEquiv.monotone_cod, closure_empty, iSup_eq_closure, monotone_map, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, subset_closure, closure_iUnion, closure_union, FirstOrder.Language.Structure.cg_iff, FirstOrder.Language.PartialEquiv.cod_le_cod, map_le_iff_le_comap, le_comap_map, coe_closure_eq_range_term_realize, closed, FirstOrder.Language.Hom.range_comp_le_range, FirstOrder.Language.PartialEquiv.monotone_dom, FirstOrder.Language.Hom.map_le_range, closure_withConstants_eq, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, map_closure, monotone_comap, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, comap_le_comap_iff_of_surjective, closure_le, mem_closed_iff, Set.Countable.substructure_closure, subset_closure_withConstants, FirstOrder.Language.LHom.mem_substructureReduct, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, cg_iff_empty_or_exists_nat_generating_family, map_le_map_iff_of_injective, FirstOrder.Language.Hom.eqOn_closure, lift_card_closure_le, closure_eq, mem_closure_iff_of_isRelational, closure_mono, FirstOrder.Language.DirectLimit.rangeLiftInclusion, closure_univ, map_strictMono_of_injective, closure_image, cg_closure_singleton, FirstOrder.Language.Structure.fg_iff, cg_closure
|
instSetLike π | CompOp | 112 mathmath: FirstOrder.Language.PartialEquiv.toEmbedding_apply, mem_sSup_of_directedOn, closure_eq_of_isRelational, FirstOrder.Language.IsExtensionPair.cod, mem_iSup_of_directed, FirstOrder.Language.Embedding.equivRange_toEquiv_apply, fg_closure_singleton, ext_iff, small_closure, coe_inf, cg_def, mem_closure, FirstOrder.Language.Hom.domRestrict_toFun, mem_inf, fg_closure, coe_comap, subtype_apply, coe_inclusion, inclusion_self, small_bot, constants_mem, FirstOrder.Language.Hom.mem_range, FirstOrder.Language.instOrderedStructureSubtypeMemSubstructure, FirstOrder.Language.Hom.mem_range_self, fg_iff_structure_fg, coe_subtype, cg_iff_structure_cg, fg_def, coe_sInf, lift_card_closure_le_card_term, FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion, FirstOrder.Language.LHom.coe_substructureReduct, mem_closure_iff_exists_term, FirstOrder.Language.PartialEquiv.le_iff, realize_formula_top, FirstOrder.Language.Embedding.subtype_equivRange, FirstOrder.Language.realize_term_substructure, coe_top, FirstOrder.Language.DirectLimit.liftInclusion_of, FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion, range_subtype, FirstOrder.Language.isExtensionPair_iff_cod, FirstOrder.Language.Embedding.substructureEquivMap_apply, mem_closed_of_isRelational, fg_iff_exists_fin_generating_family, FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup, closure_insert, FirstOrder.Language.age.fg_substructure, closure_empty, FirstOrder.Language.PartialEquiv.toEquiv_inclusion_apply, iSup_eq_closure, FirstOrder.Language.Hom.mem_eqLocus, coe_map, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion, subset_closure, closure_iUnion, subtype_injective, closure_union, subtype_comp_inclusion, FirstOrder.Language.Structure.cg_iff, FirstOrder.Language.PartialEquiv.le_def, FG.finite, FirstOrder.Language.age.has_representative_as_substructure, FirstOrder.Language.Hom.range_coe, coe_closure_eq_range_term_realize, closed, coe_topEquiv, coeSort_elementarySkolemβReduct, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion, mem_carrier, closure_withConstants_eq, FirstOrder.Language.PartialEquiv.symm_apply, FirstOrder.Language.DirectLimit.Equiv_isup_of_apply, mem_iInf, map_closure, FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop_apply, FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion, closure_le, FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion, mem_closed_iff, instIsEmptySubtypeMemBotOfConstants, Set.Countable.substructure_closure, subset_closure_withConstants, realize_boundedFormula_top, FirstOrder.Language.LHom.mem_substructureReduct, FirstOrder.Language.Embedding.subtype_substructureEquivMap, mem_sInf, FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply, cg_iff_empty_or_exists_nat_generating_family, coe_iInf, cg_iff_countable, FirstOrder.Language.Hom.eqOn_closure, models_of_isUniversal, mem_map, mem_comap, mem_top, FirstOrder.Language.PartialEquiv.ext_iff, FirstOrder.Language.PartialEquiv.toEquiv_inclusion, FirstOrder.Language.Embedding.domRestrict_apply, lift_card_closure_le, closure_eq, FirstOrder.Language.Embedding.equivRange_apply, mem_closure_iff_of_isRelational, closure_mono, FirstOrder.Language.DirectLimit.rangeLiftInclusion, closure_univ, closure_image, apply_coe_mem_map, fg_iff_finite, cg_closure_singleton, FirstOrder.Language.Structure.fg_iff, cg_closure
|
instTop π | CompOp | 19 mathmath: FirstOrder.Language.Structure.fg_def, FirstOrder.Language.Hom.range_le_iff_comap, realize_formula_top, coe_top, FirstOrder.Language.Hom.range_eq_map, FirstOrder.Language.Structure.cg_def, FirstOrder.Language.Hom.range_id, FirstOrder.Language.Structure.cg_iff, FirstOrder.Language.Equiv.toHom_range, coe_topEquiv, comap_top, FirstOrder.Language.Hom.range_eq_top, FirstOrder.Language.DirectLimit.iSup_range_of_eq_top, realize_boundedFormula_top, FirstOrder.Language.Structure.CG.out, FirstOrder.Language.Structure.FG.out, mem_top, closure_univ, FirstOrder.Language.Structure.fg_iff
|
map π | CompOp | 41 mathmath: gc_map_comap, map_iInf_comap_of_surjective, comap_inf_map_of_injective, map_sup, map_map, map_sup_comap_of_surjective, comap_sup_map_of_injective, CG.map, map_comap_le, FirstOrder.Language.Hom.range_eq_map, FirstOrder.Language.Embedding.substructureEquivMap_apply, FirstOrder.Language.DirectLimit.exists_fg_substructure_in_Sigma, map_bot, coe_map, monotone_map, map_injective_of_injective, comap_iSup_map_of_injective, map_iSup_comap_of_surjective, comap_map_eq_of_injective, map_le_iff_le_comap, le_comap_map, map_id, map_le_of_le_comap, FirstOrder.Language.Hom.map_le_range, map_comap_eq_of_surjective, comap_iInf_map_of_injective, map_closure, map_comap_map, FirstOrder.Language.Hom.range_comp, FirstOrder.Language.Embedding.subtype_substructureEquivMap, comap_map_comap, map_iSup, map_le_map_iff_of_injective, FG.map, map_surjective_of_surjective, mem_map_of_mem, mem_map, map_inf_comap_of_surjective, map_strictMono_of_injective, closure_image, apply_coe_mem_map
|
subtype π | CompOp | 13 mathmath: subtype_apply, coe_subtype, FirstOrder.Language.Embedding.subtype_equivRange, FirstOrder.Language.DirectLimit.liftInclusion_of, FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion, range_subtype, subtype_injective, subtype_comp_inclusion, FirstOrder.Language.PartialEquiv.le_def, FirstOrder.Language.Hom.subtype_comp_codRestrict, FirstOrder.Language.Embedding.subtype_comp_codRestrict, FirstOrder.Language.Embedding.subtype_substructureEquivMap, FirstOrder.Language.PartialEquiv.ext_iff
|
topEquiv π | CompOp | 1 mathmath: coe_topEquiv
|
withConstants π | CompOp | 4 mathmath: reduct_withConstants, coe_withConstants, mem_withConstants, closure_withConstants_eq
|